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The relationship between the quantum theory of electrical transport in the presence of a magnetic field
and the corresponding Boltzmann transport equation is established for a simple system. The model consists
of noninteracting free electrons being elastically scattered by an arbitrary potential in the presence of
uniform electric and magnetic fields. Without the aid of a representation, the exact gauge-dependent
Liouville equation for the density operator of this system is transformed into a completely gauge-independent
equation satisfied by a new density operator. The new density operator is shown to give the correct current
density, using the ordinary gauge-independent free-particle velocity operator. No approximations are made
in performing the transformations, and the physical content of the new gauge-independent transport for-
malism is identical in all respects with that contained in the initial gauge-dependent equations. A new density
matrix is defined which is essentially the Fourier sum of the matrix of the gauge-independent density opera-
tor. By considering the scattering potential resulting from a set of fixed impurity centers, it is shown that
the diagonal elements of this new density matrix satisfy the ordinary time-dependent Boltzmann transport
equation in which the spatial gradient term appears explicitly. The possible existence of a spatial variation
in the average density of scatterers is also taken into account. The final equation for the quantum-mechani-
cal distribution function represents the result obtained by treating the electric field and the effective scatter-
ing potential to the lowest possible order in which they contribute.

I. INTRODUCTION

HE work presented here is concerned with the
problem of establishing the relationship between

the correct quantum-mechanical theory of electrical
transport based on the density-matrix formalism and
the ordinary Boltzmann transport equation. ' ' Because
of the increasing interest in the effects of a magnetic
Geld on the transport properties of metals and semi-
conductors, special attention is given to the problem of
correctly establishing the form of an equivalent gauge-
independent transport formalism that is directly related
to the usual gauge-independent transport equation.
This approach provides a way of properly treating all
magnetic effects having an inhuence on transport prop-
erties within the familiar framework of a transport
equation. In the present work, an improved derivation
of the gauge-independent transport formalism is pre-
sented that avoids altogether the use of a representa-
tion. ' The gauge-independent density operator is used
to define a new spatially dependent density matrix. The
diagonal elements of this new density matrix are found
to satisfy a Boltzmann transport equation that includes
the spatial gradient term; they, therefore, correspond
exactly to the classical distribution function.

The expectation value of any observable quantity
represented by the operator 3f is given by

3II(1)=Tr{pr(t)M(t) ), (1.1)

where p& is the density operator. ' The time development

'N. Ashby, Ph.D. thesis, Harvard University, 1961 (unpub-
lished).

J. H. Irving, Ph.D. thesis, Princeton University, 1965 (unpub-
lished).' S. Fujita, Introduction to Xonequilibrium Quantum Statistical
Mechanics (W. B. Saunders Co., Philadelphia, 1966), Chap. 5.

4 R. B.Thomas, Jr. , Phys. Rev. 152, 138 (1966).
5 R. C. Tolman, Princzp/es of Statistical Mechanics (Oxford Uni-

versity Press, New York, 1930), p. 327.

of p& is determined by the Liouville equation

Bpz'
ih = [Hz' pr 1 ~

Bt
(1.2)

' W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
7 A. H. Wilson, The Theory of Metals (Cambridge University

Press, London, 1953), 2nd ed. , Chap. 2, p. 51.
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where Hz is the complete Hamiltonian for the system.
Once p& is known, the value of any operator M repre-
senting an observable quantity can be found from (1.1).
%hile this procedure is certainly straightforward and
correct, it has not been extensively employed in the
treatment of transport problems, because of the diK-
culty involved in solving Eq. (1.2) for the density
operator. The most usual approach in dealing with
transport problems has been through the use of the
Boltzmann transport equation or some related trans-
port equation. For this reason it is desirable to establish
as rigorously as possible the connection between the
exact density-matrix formalism, represented by Eqs.
(1.1) and (1.2), and the more commonly used transport
equations.

In the absence of a magnetic 6eld, the correct rela-
tionship between the exact density-matrix formalism
and the ordinary time-independent Boltzmann equation
has been established by Kohn and Luttinger' for a
simple spatially homogeneous model. For a system in
the presence of a magnetic held, the vector potential ap-
pears explicitly in Eq. (1.2) for the exact density opera-
tor and in the corresponding velocity operator as well.
It is then apparent that the exact magnetic-field-
dependent density operator does not correspond to the
ordinary classical distribution function. Moreover, the
matrix equations obtained from the operator relation-
ship (1.2) contain matrix elements of the vector poten-
tial, and this leads directly to difhculty in attempting
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to solve them. In order to avoid this diTiculty, and to
ensure a description that is finally gauge-independent,
a method was found of eliminating the vector potential
from the operator equation at the outset. Using the
methods of Kohn and Luttinger, the resulting gauge-
independent operator equation was found to be directly
related to a simple form of the Boltzmann equation in
the presence of a magnetic field.

The original method of deriving the gauge-indepen-
dent transport formalism depends on the use of a repre-
sentation that tends to complicate the equations and to
obscure important relationships. Actually, the use of
a representation is not essential to the derivation; this
is suggested by the fact that the final results can again
be written in operator form. Here a simpler and some-
what more general derivation of the gauge-independent
transport formalism is presented, which makes no use
of a representation. The model consists in noninteract-
ing free electrons being elastically scattered by an arbi-
trary spatially dependent potential in the presence of
uniform electric and magnetic Gelds. In Sec. II, the
exact gauge-dependent Liouville equation for the den-
sity operator of this system is transformed into a com-
pletely gauge-independent equation for a new density
operator. In Sec. III, the corresponding gauge-inde-
pendent velocity operator is found.

In Sec. IV, the relationship between the gauge-
independent Liouville equation and a more general form
of the Boltzmann transport equation is established.
This is accomplished with the aid of a new density ma-
trix that is essentially the Fourier sum of the matrix of
the gauge-independent density operator. This quantity
turns out to correspond exactly to the ordinary classical
distribution function, For mathematical convenience,
the scattering potential is limited to that provided by
a set of fixed impurity centers, and is treated as a per-
turbation by means of the Born approximation. It is
shown that the diagonal elements of the new density
matrix satisfy the ordinary time-dependent Boltzmann
equation, in which the spatial gradient term appears ex-
plicitly. The possible existence of a spatial variation in
the average density of scatterers is also taken into ac-
count. This procedure can readily be extended to obtain
higher-order corrections, which will include terms de-
pending on the spatial variation of the various physical
parameters used to describe the system. By an appropri-
ate choice of basis functions, the periodic lattice po-
tential can also be included; this would lead to inter-
esting additional terms in the corresponding transport
equation.

The transformation to the gauge-independent trans-
port formalism (Secs. II and III) is carried out without
approximation; this means that the physical content of
the resulting transport equation (Sec. IV) is identical in

all respects with that contained in the initial set of
gauge-dependent equations (Sec. II), at least within the
limitations of the model considered here. It would be

interesting and instructive to make a comparison be-
tween the predictions of Eqs. (1.1) and (1.2) and those
of the gauge-independent transport equation for some
simple systems subjected to a uniform magnetic field.
This would help to clarify the role of small but well-
known magnetic e6ects in electrical conductivity. The
results of this further investigation, where the effects of
a periodic lattice potential are also included, will appear
later.

1 e
p—A(.) ~+U(r)+H. (r).

2ns c
(2.1)

The first term on the right-hand side is the Hamiltonian
of a free electron in the presence of a magnetic field
B=V&&A(r), where A(r) is the vector potential. U(r)
is the scattering potential, which is assumed to depend
only upon the spatial coordinates; this potential can be
considered to be composed of two parts: V(r), the peri-
odic lattice potential and H'(r), the potential resulting
from added impurity atoms and possible imperfections
in the crystal lattice. The last term in (2.1) is the inter-
action of an electron with a uniform electric field.

The exact density operator for the system, pz, satis-
6es Eq. (1.2), with H& given by (2.1).Taking the mag-
netic Geld in the positive s direction and choosing for
convenience the Landau gauge A(r) = ( yB, 0, 0), it is-
found that p& satis6es the equation

Bpp
ih = p'+~oyp +-,'m~0 y'+ U+Hz, pr, (2.2)

Bt 2m

where coo eB/mc is the c——yclotron frequency.
The exact velocity operator v is defined as the total

time rate of change of the spatial coordinate. Then, for
the Hamiltonian (2.1) the velocity operator is given by
the commutator

v=-LHp, rf= (1/m)P, (23)

where P=—$p—(e/c)A(r) ) is the momentum operator for
an electron moving in a magnetic field. Placing this ex-
pression for the velocity in Eq. (1.1) and multiplying by
the product of the electronic charge e and the electron
density eo gives the exact current density

j=emo Tr(vpr). (2.4)

II. GAUGE-INDEPENDENT LIOUVILLE
EQUATION

Consider a collection of electrons so dilute that the
interaction of one electron with another can be ne-
glected. The electrons are treated as completely free,
except for their interaction with an arbitrary scattering
potential and the externally applied electric and mag-
netic fields. The exact Hamiltonian for each electron
moving in such a system may be written
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It will now be shown that a pair of gauge-independent
equations can be found that are physically equivalent
to Eqs. (2.2) and (2.3), since they give identical current
densities. First, assume that p~ can be written in the
form of a, Fourier operator integral,

to zero, (2.9) is always satisfied and pr is found to satisfy
the equation

Bpp
ih = L8r,prf

Bt

pr= e'tP ('t'&"(~i&'PR(g, r,B (2.5) Q {(pXB) L& PTj+L& PTj(PXB) } (2.10)
25$C

where R(g, r,B,t) is taken to be independent of the Geld

gauge. It is useful to express this integral as a series of
commutators. In order to accomplish this, we consider
two operators a and b which both commute with their
commutator La, bg. Then

ea+b eeebe-1/2 fe, bl (2.6)

Taking a=ipipmy&, and b=ip„&„, we find La,bj= —ippp

Xrlh&, &„, which does in fact commute with both a and b

as defined here. Making use of (2.6) and some well-
known elementary commutation relations, it can be
shown that (2.5) can be written as the double sum

1 muoy " !(!muo)"'
pr=Z Z-

~=p ~'=p n! ih e'!i 2h

XL*'"+"',Ly'"', pr j], (2 7)

for an arbitrarily directed magnetic field, where the
effective gauge-independent Hamiltonian 8r——y'/2m
+U+HJ, . No approximations have been made in ob-
taining Eq. (2;10) and the result appears to be exact
within the limitations of the model.

IIL GAUGE-INDEPENDENT VELOCITY
OPERATOR

The velocity operator v, corresponding to the density
operator pr must be known before Eq. (2.10) can be used
as a basis for developing a gauge-independent transport
theory. In order to find such an operator, we begin with
the exact expression for the current density (2.4), which
must of course be the same no matter how it is calcu-
lated. Making use of (2.3) and (2.5) the current density
can be written

ceo
where pz is defined by Tr (Vpe'P &)Rd(

zm
(3.1)

pr = e'& pR((, r,B,t)dg. (2.8)

Here La'"&,b] is defined to be the n-fold commutator of
the operator a with operator b, i.e., La, La, ~ ),bj with
e factors of a and

I
a"',b]—=b.

In order to 6nd an equation satisfied by pz, substitute
the expression (2.7) for pr into Eq. (2.2). After con-
siderable algebra, involving the successive application
of elementary commutation relations, it can be shown

that

j= (crt pi/m) Trpr',

where the vector Iop' is dined by

(3.2)

yr'= e' '&VpRd( (3.3)

Assume that R((,r,B,t) approaches zero as P approaches
infinity; this is required if p& and pz are to remain finite
and have bounded traces. Now perform a partial in-
tegration of (3.1) with respect to g; the integrated part
is seen to vanish and we obtain

1 !(mopy)"(Arras)"'0=2 Z ——
I

=pm!e'!~ ih 2h

Bpp
X x&"+"'t y&"'~, ih +—IU(r)+H i(ir), prj

Bt

Because V~X is independent of the 6eld gauge, y~' can
be expanded by the same method used in Sec. II to ob-
tain the expansion (2.7) for pr from the integral expres-
sion (2.5). In this way it is found that the current den-

sity can be written

1
+ Ln' prl+2~p(P. Ex p~3+bP ~3P.

2m

(2.9)

ieeo
3=

1 1 (r(tpipy "
»ZZ ——,I—n!t(!k S )

Upon examining this result it is seen that the expression w ere the new vector yz is defined by
I ~ w r

contained in curly brackets depends in no way on the
magnetic-6eld gauge, although it still depends on the
magnetic Geld through cop. By setting this bracket equal

(3.5)
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after inegrating once by parts. If we now examine the
remaining terms in the sum on the right-hand side of
Eq. (3.4) for which zz+zz'= 0, it can be shown that they
all vanish by making use of the fact that the trace of
a product of factors is invariant under a cyclic permu-
tation of the factors. The entire contribution to the
current density is then given by (3.6), the first term in
the series (3.4). This expression for the current is com-
pletely equivalent to that given by (2.4), but is now ex-
pressed in terms of gauge-independent operators. If
pz, satisfying Eq. (2.10), is taken to be the correct den-

sity operator, then it is clear from Eq. (3.6) that the
corresponding (gauge-independent) velocity operator is

just p/zN, the free-particle momentum operator divided

by the mass.
To complete the correspondence between p~ and p™z,

it must be shown that their traces are identical in order
to provide for probability normalization. This is most
easily accomplished by taking the trace of Eq. (2.7),
where it is found that only the first term, Trpb, obtained
from the sum on the left-hand side of the equation, does
not vanish.

IV. BOLTZMANN TRANSPORT EQUATION

In this section, it is shown how the ordinary Boltz-
mann transport equation, including the spatial gradient
term, is derived from the operator equation (2.10).
Some care is taken to indicate clearly the approxima-
tions made, for they provide useful criteria for deter-
mining the validity of the Boltzmann equation. In
order to present the essential elements of the derivation
without unnecessary mathematical complication, we
shall neglect the effect of the periodic potential for the
present, and replace U(r) by H'(r) alone, which repre-
sents the scattering potential of a set of fixed impurity
centers. We consider the effective Hamiltonian

IIz ——Hq+H'(r)+Hs(r), (4.1)

where Hs p'/2zzt. Here, H'(r) is ——the interaction of an
electron with the impurities; it can be written

N

H'(r) = P it (r—r;)—=XV, . (4.2)

In this expression, (t (r) is the interaction of an electron
with a single scatterer located at the origin, ri are the
locations of the E scatterers, and 'A is some dimension-
less measure of the strength of the scattering interaction
V, with the electron. We now wish to consider the solu-
tion of Eq. (2.10) with FIr given by (4.1), treating H'(r)
as a perturbation.

First evaluate the e=e'= 0 term in the double sum
(3.4); this turns out to be the only nonvanishing contri-
bution to the current density. Then

LCSp 1
Tr e's'&V zI(dg =ezzo Tr —ppz, (3 6)

m 1n

It is convenient to make use of a representation
in which the free-particle Hamiltonian Ho is diagonal,
that is, plane waves with periodic boundary condi-
tions. The normalized eigenfunctions of Hqare 'fk(r)
=exp(ik r)/ V'tz, where V=L' is the volume of the con-
tainer. The allowed wave vectors are k =(2zr/L)N,
where m are all the real positive and negative integers
including zero. Then P& satisfies the equation Hsf&
= ek'pk, where ek' ——tz'k'/2zzz. It is assumed that the di-
mensions of the container are su8iciently large, so that
k can be taken to be an essentially continuous variable.
In cases where this condition is not satisfied, interesting
effects occur which depend on the size and shape of the
container. '

Making use of a plane-wave representation, we define
a new spatially dependent distribution function'"
gz(k, r, t) in terms of a sum over the density matrix of
pT.

g(k, r, t) =P e"'Pz' k+(qtzi k-qtz.
e

(4.3)

ieh
(k&&B) Vkgr(k, r, t)+Q gz(-', (k+k'), r, t)

y(ei(k —k') rH~, e
—i(k—k') rH(, ( ) (4 4)

In the process of obtaining this result, partial integra-
tions have been performed with respect to r' and k'

making use of the physically reasonable assumptions

lim gz(k, r, t) =0,
f'et ~00

lim gz(k, r, t)=0.
k(x ~oo

In obtaining Eq. (4.4) no special assumptions have been
made about the scattering potential other than that of
its being a function only of the spatial coordinates; con-
sequently, it can be applied equally well to a system that
includes, in addition to II (r), a periodic lattice potential
V(r) as well.

Eq. (4.4) now has a form which closely resembles
that of the Boltzmann equation; only the collision sum
on the right-hand side of the equation needs further

8 L. Friedman, Phys. Rev. 134, A336 (1964).
9 E. Wigner, Phys. Rev. 40, 749 (1932).
rq O. Von Roos, Phys. Rev. 119, 1174 (1960).

It will be found that gz (k, r, t) corresponds exactly to the
ordinary classical distribution function by showing that
it satisfies a Boltzmann transport equation that includes
the spatial gradient term. We begin by forming the ap-
propriate matrix of Eq. (2.10) and multiplying it by
e'&'. By summing the resulting equation over q and
making use of the definition (4.3) we find, after con-
siderable algebra, that gz (k,r, t) satisfies the equation

Bgz i&'
ih (k,r,t)= — k Vrgr(k, r, t) ieE'V g—k(kr, r, t)

Bt m
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modi6cation. An examination of this term suggests
that it would be useful to establish a relationship be-
tween gr[2i(k+k'), r, t) and gr(k, r, t) in order to obtain
an equation for gz(k, r, t) itself. In order to accomplish
this we examine the matrix equation satisfied by p~.
Inserting (4.1) into (2.10), we find that

8
ekk —zh—prkk = (prk —prk )H'kk +crkk

8$
TTI TT/

PTkk"rz k"k' ~ kk"Prk"k')
(k"Qk k')

If only terms linear in the electric field are retained, (4.7)
becomes

8
&kk —zh—pEkk ' = (pEk

' —pEk )H'kk, (4 10)
Bt

because p begins with order V according to Eq. (4.9).
Equation (4.10) can still not be easily solved for pE» & "
because of the partial time derivative. It is therefore
convenient to make the second assumption, that the
time derivative of p~ can be written

ieh
+ (k+k')XB (vk+&k )prkk, , (4.5)

21ÃC

Bpg = —', (pES+SpE),
R

(4.11)

where ek ek +H——»', iekk = ek —ek, prk= prkk, a—nd

&rkk =—zeE '[pr, r)»
=ieE' (&k+ Vk.)prkk. . (4 &)

Following Kohn and Luttinger, we treat the scattering
potential H'(r) as a perturbation, and assume that (4.5)
can be solved by taking the diagonal and off-diagonal
matrix elements of pz to begin with orders li ' and X ',
respectively [see Eq. (4.2)). It is further assumed that
the product of the cyclotron frequency ~0 and the effec-
tive collision relaxation time r is of order unity or,
equivalently, coor =X'. This means, effectively, that the
magnetic Geld can be considered to contribute a factor

for the purpose of determining the order in ) of the
various terms in Eq. (4.5). This follows from the fact
that r must begin with a term inversely proportional to
the square of the scattering potential. Then to lowest
order in X, Eq. (4.5) becomes just

where S is in general an operator which may depend on
r, p, and t. Substituting (4.11) into Eq. (4.10) gives

~ih(Sk+Sk, ))pEkk,

= (pEk& ' pEk
—t '—)H'kk —+ ',ih(pEki -" pEk &

—"—)Skk

+-,'ih
k", (~"gk, ~')

(PEkk

+Skk"pk" k
& '&), (4.12)

-';@Spy, (&II'gg .
Equation (4.12) then becomes

(4.13)

after separating out terms in the sum containing di-
agonal matrix elements of p~ and S and letting S~—=SI,k.

In order to simplify Eq. (4.12) still further we admit
only small time variations for which S satisfies the
condition

8
~kk —zh—prkk' "= (Prk' "—prk' ")H'kk

R
+ieE'(vk+vk )prkk, & '&, (4.7)—

(PEk PEk' )
(—&) TT/

pEI, 1c' kk' )
(okk ——,'ih(Sk+Sk )

(4.14)

which is of over-all order X

In general, we would like to solve Eq. (4.7) for prkk.
in terms of p». However, this cannot be easily accomp-
lished because of the differential operators. In order to
simplify the equation enough to find a solution, two
further assumptions are made. First, we assume that
only terms linear in the electric field are important,
which means that the effects of Joule heating are ne-
glected. Then p~ can be written as the sum

pr(t) =p+pE(t), (4.8)

where pE(t) is linear in the electric 6eld, and P is the
time-independent equilibrium distribution in the ab-
sence of an electric field. From (2.10), it is found that
p satisf es the equation

where g~ is linear in the electric 6eld, and gy is now given
by the sum of two terms,

gr(t) =g+gE(t) (4.16)

in conformity with (4.8). Substituting (4.15) into (4.14)
shows that

(gE(k, r, t) —gE(k', r, t))
gE(-', (k+k'), r, t) =

(akk ——',zh(Sk+Sk )

which is good to terms linear in the electric Geld.
Inverting Eq. (4.3), we find that

1
pEkk

——— e '&" "'i'gE(~(k+4'), r,t)dr, (4.15)
V

Xe'&" ""H', (4.17)[H0+H', p)— Q ((pXB) [x,p)
2mc which is understood to hold only to terms of lowest order

+[x,p)(pXB) }=0. (4.9) in X and first order in the electric field.
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Using (4.17), the collision sum in Eq. (4.4) can be
written

(4.20)

where y=—-', A(Si+S~ ), P(1/x) is the principal value of
x ', and 5(x) is the Dirac delta function. With the aid
of (4.20), the collision sum (4.18) becomes

2~i —Q (gg(k, r, t) —gg(k', r,t))

X ~&'» ~'&(Ml, i:). (4.21)

In general, the collision sum (4.21) still depends on the
positions of all the scatterers. Kohn and Luttinger
showed, however, that the summation over k' electively
eliminates this dependence. "If there is no correlation
between the positions of the scatterers, (4.21) becomes
a we11-de6ned expression independent of these positions.
Kohn and Luttinger de6ne the ensemble average of a
function, which depends on the positions of all the
scatterers, as the average of the function over allpossible
arrangements of the scatterers without any correlation
between them. It can then be shown, without any loss of
rigor, that it is possible to replace I H'»

~

2 in a sum such
as occurs in expression (4.21) by its ensemble average
given by

([&'» f')= —f4» /',
0

(4.22)

where n is the density of scatterers in volume 0 contain-
ing a large number of scatterers, and

e '&" "' '&y(r)dr— (4.23)

for a potential of finite range.

"See Ref. 6, Appendix B.

(gg(k, r, t) —g~( ',r, t)) I
&'

X {L~i~ —2ih(Sg+Si )] '

—Pro». +2ih(Sp+Sg )j—') . (4.18)

In general, (4.18) depends on S through (Sl,+Si, ).How-
ever, there is a considerable range of (Si,+Sq ) for which
(4.18) is practically independent of (S&+Si). This
range is de6ned by the following conditions. First,

—,'(Si+Sy )«r, ' (4.19)

where v is an atomic time, that is, v, is a time associ-
ated with the dynamics of the electron, and would be of
the order of A/e, where ~ is a typical energy of the elec-
tron. Further, if i~(Ss+Sq )&&hE/i'i, where hZ is of the
order of the spacing of the translational electronic levels,
the sum in (4.18) can be replaced by an integral. Then
the condition (4.19) enables us to use the well-known
result

In the present discussion, we wish to include the pos-
sibility that an average spatial gradient in the density
of scatterers may exist. Then, in order to make use of
the result (4.22) it must be assumed that over distances
characteristic of the volume 0, containing a sufficiently
large number of scatterers to give meaning to the en-
semble average, the average density of scatterers
changes only by a negligible fraction of the average
density. Taking n(r) equal to the average density of
scatterers at the point r, we require the existence of a
volume element 0 satisfying the conditions

n(r)
»~ V„n(r) ~,

Q1/3
(4.24a)

n(r)a»1. (4.24b)

where the prime on the summation now indicates that
k/k'.

Replacing the sum in Eq. (4.4) with the expression
(4.25) gives, finally,

ag g(k, r,t) h
0= y—k V„g (k,r,t)

Bt

1 e
+—em' Vgg(k, r)+—(kXB) VI gg(k, r, t)

h mc

n(r)
+ dk'(g g(k, r,t) rg(k', r,t))—

(2m)'

X ~y» ~'b(~» ), (4.26)

where the sum over k' has been replaced by an integral.
In the third term of Eq. (4.25), g(k, r) is the time-inde-
pendent equilibrium distribution in the absence of an
electric 6eld. With methods similar to those used in ob-
taining Eq. (4.26) it can be shown, starting with (4.9),
that g(k, r) must satisfy the equation

h e
0=—k V„g(k,r)+—(kXB) Vqg(k, r)

m mc

n(r)
+ dk'(g(k, r)—g(k'r))

(2s)'
X lg» I'&(&») ~ (4 2't)

For a given gradient of the average density of scatterers,
V„n(r), it is clear that the inequalities (4.24) can al-

ways be satisfied by choosing a suQiciently large value
of n(r). Once the conditions (4.24) are satisfied, the
function

~

H'»
~

' contained in a sum over k' can be re-
placed by its ensemble average (4.22) in a small region
0near the point r. The collision. sum (4.21) then becomes

2ri P' (gg(k, r, t) —gg(k', r, t))
y k'

Xn(r) lg» I'~("») (425)



QUANTUM THEORY OF ELECTRICAL TRANSPORT 833

Equation (4.26) has the form of the customary time-
dependent Boltzmann equation for a system of Gxed
scattering centers. It is valid to terms of Grst order in
the electric Geld, and lowest nonvanishing order in the
scattering potential. It is possible to extend the ordering
process begun in this section and obtain corrections to
Eq. (4.26) involving both the electric 6eld and the scat-
tering potential.

V. CONCLUSION

A system composed of noninteracting electrons scat-
tered by an arbitrary potential in the presence of uni-
form electric and magnetic Gelds is studied. It is found
that the exact equation for the gauge-independent den-
sity operator for this system can be transformed, with-
out the aid of a representation, into a gauge-independent
operator equation satisGed by a new density operator.
The new density operator is shown to give the correct
current density, using the ordinary gauge-independent
velocity operator. This transformation to the gauge-
independent transport formalism is carried out without
approximation, and appears to be exact within the limi-
tations of the present model. The results obtained here
are in complete agreement with those found previously
by means of a more complicated derivation.

The matrix of the gauge-independent density operator
is used to deGne a new quantum-mechanical distribu-
tion function, which depends on the spatial as well as

the momentum coordinates. Using a simpliGed model,
it is shown that the new distribution function satisGes
an ordinary time-dependent Boltzmann equation, which
includes the spatial-gradient term. It can be inferred
from this that the new quantum-mechanical distribu-
tion function corresponds exactly to the usual classical
distribution function describing a system in the presence
of a magnetic Geld. The results obtained here hold only
up to terms linear in the electric Geld and lowest non-
vanishing order in the scattering potential. They can,
however, be extended to determine higher-order
corrections.

The gauge-independent transport formalism provides
a way of treating the inQuence of a magnetic Geld on
a quantum-mechanical system of charged particles with-
out the necessity of explicitly including the often
troublesome vector potential. In a later publication, we
hope to study some simple systems involving a magnetic
Geld for the purpose of demonstrating the consistency
of the gauge-independent equations obtained here with
the more usual equations containing the vector poten-
tial. This will lead to a determination of some small
additional quantum-mechanical terms in the Boltzmann
equation.
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