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Electron-Phonon Interactions in Solid Alkali Metals.
I. Scattering and Transport CoefBcients*
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Electron-phonon scattering in all the solid alkali metals at high temperature is studied in a calculation
allowing detailed numerical assessment of anisotropy. The primary result sought and obtained is a con-
clusive accounting for the divergence of Li from the other alkali metals in having a large positive electron-
di6usion thermopower. Animalu-Heine-Abarenkov pseudopotentials are used. The phonon dynamics is
contained in a three-force-constant dynamical matrix fitted to elastic constants listed by Huntington, which
reproduces the experimental structure factors for Na and for K to within 10% and 5%, respectively, and
allows uniform treatment of all the alka1is. The electronic free path l(e,k) and 8 ln/(o, k)/8 Ino are computed
for P in the principal symmetry directions, appropriate averages giving estimates for several transport-
property coefBcients. The anisotropy as calculated is very marked for Li and appreciable for Na, and gives
Hall coeKcients in satisfactory accord with those accurately known. The thermopower coeScients g agree
in sign and, except for Cs, semiquantitatively in magnitude with experiment, the decisive role being filled
by the pseudopotentials. Estimated resistivities are, not unexpectedly, unsatisfactory. Analysis for Na,
using scattering amplitudes fitted to resistivity, indicates strongly that most of such quantitative discrepan-
cies as remain are primarily ascribable to slight but important inaccuracies in the pseudopotentials. A more
thorough reinvestigation will, however, be required to account for the behavior of Cs.

I. INTRODUCTION

~ 'HE ordinary electronic transport properties of
monovalent metals provide examples both of

some of the earliest successes and of some of the most
persistent inadequacies of solid-state theory. Bardeen's
classic 1937 paper' convincingly demonstrated the va-
lidity of the now conventional Bloch-Wilson theory of
electrical conductivity and yielded a model of the
electron-phonon interaction in normal metals of truly
remarkable prescience and survival value. Perhaps the
outstanding and most obstinate frustration through the
years has been the failure to account convincingly for
the contribution of electron diGusion to the thermo-
electric power. It is an old story that, while both naive
physical intuition and familiar simple theory have led
rather firmly to the expectation that the sign of the
electron-diffusion thermopower should follow that of
the Hall effect and be negative for all monovalent
metals, in fact it is positive for Cu, Ag, Au, and for Li
alone of the alkalis. The noble metals have had the
lion's share of the attention to this puzzle, a discreet
silence usually being accorded to the alkalis save to
note the large magnitude of the diffusion thermopower
in Li. In a preceding paper it was demonstrated by one
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dell Universita di Pisa, Piazza Torricelli 2, Pisa, Italy.

$ Resident Student Associate at Argonne National Laboratory
during summer 1966;National Aeronautics and Space Administra-
tion Trainee, University of Rochester. Present address: Palmer
Physical Laboratory, Princeton University, Princeton, N. J.' J. Bardeen, Phys. Rev. 52, 688 (1937).' J. E. Robinson, Phys. Rev. 161, 533 (1967). The viewpoint
underlying the present undertaking is developed in this reference,
which also contains a summary of and references to the relevant
background on electron-diffusion therrnopower.

To those references might here be added a number of other
articles, principally by J.M. Ziman and by M. Bailyn, which deal
specifically with transport coefhcients in the solid alkalis, but
which preceded the advent of reasonable pseudopotentials and

of us that a negative Hall coefficient and positive diGu-
sion thermopower can jointly be exhibited by a free-
electron gas coupled to a bath of acoustic lattice vibra-
tions, as a result of the mean-free-path energy depen-
dence produced purely by the core-Coulomb inter-
ference inherent in the simplest pseudopotential de-
scendent of Bardeen's electron-ion interaction. In
particular, Li was found to be so strongly difterentiated
in the model calculation from the other alkalis as to
indicate that core-Coulomb interference dominates in
differentiating the real solids, and this provided much
of the motivation for the present work. .

In this paper, we present the results of the simplest
possible realistic calculation of the electron-diGusion
thermopowers of the solid alkali metals at temperatures
greater than the Debye temperature, ' and we demon-
strate that the supposedly anomalous thermopower of
lithium can be fully understood within the context of
the hypothesis advanced in Ref. 2. That is, the electron-
diffusion thermoelectric powers of the alkali metals can
be calculated with at least semiquantitative accuracy
in a free-electron picture by ordinary transport theory
provided that the energy dependence of the mean free
path is handled carefully. In addition, we obtain values
for resistivities, for mean free paths, and for the effective
densities of carriers as measured in the Hall effect. A
particular feature of the computations is that they

structure factors and, at least partly because of this, have a focus
and approach rather removed from those of this paper. Perhaps
the part of this earlier work which makes the closest contact with
ours is Bailyn's emphasis on the importance of umklapp scattering
Lace, e.g., Phil. Mag. 5, 1059 (1960) and references cited therein).
Nowhere in all that hard work does there appear to have been a
calculation of the diffusion thermopower really competent to test
any hypotheses advanced. For example, in the article by J. G.
Collins and J. M. Ziman /proc. Roy. Soc. (London) A263, 531
(1961)g it is notable that digmsioa thermopower is not even
mentioned.' For a preliminary account, see J. E. Robinson and J. D. Dow,
Bull. Am. Phys. Soc. 12, 22 (1967).
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yield what we believe to be the 6rst detailed explora-
tion with a realistic scattering model of anisotropy in
the contributions to the transport coeScients.

Since we wish to make consistent comparisons, our
procedure is chosen so as to aGord uniform treatment
to all the alkalis. Accurate experimental information
which is available only for some, notably for sodium, is
used to check the accuracy of the procedure. It is
adequate to our purposes to treat a free-electron gas
coupled to the lattice vibrations in a rigid-ion approxi-
mation. The electron-ion matrix elements are taken to
be the pseudopotentials calculated by Animalu, Heine,
and Abarenkov (AHA). ' Phonon dynamics is subsumed
in a phenomenological dynamical matrix which is
uniquely determined by elastic constants data and which
reproduces known experimental structure factors (for
Na and K) to well within 10%. In this way we remedy
the two most serious defects of the model calculation
while retaining its essential simplicity. The speci6c
improvements are in the more realistic behavior of the
AHA potentials at large momentum transfers and in
using a correct distribution of vibrational states at
short-wavelength and in umklapp processes.

We do not attempt or 6nd fully quantitative agree-
ment with experiment, which in any event does not
appear attainable with presently available pseudo-
potentials. As was anticipated, the divergence of lithium
from the other alkalis in respect of dependence of the
electron-ion pseudopotential on momentum transfer is,
when ampli6ed by the phonon structure factor, suQi-

ciently large that almost any sensible procedure would
succeed in resolving the thermopower problem. Ac-
cordingly, we treat the AHA potentials as if they were
local and retain only the leading term in the solution
of the Boltzmann equation. Our present insistence on
simplicity is also motivated by the belief that one
should know the results of a "bare-bones" calculation
before attacking the complications of a quantitatively
de6nitive treatment. The major part of the quantitative
failings in our numerical results could be accounted for
by errors in the pseudopotentials, mostly at a level of
accuracy beyond that connnonly thought suQicient for
band-structure calculations. It follows that a close
enquiry into inherent limitations of our procedure would
involve a critical study of pseudopotentials and in
particular of the accuracy and reliability of practical
methods for their evaluation. Such a study does not
yet exist, and it would be far beyond the scope of this
paper to try to provide one. Although the use of em-
pirical pseudopotentials would appear an attractive
alternative to the AHA potentials, their determination
for all the alkalis is no trivial task, and we have pre-
ferred to take what we now have, concentrate on its
most reliable features, and avoid adjusting the input.

The transport theory model is discussed and formal
expression for the transport coeKcients presented in

' A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).

Sec. II. Section III is reserved to a treatment of the
phonon structure factor. These two sections completely
specify the computations, which then contain no ad-
justable parameters and are carried out without nu-
rnerical approximation. Our results are presented in
Sec. IV, followed by a discussion in Sec. V.

IL TRANSPORT-THEORY MODEL

In recent years, variational calculations of the trans-
port properties of metals have been in vogue because
of their apparent simplicity and physical directness. 5

However, the very strong elastic anisotropy of all the
solid alkalis warns us to be prepared to deal with sub-
stantial anisotropy in the electronic free path when it is
limited by electron-phonon scattering. That this is a
real possibility is indicated by the experimental low-
Qeld Hall coefficients, which led Deutsch, Paul, and
Brooks6 to suggest angular variations of the con-
ductivity relaxation time by as much as a factor of
three. In such circumstances, the practical advantages
of a variational calculation are not so clear. There is
no assurance that the standard isotropic variational
expressions are adequate, and variational ratios (e.g.,
for the resistivity) which explicitly take anisotropy into
account do not simplify sufficiently to appear ad-
vantageous. The ambiguity and uncertainty inherent in
the choice of trial functions is signi6cantly increased.
Finally, examination at a microscopic level of scattering
anisotropy is in a variational calculation of resistivity a
bit indirect and circumscribed by the practical necessity
of truncating expansions in Kubic harmonics. Therefore,
we deviate from current fashion and consider working
within the context of a Boltzmann equation with an
anisotropic relaxation time.

We shall work in a weak-pseudopotential approxima-
tion, and. note that while this implies the validity of a
weak-scattering approximation' the converse need not
be so. Speci6cally, we thereby imply the existence of
a Boltzmann equation, adequacy of the rigid-ion
model with a spherically symmetric electron-ion inter-
action V(q), s and that simple plane-wave electrons with
kinetic energy E(k) k' suffice for this calculation. It is
then argued in Appendix A that at high temperature
the phonon-limited mean free path /(k) for an electron
of wave vector k is to a satisfactory approximation
given by Eqs. (A21) and (A22):

l(k) 47rh'k'

s See, e.g., J. M. Ziman, Zleetroms artd Phortons (Oxford Uni-
versity Press, New York, 1962), Chaps. VII and IX.'T. Deutsch, %. Paul, and H. Brooks, Phys. Rev. 124, 753
(1961).

~ M. Greene and W. Kohn, Phys. Rev. 137, A513 (1965).
~ W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
9 See, e.g., L. J. Sham and J. M. Ziman, in Solid State I'hysics,

edited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1963), Vol. 15.
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where we have defined S(k,q) by

sag)—= (i/2~) jso(t)s i~»Lt t+(q/2))). (2&

Here 00 is the ionic volume, ns the electronic eGective
mass, S'(q) the static-structure factor" less the Bragg
refiection peaks, dQ (j) an element of solid angle about q,
and hg is of course the crystal momentum transfer in a
scattering event. In the present scattering model all
anisotropy arises, through S(k,q), from the lattice vi-
brations. Some commonly used expressions for the
electrical resistivity" "are proportional to the average
of Eq. (1)over k and clearly are incorrect in the presence
of anisotropic scattering: Their use would be tanta-
mount to adding the resistivities rather than the con-
ductivities of the branches of a parallel circuit. Equation
(1) is of course just what would have been found from
a Fermi "golden rule" calculation of the momentum-
transfer cross section. Here, however, it has been
obtained as the dominant term, thanks primarily to
cubic symmetry, of the solution to a Boltzmann equa-
tion with an anisotropic relaxation time.

For V(q) we use the Animalu, Heine, Abarenkov
(AHA) pseudopotentials as tabulated in Harrison's"
book. These values are adequate to allow us to establish
our main results, to a considerable extent because the
difference between Lithium and the other alkalis is so
great that a fully quantitative calculation is not in fact
required. Using them to calculate a few transport co-
efFicients selected for qualitatively different sensitivities
to the input can provide cross checks on the reliability
of the results. Derivatives of V(q) = (k+q~ V~ k) with
respect to k are, presumably, appreciably more sensitive
than are the values themselves to approximating pseudo
wave functions by single plane waves. In addition, in
just those instances in which the largest k dependence
is to be expected, the procedure used to evaluate the

V(q) is least apt to be accurate. This is reflected in

calculated band-structure eGective masses at the Fermi
surface, which are generally regarded with some dis-
trust even if the V(q) are adequate to give band gaps
with tolerable accuracy. We shall here use the values
available for V(q) but neglect any explicit k dependence
at 6nite g, and it is in this sense that we treat the
pseudopotentials as if they were local. This can, for
the heavier alkalis particularly, result in quantitative
errors in the thermopower, but of course has no e6'ect

at all on the mean free path or Hall coefficient. Evalua-
tion of the static-structure factor poses a considerable
problem, since accurate computations of S'(q) do not
yet exist and satisfactory experimental data are avail-

"See in Appendix A& Eqs. (A8) and (A18)."G. Baym, Phys. Rev. 155, A1691 (1964).
"W. A. Harrison, Psettdopoteateals eN the Theory of 2fetals

(W. A. Benjamin, Inc. , New York, 1966), Sec. 4.1.
"Reference j.2, p. 309 G.

Sdittusion= (s(& &tt &)
~
e~Etrfpev &

4-=—(Z l(k)) ' Z ~(k)5(k)
tlat

The resistivity is

p=r--=(2)LE(1/&(&))j '.

(6)

(&)

The effective density of charge carriers e* defined by
writing the Hall coeKcient as Z= —(1/Ne~e~c) is
given by

(~*/I) =((Z l(k))'/(2 l'(k))) &1. (9)
I

&4A. D. B. Woodsy B. N. Brockhouse, R. H. March, A. T.
Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).» R. A. Cowley, A. D. B. Woods, and G. Dolling, Phys. Rev.
150, 487 (1966).

"Reference 2, Sec. IE.
rr A. H. Wilson, Theory ofil/Ietals (Cambridge University Press,

Cambridge, 1953), 2nd. ed., Sec. 8.42.
See, e,g., Ref. 5, Chap. VII.

able only for Na "and K."In order to provide uniform
treatment to all the alkalis, we are forced to rely on
what knowledge of the phonon dynamics can be ex-
tracted from macroscopic elastic constants. Our pro-
cedure for approximating to S'(q) is discussed in the
next section.

The relevant transport coeKcients may be expressed
as functionals of the electronic mean free path in the
usual manner. Since we are interested in anisotropy at
the microscopic level our first concern is to calculate
directly microscopic contributions to the bulk coeK-
cients, and we shall refer to these as partial, or micro-
scopic, coeScients. %e define a partial thermopower
coefficient ](k) by

P(k) —= 1+$d lnl(k)/d InE(k) j)s( sr ) (3)

and a partial resistivity r(k) by

r(k) =—(i'tk s/tM')(1/l(k)), (4)

where we have written

l (k)—= l (k) i i i (5)

In Eqs. (3)-(5), tet is the Fermi wave vector an I the
mean carrier density.

In differentiating Eq. (1) to get g(k) there are three
sources of energy dependence to consider: the q de-
pendence of the integrand, the k dependence of V(q)
(which we have chosen to neglect here), and, purely
because of the elastic anisotropy, S(k,q). The primary
e6ect of including (dS(k,q)/dE&) would be to reduce
slightly the anisotropy of the calculated $(k). We shall
take into account only the q dependence. Macroscopic
transport coeScients can tben be computed from Eqs.
(1)—(5) as if k were the carrier group label in a many-
band model. "'~ The usual integrals over the Fermi
surface" may be replaced by sums over k, remembering
that the element of area is here independent of k. We
then have for the electron-diffusion thermopower
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In computations of the macroscopic coefficients it has
been quite common, for practical reasons, to simplify
at least the integrations associated with umklapp proc-
esses, and the numerical errors so introduced are
difficult to assess. " Such uncontrolled numerical ap-
proximations are completely avoided in calculation of
the microscopic coeKcients l(k) and $(k). This circum-
stance is worth emphasizing in view of the considerable
notoriety for sensitivity to details of calculation
ascribed, e.g., to the diGusion thermopower.

III. PHONON STRUCTURE FACTOR

The dynamical structure factor, which is propor-
tional to the diGerential scattering cross section per unit
energy, can be easily extracted from neutron-bombard-
ment data. "Unfortunately, the only alkali metals for
which such data presently exist are sodium" and po-
tassium, "and the structure factors for the other alkalis
must be approximated using elasticity data. One of the
notable deficiencies of such an approximation is that
the elastic data contain information about only the
long-wavelength phonon dynamics, so that one would
expect any model based on elastic constants to break
down for short-wavelength phonons. This difficulty is
most serious for momentum transfers near the phonon
zone boundary ((q/2AF) =0 63 in the. alkalis), but dis-

appears for g's approaching reciprocal lattice points
since there the reduced phonon maze vector again tends
to zero. This latter circumstance is important because
it allows us to fit S(q) where it is largest, near Bragg
points, as well as near q= 0 and, in effect, to interpolate
through short wavelength regions. We now discuss our
method for determining from long-wavelength data an
approximate structure factor satisfactory at all wave-
lengths. We limit discussion to cases in which the
phonons may be regarded as if in thermal equilibrium
since we are not here concerned with phonon drag, and
further take the harmonic approximation to be adequate
for axed temperature. The space and time I'ourier
transform S(q,~) of the ions's pair correlation function
may then be expressed in terms of the frequencies co„(q)
and polarization vectors e„(q) of the harmonic lattice,
and in the one-phonon approximation~ ""we have

Lq e.(q)]'
S'(q )=

2M r=~ re[exp(8"&o) —1j
X (&[ —,(q) j+~[ +,(q) j) . (10)

Here p is the polarization index, M the ionic mass,
P= (1/&AT), and the prime indicates that the Bragg
rejections associated with the static lattice have been
omitted, as have anharmonic terms. Since the scattering
of electrons is quasi-elastic, for temperatures above the

"We hasten to add that this is not done in more recent com-
putations such as, e.g., that of Ref. 7."L.Van Hove, Phys. Rev. 95, 249 (1954).

n N. Wiser, Phys. Rev. 143, 393 (1966).

Debye temperature, the S'(q,&o) we shall need is

S'(q, @ 'CE.+s—E.j)=39 'CE~+g —E~j)

X(»/M) Z-, (q)[q'. (q))'

Since the orthogonal matrix of polarization vectors
diagonalizes the dynamical matrix D(q),"where

(12)

we may use the more compact form

6 'S'(q, k '[Eg+,—Eg$)
=[(k&T/M)q D '(q) q)8(Eg+ —Eg). (13)

The quantity in square brackets is the desired structure
factor S'(q). Thus, the high-temperature static-struc-
ture factor can be evaluated directly from the dynamical
matrix, once the latter is determined. It is in principle
unnecessary to compute even a single phonon frequency
or polarization vector: What is required is the quadratic
form q D '(q) q, and solution of the phonon eigen-
value problem is only one route to its evaluation.

Considerable eGort has been devoted over the years
to study of the dynamical matrix. " Since we shall
attempt to construct it from long-wavelength elastic
constants data, the anisotropic-dispersive-continuum
modep'" immediately becomes a candidate for the
attempt. In this model the frequencies for the real
crystal, ce„(q), are taken to differ from those of the
corresponding continuum, co~'(q), by slowly varying
dispersion factors f~(q):

~,(q) =f.(q)~.'(q), »m f.(q) =1.

However, all simple analytic choices of dispersion
factors f~(q) are unrealistic: Experimental dispersion
relations, for Na and K indicate a strong polarization
dependence, and spherically symmetric choices of f~(q)
are undesirable since they force us to sacrifice the ad-
vantages of built-in crystal symmetry and to replace
the Brillouin zone with a Debye sphere, thereby making
umklapp processes difficult to handle. On the other
hand, it can be shown that functions f„(q) with full
point group symmetry exist and give the exact disper-
sion relations whenever the polarization vectors of the
crystal are independent of the magnitude of p—a con-
dition that ought to be approximately satis6ed. But the
determination of these analytically complicated func-
tions is sufficiently difficult to render a description of

"See, e.g., the excellent summary in Sec. 2 of S. H. Vosko,
R. Taylor, and K. H. Keech, Can. J. Phys. 43, 1187 (1965)."M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954); A. A. Maradudin,
E. W. Montroll, and G. H. Weiss, in Solid' State Physics, edited by
F.Seitz and D. Turnbull (Academic Press Inc., New York, 1963),
Suppl. 3.

'4 Reference 5, Chap. I, Sec. II.
s' K. C. Sharma and S. K. Joshi, Phys. Rev. 132, 559 (1963);

140, A1799 (1965).
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the phonons in terms of an anisotropic-dispersive-
continuum model inappropriate.

The neutron-scattering data for Na and K indicate
that the solid alkalis have predominantly short-range
elastic forces; this suggests that a Born—von Karman
force-constant model will provide a rapidly convergent
treatment of the lattice dynamics. In addition, the
Born-von Karman dynamical matrix has the desired
full Brillouin-zone symmetry and q-space periodicity,
which helps to reduce the short-wavelength inaccuracies
introduced by the elastic-constant approximation and,
further, automatically takes care of the otherwise
cumbersome unklapp processes. ~ Woods et al. '4 and
Cowley et a/."have interpreted their scattering results
in terms of such a model and have published force-
constant matrices for the first 6ve shells of nearest
neighbors. Of these interatomic force constants, the
erst three [P„'(111),P,„'(111),and It „s(200)j are very
much larger than the rest. Therefore, reasonable ap-
proximations to the structure factors and the dynamical
matrices can be obtained from a three-force-constant
Born—van Karman model. We have performed detailed
numerical calculations for Na and K to con6rm this
hypothesis and find that neglect of the other force con-
stants introduces a maximums error in the structure
factor of about 10% for Na and of about 5% for K.
The errors caused by elastic-constant approximation to
the structure factors of the remaining alkalis should be
correspondingly small. (Note added sN proof Very .re-
cently, preliminary neutron scattering results for the
phonon dispersion curves in Li have been reported by
H. G. Smith, G. Boiling, R.M. Nicklow, P. R. Vijayara-
ghavan, and M. K. Wilkinson [Bull Am. Phys. Soc.
13, 451 (1968)g. The LA mode in the [110J direction
shows clearly the inQuence of long range forces and the
interatomic force constants are non-negligible out
through sixth neighbors, but the 6rst-neighbor force
constants are nevertheless by far the largest. We
have not made detailed calculations using these new neu-
tron data, but we have checked the frequencies given
by the elastic constants dynamical matrix at the zone
boundaries, where one might expect our procedure to
be least accurate. As compared to the experimental
values, the frequencies used in our calculations for Li
are 13% low at the point I' in the [111)direction and
8% low in the [100$ direction at B.At N in the [110j
direction, our values are, for all three branches, in-
cluding the low Z2 mode, in agreement with the neutron
results to within the stated. experimental errors. )

In our computations we have used the elastic con-
stants tabulated by Huntington" and have calculated
the three largest force constants and the approximate
Born—von Karman dynamical matrix with the help of
equations written by Squires. "Squires's expressions for
the elastic constants and the dynamical matrix are

Ie H. B. Huntington, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7.I G. L. Squires, Arkiv Fysik 25, 21 (1963).
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Fn. 1. KBect of symmetry on the structure factor for Na.
S(k,g), Eq. (2), for the $110$ direction and for S'(q) obtained, as
indicated in the figure, from the five neighbor thirteen force con-
stant Iit to neutron-diBraction data (Ref. 14), from the two
neighbor three-force-constant fit to the elastic constants, from the
elastic-continuum limit S'(q) =S'(0) = constant, and from taking
the phonon frequency to be nondispersive out to the Debye limit-
ing wave number and constant thereafter (Ref. 32). Only the
large q parts of the curves in the latter two cases are shown.

included in Appendix B since they are especially well
suited for numerical calculations.

A proposal to use a three-constant dynamical matrix
for a good metal is very apt to provoke an initial
apprehension that this ignores the long-range behavior
of the interacting electron gas. We note first of all that
our procedure is quite compatible with the existence of
strong electronic inQuence on phonon-dispersion curves.
For example, surely the most drastic of all electronic
effects is the reduction of the longitudinal mode fre-
quency at in6nite wavelength from the ion-plasma fre-
quency to zero. Further, in instances in which trans-
verse mode frequencies are strongly reduced from those
given by the direct ion-core interaction plus rigid
neutralizing background, the reduction is in fact al-
ready large at the smallest wave number for which
neutron data exist and is reQected in a substantial
reduction of the great elastic anisotropy which would
result from the direct ion-core interaction acting alone. "
The striking elastic anisotropy of all the alkalis sug-
gests that, aside from screening the long-wavelength
longitudinal mode, the electronic contribution to the
effective ion-ion interaction may be weak in all of them,
not just in sodium and potassium.

~8 Compare, for example, the entries in Tables 7—XIII of Ref.
22 for the direct ion-core squared frequencies or&' with the experi-
mental co, ~g . The ratio in the acoustic limit of the two transverse
mode squared frequencies, the usual anisotropy parameter, is
sufmjLciently well given for illustrative purposes by the values for
the longest wavelengths occurring in the tables.
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TABLE I. Thermopower coeKcients $ for the alkali metals at
room temperature. The partial thermopower coeScients calcu-
lated for each of the three symmetry directions using a structure
factor constructed from elastic constant data are denoted by &&,

'

the appropriate average of these values is (, . The quantity
&D,by, is the average value obtained when the phonon structure
factor is approximated in the Debye limit Sn,b„, (q) =S(0). The
experimental thermopower coe%cient is P, „t. See text for details.

TABLE II. Resistivities of the alkali metals at 2'73'K (in units
of nQ cm) and the calculated average mean free paths for elec-
trons t, (in A). The quantities rs are the calculated partial re-
sistivities; r» is the appropriately weighted average; and rD by, is
the value obtained in the Debye approximation to the phonon
distribution. These are to be compared with the experimental
values re»t.

)t: L1001

Li —1.89
Na +2.24
K +2.80
Rb +2.93
Cs +2.90

f1103
—6.24—0.44
+2.03
+2.63
+2.46

L111$

—3.02
+0.83
+2.35
+2.74
+2.65

&Debye

—0.96
+2.76
+2.94
+2.98
+2.97

b'av

—3.49
+0.65
+2.31
+2.74
+2.62

$expt

—6.9b
2 7b
4.0b

—6.7.
+2.7a

38a
+2 3a
+0.2a

tt: L100j

Li 677
Na 1.99
K 1.98
Rb 2.22
Cs 217

rk
L1107 Cilif
20.33 18.50
2.38 2.24
2.13 2.10
2.29 2.24
2.22 2.18

roebye ~av rav

1.09 72.4 13.62
0.73 659 2.23
0.80 1057 2.08
0.90 1114 2.25
0.94 1341 2.20

rezpt

8.55
4.3
6.1

11.6
19

a J. S. Dugdale, Science 134, 77 (1961).
b P. W. Kendall, Bull. Am. Phys. Soc. 11, 'l4 (1966); and (private

communication).

Prominent long-range interionic forces in simple
metals would seem to be correlated with strong reduc-
tion by screening of phonon frequencies at large wave
number from those of a Coulomb lattice. ~"However,
when such is the case, one would expect to see the Kohn
anomalies, '0 and it should be recalled that experimental
detection of an unambiguous Kohn e8ect has proved
both rare and diS.cult." Accordingly, we may pro-
visionally regard as secondary, a,t least for the alkalis,
electronic eBects which cannot be subsumed in the
elastic constants. In contrast, it is essential that the
lattice symmetry be properly incorporated in the dy-
na, mical matrix if a reasonable structure factor is to be
obtained. Physically this is because it is just the quasi-
periodicity of the vibrating lattice which is responsible
for the great rise of S'(q) in the diffuse scattering peaks
centered on the Bragg reQections. FormalIy, this is clear
from Eq. (11)since c„(q)

andcool(q)

are periodic in q and
the latter vanishes at reciprocal lattice points. The
effect of symmetry on calculated S(k,q) is illustrated
in Fig. 1. For an elastic continuum, S(q) is of course
independent of

~ qt .s Another simplijj. ed model which has
occasionally been adopted'" in the past consists in
approximating to„(q) by the continuum form co„&'&(q)

for q less than the Debye wave vector qs and by the
constant co„&"(qs) for q greater than qs.s' Both of these
models wretchedly misrepresent the structure factor in
the umklapp region.

It seems clear that the three-force-constant D(q) is
sufhcient for our purpose, namely to provide reliable
numbers for transport calculations in the alkalis. Effort
expended in the absence of neutron data to secure

"See, e.g., B. ¹ Brockhouse, in I'honorIs snag I'horiorI, Iriter-
actions, edited by T. A. Bak (W. A. Benjamin, Inc., New York,
1964), p. 261.

~ Reference 22, Sec. 5, especially pages 1225-7, 1241-2.
s' E. J. Woll, Jr. and W. Kohn, Phys Rev. 126, 16.93 (1962);

see also Ref. 22, pp. 1228—9, 1235, and as cited in Ref. 29.
3' Reference 1; also D. Simkin, Ph.D. dissertation, University

of Illinois, 1963 (unpublished) (copy available from University
Microfilms, Inc., Ann Arbor, Mich. ). The velocity of sound
given by the elastic constants was used in Fig. 1, while in practice
the velocity of sound used in a Debye-plus-Einstein model is
chosen differently, e.g., to give a Debye temperature.

a Experimental numbers are taken from Handbook of Chemistry and
Physics (Chemical Rubber Publishing Co., Cleveland, Ohio, 1959), 40th
ede

greater accuracy in D(q), say 1%, would be misplaced
in view of our other approximations and of the uncer-
tainties in presently available pseudopotentials.

TABLE III.Effective number of charge carriers per electron, n /n,
for the solid alkali metals at room temperature.

Calculated
Experiment

Li

0.77
0.8?a
0.79'

Na K Rb Cs

0.99 1.00 1.00 1.00
0.95' 0.95 0.94b 0.98'
1.17e 1.11e

a T. Deutsch, W. Paul, and H. Brooks, Phys. Rev. 124, 753 {1961).
~ E. Krautz, Z. Naturforsch. Sa, 13 (1958).
e F, J. Studer and W. D. Williams, Phys. Rev. 4P, 291 (1935).
d A. v. Ettingshausen and W. Nernst, Ann. Physik 29, 343 (1886).

~ These are the masses stated to have been used in computing
the model pseudopotentials, and differ by insigni6cant amounts
from the Fermi surface density of states masses calculated by
Animalu and Heine and listed in Table 6 of Ref. 4. The interested
reader will note a number of discrepancies between the masses
listed in Tables 4 and 6 of Ref. 4 which are attributed to Ham
and the values listed by Ham LPhys. Rev. 128, 2324 (1962),
Tables III—Vg. (Note added in Proof D. Weaire (Proc. P. hys. Soc.
(London) 92, 956 (1967)g has recalculated the Fermi surface
masses, correcting some errors in the results of Ref. 4. These
"Hartree masses" still differ appreciably from Ham's calculated
results, and we have not made use of them. )

IV. NUMERICAL RESULTS AND COMPARISON
TO EXPERIMENT

In Tables I—III are collected our calculated values
for thermopower, resistivity, mean free path, and the
effective number of carriers together with the best
available experimental values. For the effective masses
required we have used the values listed in Table 4 of
Animalu and Heine, 4'3 and measured lattice constants
have been used: There are no adjustable parameters in
these calculations. Values of V(q) at sufficiently small
intervals of (q/2kt ) were obtained by parabolic inter-
polation of those published by Animalu and Heine, 4"
and the differentiation in Eq. (3) was of course done
analytically. Averages over the entire Fermi surface
were judged to require more labor than is warranted by
the accuracy of our input data and were not made.
Instead, we have computed the partial coefficients
$(k), l(k) without any numerical approximation for
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Fio. 2. Mean free path integrand factors for Na. Computed for the principal symmetry directions using S'(O) as obtained from the
three-force-constant dynamical matrix. Scale factors for diferent integrand factors are not the same.

each of the three principal symmetry directions, and
then have averaged these values over the symmetry
directions according to Eqs. (7)—(9), weighting each
direction by the number of times it occurs in the star
of the wave vector.

Qn the whole the numerical results have a quite
pleasing aspect, and the sources of the outstanding
quantitative discrepancies with experiment can be pin-
pointed or plausibly identified. We preface our detailed
comments by two remarks: Firstly, the mean free path
(and hence the resistivity) is explicitly sensitive to the
value of the band mass through the nP factor in Eq.
(1), while neither the thermopower nor (ee/I) is since
the mass cancels out in Eq. (3) and Eq. (9). Secondly,
the pseudopotential exerts an over-all control on the
end results by limiting the effectiveness with which the
rise of S(k,q) toward the first Bragg peak can augment
the scattering. This can be seen rather clearly by plot-
ting

~ V(g) )s S(k,q), and the integrand q'~ V(g) ~'S(k,g)
of Eq. (1), and in Figs. 2—4 we present a number of such
plots for reference.

The hoary old problem of the electron-diffusion
thermopower of solid Li can be considered fully re-
solved. In particular, the qualitative differences between
Li and the rest of the alkalis are deinitely accounted
for, and the value trip= —6.24 suggests that quantita-
tive agreement with experiment can be obtained by
slightly modifying our treatment. The decisive role is
played by the pseudopotential, which for Li exhibits
moderately strong Coulomb-core interference and is
much larger at q =2k~ than for the other alkalis. Indeed,
the reversed sign in P, is obtained even when a Debye
structure factor is used, without any umklapp enhance-
ment at all. As expected, the extreme elastic anisotropy
of Li is mirrored in the thermopower.

The discrepancy between calculated and measured ]
for Na, while initially disturbing, can be accounted for
convincingly, and will be discussed shortly. We have
little to say on the contribution of the explicit k de-

pendence of the pseudopotentials. For lithium it would
appear to give a positive increment to $, perhaps of
about one or somewhat more but in any event quite a
bit smaller in magnitude than the contribution of the q
dependence, and for sodium it would appear to have
little eGect. These statements represent rather rough
estimates rather than a detailed calculation. They can
however also be supported by using the recent phase
shift calculations of Meyer et u/. "As regards K, Rb,
and Cs we note first of all that V(q) is so small in the
range of the largest elastic momentum transfers as
nearly to emasculate the peak in S(k,g). For a V(q)
independent of Es $ &~3, and the experimental data
therefore indicate that explicit k dependence is im-
portant in potassium. Moreover, the recent determina-
tion by Lee and Falicov" of the potassium pseudopoten-
tial has shown nonlocality to be more significant than
the AHA calculations might indicate. One expects that
modifying our calculations so as to use their pseudo-
potential would produce substantial agreement with
experiment. The thermopower predicted for Cs is by
an order of magnitude too large, which we believe to
be primarily due to inadequate accounting in the AHA
pseudopotential for the d band above the Fermi level. ' '4

Inclusion of nonlocal screening and of spin-orbit cou-
pling "in the AHA potentials leads, we 6nd, to changes
only of order 1% from our tabulated results. Fermi
surface distortion can hardly be overly important since
for liquid Cs g= 1.3."$A ote riddediN proof. V. Bortolani

34 A. Meyer, C. %. Nestor, Jr., and W. H. Young, Proc. Phys.
Soc. (London) 92, 446 (1967);J.M. Dickey, A. Meyer, and W. H.
Young, ibid 92, 460 (1967). S. ee especially Fig. 15 and Table 2 oi
the second article; and for a comparison of their scattering ampli-
tude for lithium to that of AHA, Fig. 5(a) of thefirst article.
Note that Debye structure factors have been used in these cal-
culations. It is of particular interest that these authors, using
an Austin form of pseudopotential, Gnd for Cs a moderately pro-
nounced d-state resonance (see Fig. 4 of the 6rst article).

» M. J. G. Lee and L. M. Falicov, Proc. Roy. Soc. (London)
A304, 319 (1968).

IP A. O. E. Animalu, Phil. Mag. 11, 3/9 (1965); 13, 53 (1966).
Pr N. K. Cusack, Repts. Progr. Phys. 26, 361 (1963).
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Fro. 4. Mean-free-path integrand factors for K, Rb, and Cs. Computed for the L110) direction using the S'(q) obtained from the
three-force-constant dynamical matrix. Scale factors for different quantities ditfer. S(k,q) for Cs is scaled down by a factor of 2 rela-
tive to the plots for K and Rb.

V. DISCUSSION

The calculations herein presented have been per-
formed in the simplest model of the solid alkali metals
which incorporates what we judged to be essential to a
meaningful calculation of their ordinary transport co-
eScients. It remains to recall and comment on some of
the principal approximations in the treatment. We be-
lieve that the two most important sources of error in
our numerical results are inadequacies of the AHA
pseudopotentials (treated as local) and of the uncertain
band masses, and that while these are not serious enough
to vitiate our main claims they do largely obscure and
frustrate estimates of the quantitative eGects of other
sins of omission and comission. "

Regarding use of a free electron E(k), one may re-
mark first that de Haas —van Alphen experiments show
the Fermi surface of all the alkalis save lithium to be
spherical to within 1%.pp Nonparabolicity of E(k)

TABLE IV. Comparison of thermoelectric power coefficients,
resistivities, mean free paths, and effective number of charge
carriers per electron as calculated using an elastic-constant ap-
proximation to the phonon structure factor with those calculated
using neutron-diifraction data (Refs. 14 and 15). Notation is the
same as in Tables I—III. See text for details.

Na
Elasticity Neutron

data data

K
Elasticity Neutron

data data

would be contained in the band masses and is otherwise
of secondary importance in this calculation. Taylor,
Moore, and Vosko" have in a careful and very detailed
calculation shown that a one-OP% wave function is
remarkably good for sodium, and although there is no
guarantee that this is so for the other alkalis, we do not
expect the use of single plane waves to have introduced
any significant error in our results for K, Rb, and Cs.
Positron annihilation" indicates an anisotropy of about
5% in the Fermi surface of lithium, with k]gp)krpp,

v(q)
(v(0) (

COMPARISON OF PSEUDOPOTENTIALS

(q/2kr) ~
I.O

$100
$110
gill
b'av

(expt
r, pp (ap cm)
rii0 (pQ cm)
r 111 (pQ cm)
r,„(acmts)
r,xpt (tsp cm)

n*/n (calc.)
n"/n (expt. )

+2.24 +2.22—0.44 —0.24
+0.83 +0.60
+0.65 +0.66

2 7a, b

1.99 2.14
2.38 2.56
2.24 2.48
2.23 2.43

7c
659 607

0.99 0.99
095 117e

+2.80 +2.81
+2.03 +2.04
+2.35 +2.38
+2.31 +2.33

3.8,n 4.0b
1.98 1.92
2.13 2.09
2.10 2.03
2.08 2.03

6.10'
1057 1085

1.00 1.00
095 d 1 11e

Fxo. 5. Comparison of local pseudopotentials for Na. AHA
denotes the local pseudopotential calculated by Animalu and
Heine (Ref. 4) as tabulated by Harrison (Ref. 12).A and 8 denote
the local potentials corresponding to the Greene and Kohn (Ref.
7) scattering amplitudes fg and f~. The estimated error in the
AHA calculations is about one abscissa scale division.

38 We do not intend here to become embroiled in or to comment
on the current controversy regarding validity of the erst Born
approximation for liquid sodium.

p'D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London)
A281, 62 (1964); K. Akamura and I. M. Templeton, Phil. Mag.
8, 889 (1963).

a J. S. Dugdale, Science 134, 77 (1961).
& P, W. Kendall, Bull. Am. Phys. Soc. 11, 74 (1966); and (private

communication).
o Handbook of Chemistry and Physics (Chemical Rubber Publishing Co.,

Cleveland, Ohio, 1959),40th ed.
& T. Deutsch, W. Paul, and H. Brooks, Phys. Rev. 124, 753 (1961).
e F. J. Studer and W. D. Williams, Phys. Rev. 47, 291 (1935),

4P R. Taylor, R. A. Moore, and S. H. Vosko, Can. J. Phys. 44,
1995 (1966).

4' J. J. Donaghy, A. T. Stewart, and D. M. Rockmore, in
Proceediggs of the Ninth International Conference on Lose Tempera-
tgre Physics, 1965 (Plenum Press, Inc. , New York, 1965), Part 8,
p. 835.
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which is of little consequence to the present work but
does suggest that symmetrized combinations of plane
waves will be required to secure quantitative agree-
ment with experiment.

The structure factor has already been discussed at
some length in Sec. III. Truncation of the high-tem-
perature expansion of S'(q,oi) after the first term may be
questionable for lithium because of its high Debye
temperature, but this poses no serious problem and we
have made no estimates of the corrections. It is clear
that one could easily take care of anharmonic contribu-
tions to the temperature dependence of the transport
coeKcients through that of the el.astic constants. ~
Indeed, adequate structure factors seem to have be-
come one of the least of our present worries, and it is
obviously of interest to know to what extent the simple
three-force-constant dynamical matrix could be trusted
for other metals than the alkalis. Since completion of
our calculations, it has come to our attention that a
closely related model devised by Krebs4' has been
applied with appreciable success to Cu, Au, ~ and Ni, 4'

as well as to the alkali metals. 4' " (The Krebs model
differs from ours primarily by including a Yukawa
potential to represent long-range interionic interactions
as screened by the electron gas. ) For example, for Ni
the phonon-dispersion curves determined by neutron
scattering are quite well reproduced by a three-force-
constant D(q) fitted to the elastic constants. The simple
parametrized dynamical matrix may prove to be
rather widely applicable in problems in which it is only
to be used as a calculational tool and the greatest ac-
curacy is either not available (i.e., no neutron data
exist) or not required. Of course a strong-coupling metal
such as lead must be treated with considerable caution,
if at all.

The only numerical approximation we have intro-
duced is the replacement of Fermi surface averages by
weighted symmetry point averages, and this of course
would be exact if there were no anisotropy in the
scattering.

The marked sensitivity of the computed transport
coefficients to slight inaccuracies in the pseudopotential
delineated in Sec. IV has of course been emphasized in
regard to the resistivity by other workers. "'~ The
AHA potentials as computed, e.g. , with band calcula-
tions in mind, were not really considered to have the
greater accuracy required for the transport properties. 48

It is not likely that appreciably more precise pseudo-
potentials by direct computation will be available for
some time. However, our results suggest that a phase-

"See Ref. 7, but also Sec. II of Ref. 21.
"K.Krebs, Phys. Letters 10, 12 (1964); Phys. Rev. 138, A143

(1965).
4'M. M. Shukla, Phys. Status Solidi 7, K11 (1964); 8, 475

(1965).
4~ S. Hautecler and W. Van Dingen, Physica 34, 257 (T967).
's P. S. Mahesh and B.Dayal, Phys. Status Solidi 9, 351 (1965).
4r A. Meyer and W. H. Young, Phys. Rev. 139, A401 (1965).' Y. Heine (private communication).

shift analysis such as that of Greene and Kohn~ in
which the scattering amplitude was adjusted to the
diffusion thermopower as well as to the resistivity would
produce an electron-ion pseudopotentia1. of sufhcient
accuracy for most calculations. Roughly put, the re-
sistivity probes the magnitude and the thermopower
the shape of the pseudopotential.

The primary goal of this work has been attained:
We have demonstrated that the positive diffusion
thermopower of Li is a result of the unusual energy de-
pendence of the electron-phonon interaction and have
accounted for the extreme scattering anisotropy re-
sponsible for the anomalous effective carrier density in
Li, and have shown that neither of these large effects
requires any appreciable departure from the free-
electron model. On the other hand, the diffusion thermo-
power of Cs is still not conclusively understood, and
detailed exploration of the inQuence of the d bands
would be particularly illuminating. We are Anally led
to expect that the positive thermopowers of Cu, Ag,
and Au are also due primarily to Coulomb-core inter-
ference in the effective electron-ion interaction, ' and
anticipate that a calculation similar to that we have here
presented would suKce to confirm this.

APPENDIX A

We adopt a rigid-ion model and take the scattering
of an electron by the lattice ions to be through a super-
position of local potentials' '

&(r)=Z V(r- Ri)

Here

1
=—2 V(q)p(q)e"'

c

1
V(q) —=— d're —'&' V (r)

Qp

(A2)

(A3)

where Ã is the total number of ions, Qp the ionic volume,
V(r) the interaction of an electron with one ion, and

(A4)

is the Fourier space transform of the lattice number
density, Ri being the position of the ion which in
equilibrium is at the lattice point l. Since we work in a
pseudopotential scheme, we take simple plane waves

(r[k)=(EQp) "'exp(ik r)
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for the electrons and have

(k'
I
e'&'l k) =8)„,,+),. (A6)

1
«e '"(u(q 0)) (—q, &))r, (A9)

2Ã—

where P= 1/k~T, and obtain for the distribution func-
t.loll fg

=Z{IV~.~ (1—f~)f~ —IV~ .~(1—f~ )f~)

2~11)1= ——Z I v(q) I'-sl q,-Cz.+.—z.3 I
(A10hkh i

X{(1—f )f e" "'~ "—(1—f.+)f )
Proceeding in standard fashion' ' we write

gf~(O)

f) =f) ")-C') (A»)

(Note that k runs over the proper Brillouin zone while

q can run over all values. ) If we were to use sym-
metrized plane waves as basis functions, then the Kron-
ecker symbol (A6) would be replaced by the product of a
"lattice delta-function" enforcing conservation of crys™
tal momentum and an additional matrix element. In
the plane-wave representation then in the Born (or
weak scattering) approximation the golden rule rate
for the electronic transition k-+ k' is' 4'

21 1 Bg. E), —
W, =——Ql v(g) I'b, ;S q, ', (A7)

AS e A A

the Kronecker symbol being carried along in, order to
have the final summation we will need be on q. We have
written

S(q,a&)=—dt e ' ' (p( —q, t)—p(q, 0))r, (AS)
2' S

where ( )r indicates the usual thermal trace and the
density operators are in the Heisenberg picture. The
normalization of S(q,~) in (A8) corresponds to that of
Greene and Kohn' and not, e.g., to that of van Hove. '
Were we to use symmetrized plane waves, then instead
of (A7) we would have a double sum, 'on q and q', say,
and S(q,a&) would be supplanted by,„the Fourier time
transform of (1/N)(p( —q', t)p(q, 0))r. In constructing
the collision term appropriate to a Boltzmann equation
from 5 ~,~ and the rate 8'~, ~. for the inverse transition
we make use of the condition of detailed balance'""
as expressed by

where f),&') is Fermi distribution function and, neglect-
ing quantities of second order in C, 6nd after some
manipulation that the terms in curly brackets in (A10)
reduce to

Bf),

Bt

C'), = (—e)r(k)F v„,

g f~(0)
= —eF v(k)

BEg

(A13)

=eF v(k)P(1 —f),&'))f), &'), (A14)

where v(k) is the electronic group velocity. Inserting
(A11)—(A14) into (A10) yields an integral equation
for r(k), namely,

F v(k)(1—f) &")

2% 1
=——Zl v(q) I'-s q,-L~~+e—&)j (1—f~+g'")

AX& It A

g{r(k)F v(k) —r(k+q)F v(k+q)). (A15)

First we eliminate the electric field with the aid of cubic
symmetry. Under any operation R of the point group,
V(q), E(k), and r(k) are invariant while v(Rk) =Rv(k)
and S(Rq,a&) =S(q,&o). Multiply both sides of (A15) by
F v(k), replace k by Ek, and then average both sides
over the operations of the group. The equation which
results is

2~1 1 1 )1—f),p, &')

1=——Zl v(q) I'-s q,-l &.+ —&~j
I

AX e h ))l )1—f), &0)

v(k) v(k+q)
&& r(k)— r (k+ q) . (A16)

v'(k)

We now separate the right-hand side of (A16) into
two terms after adding and subtracting a term within
the curly brackets.

='1 1 ( 1 1—f),p, &')

1= ——p I v(q) I
-sl q,-Lz„,—z,3

&AT q A k h 1—f), &')

v(k) v(k+q))
x(~-

1
r(k) (A17)

v'(k)

2x 1 jv~ 1 ~ (o)

+——Z I v(q) I'-s q,
1 f.&')—

v(k) v(k+q)
X Lr(k) —r(k+ q)3.

{ & =&(1—f~+ "')f~"'(C'~+ —C'~) (A12)

The Boltzmann equation in the presence of an ef-
fective electric field F is used to define a relaxation time
r(k) such that

v'(k)
"A. Sjolander, in Phonons 0nd Phonon Interactions, edited by

T. Bak (W. A. Benjamin, Inc., New York, 1964).
"Reference 17, Chaps. 8, 9. sented by Eq. (A17) can be made by referring its right-
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Converting the sum to an integral, assuming E(k)
parabolic with effective mass m*, and introducing the
mean free path

we obtain finally
I(k)= 5(k)T(k), (A20)

(II
dw'I V(v) I'S(4), (A21)

I(k) i4n. &j j2404) p

where
g

S($,&7)
= (1/2&r) dQ(q)S'(q)iI &I k+ — . (A22)

2k

We have put a prime on the structure factor to empha-
size that the Bragg peaks associated with the static
lattice are to be omitted since they have been included

"See, e.g., the Appendix of Ref. 7.

hand side to conditions under which the scattering is
elastic and r is a function of electronic energy only. In
that case, the second term vanishes identically and the
first yields up for r(k) the golden rule time for the re-
laxation of the particle current in the direction k. In
the general case, the summand of the second term has a
number of zeros not shared by that of the first term. It
vanishes for any q giving scattering at 90'. Every
vector Rk of the star of k occurs among the k+ q in the
sum on q and at each such q we have r(k) —r(k+q)
going through zero by symmetry. Since under cubic
symmetry there are 48 such zeros for a general k, each
such scattering event being elastic, there are wholesale
cancellations. In marked contrast, the summand of the
first term could vanish only exceptionally, for example,
for small angle scattering which either is inelastic or is
on a substantially anisotropic energy surface. For elastic
scattering and isotropic E(k), the summand of the first
term is always positive, while that of the second retains
all the zeros just mentioned. Accordingly, we expect to
obtain a reasonable approximation to r (k) by retaining
only the first term on the right-hand side of Eq. (A17).

Concentrating now on high temperatures, we may
take the scattering to be elastic insofar as the electrons
are concerned, ~ and write

(I/&)S(q, (1/&)L&2+2 —&2])=~(&2+2—&2)S(q), (A»)

where S(q) is the static-structure factor. " We now

specialize to isotropic energy E(k) =E(k), and also take
V to be spherically symmetric. Retaining only the main
term of Eq. (A17) we find

22r) —q.
;1(k)= —Ix- g I v(q) I Is(q)

Ij i k'

&&&LE(k+q)—S(k)]. (A19)

SII
D;„=Z p hajj (2—cj„'Icj+1„+1cj+2,;„

s6M~
+Cj+2,&+1 Cj+l, i+2 ]) &

Di, i+1=p p &f&j+lj+2 cj,ip2 )S,j+liSjy2,i+1,
'6M &

+Sj+2,i Sj+l,i+1 ]~

Here i and j label the Cartesian co-ordinates and s
labels the neighbor shell. The spatial variation of the
normal modes is taken to be expI iq R ]; the C's and
S's are defined by

Cgi =cosgck~ gz Sg, s =slngchg' gz,

and the values of h,', e„and s as follows:

h~', h2', h&~

1 1 1
2 0 0
2 2 0
3 1
2 2 2

8
6

12
24
8

Squires has also obtained the following expressions
for the elastic constants:

Sg
c«=Z Z L(» ')'+(h+)']A'

e 24

+S
C12+C44 Z Q hj+1 hj+2 it&jul, j+2 ~

e6u~

in the crystal potential and their effects are supposed
to be contained in the electronic basis functions.

If the scattering potential is taken to be a single
lattice sum of nonlocal operators, then the only change
from (A7) through (A19) is to replace V(q) by V2(q)
=E(k+qI VI k). Eq. (A21) is recovered since for any
single-ion pseudopotential V2(q) is axially symmetric
about k.

We could, of course, define in obvious fashion a se-
quence of successive approximations or a perturbation
expansion to improve upon Eq. (A19). However, the
labor required to compute even the second approxima-
tion is considerably greater than is warranted in view
of the inaccuracies of presently available pseudopoten-
tials, and seems unlikely to result in changes of more
than a few percent.
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APPENDIX 8
Using a Born—von Karman model for a body-centered

cubic lattice, Squires" has expressed the dynamical
matrix in terms of the matrix of force constants I P;j']:


