
P H YS ICAL REVIEW VOLUME 17 |, NUM HER 3 &5 yULV &968

Examination of the Thermal Variation of the Mean Square Atomic
Displacements in Zinc and Evaluation of the Associated

Debye Temyerature~f

EARL F. SKELTON) AND J. LAWRENCE KATZ

Department of Physics and Astronomy, The laboratory for Crystallographsc Research,
Rensseleer Polytechnic Institute, Troy, Em York

(Received 8 February 1968)

The two principal components of the mean square atomic displacement differences due to thermal vibra-
tions in zinc have been measured from single-crystal x-ray diffraction intensities over a thermal range «om
4.85 to 600'K. The absolute value of the components of the mean square atomic displacements parallel to
the hexagonal axis and lying in the basal plane have been evaluated from the data by means of a self-
consistent technique; these mean square atomic displacements are compared with existing theoretical and
experimental values. The x-ray Debye temperatures O~N(T) have been evaluated; O~ (0) is found to be
219.6'K, whereas ON (600) drops to 187'K. The values of eN (T) are compared with theoretical calculations,
as well as with other experimental results. The thermal variation of esr(T) appears to be explained by
volume-expansion eBects over a limited thermal range (100'K(T(400'K). At higher temperatures,
additional anharmonic eBects appear to be present. An analysis of measured and calculated values of the
temperature derivative of the mean square displacement has led to an evaluation of constant-volume
anharmonic eBects. Comparison is also made between esr(T) and Debye temperatures relating to other
averages over the frequency-distribution function.

I. INTRODUCTION

HE thermal vibrations of the atoms in a crystal-
line solid can be investigated through a study of

the x-ray intensity scattered into a Bragg diffraction
peak. The mean square atomic vibrations can be related
to an average over the frequency spectrum and repre-
sented in terms of a characteristic or Debye tempera-
ture. Herbstein' has reviewed the various methods of
evaluating Debye temperatures and discussed the inter-
relations between diEerent techniques of measurement.

In general, the x-ray Debye temperature 0~~(T) is
expressed in terms of a summation of the principal
atomic mean square displacements over all the atoms in
a primitive cell. For a hexagonal lattice with two similar
atoms per unit cell, 0'~(T) can be related to the sum of
the component of the mean square atomic displacements
parallel to the hexagonal axis (u, ')T and of the average
displacements corresponding to the components of the
thermal vibrations in the basal plane (u, ')T.s A study of
the components of the mean square displacement in
these two principal directions also provides a measure
of the anisotropy of the system. An examination of the
absolute value and of the thermal variation of the x-ray
Debye temperature provides a convenient means of
comparison between experiment and lattice-dynamical
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force-model calculations. Furthermore, a comparison
between O™(T)and other experimentally determined

Debye temperatures, e.g. , specific heats LO~c(T)), elastic
constants LO~N(T) j, and electrical resistivities LO~R(T)],
often yields information about the frequency-distribu-
tion function.

II. THEORY

The intensity of a general Bragg reQection scattered
from a mosaic, hexagonal crystal containing two similar
atoms per primitive cell can be expressed, at a given
temperature T, in the following form:

(I „,.(S/X, T))=C~F ~'ls(S/X)

&& expL —2M s,(T) cos'p —2M s,(T) sin'll'1

+Q I'Tns t(S/)t, T), (1)
j~l

where C is a constant, F is the structure factor, Is(S/X)
is the Laue interference function, S is the diffraction
vector, X is the wavelength of the x radiation, and f is
the angle between the hexagonal axis and S. The ex-

ponential function. in Eq. (1) is commonly referred to as
the Debye-%aller factor; the terms in the Debye-
Waller factor are related, within the quasiharmonic
approximation, to the components of the mean square
atomic displacement in the following fashion:

2Ms„(T)= (4' sin8/X)'(u„')T, p=» or a, (2)

where () represents the Bragg diffraction angle, (u, ')z*

denotes the component of the mean square displacement
parallel to the hexagonal axis, and (u, ')T refers to the
projection of the mean square displacement onto the
basal plane.

The series of terms on the right-hand side of Eq. (1)
80i
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represents the thermal di&use scattering (hereafter re-
ferred to as TDS). I»s;(S/X, T) denotes the jth order
TDS, i.e., it represents the interaction between an inci-
dent x-ray photon and j phonons. The TDS will tend
to increase with increasing temperatures. In order to
account for this, the TDS contribution is analytically
evaluated and subtracted from the measured intensity.
The two basic assumptions involved in this calculation
are (1) that optical mode contributions to the measured
TDS will be accounted for in the background correction
and (2) that any possible dispersion effects can be ne-
glected in evaluating the contribution from the acousti-
cal modes. These approximations are presumed to be
justified by the fact that the region of interest in re-
ciprocal space is small in comparison to the volume of
the Brillouin zone. In addition, if P is restricted to values
of 0' or 90, Eq. (1) can be rewritten in terms of only
one principal component of the atomic displacement as
follows:

(I ...(S/), ,T))=C~F('Is(S/))e-'~«ri, (3)
where it is understood that S now refers to a principal
direction.

Since it is rather diKcult to evaluate the absolute
value of the multiplicative constants in Eq. (3), it is
common practice to consider intensity ratios, usually
referred to some arbitrary reference temperature, Tp. ' '
Evaluation of the intensity ratio, with the aid of Eq.
(2) yields the following expression:

(e„'&r—(I,')r, ——(X/4~ sing)'

Xi LQ.(T)/Q. (T )1=~.(T), p= (4)

where Q(T) represents the measured intensity corrected
for background contributions, TDS, and for the small
eQects due to thermal expansion.

For the aforementioned hexagonal system, the atomic
mean square displacements can be related to the fre-
quency-distribution function g(v)dv in the following
fashion:

3(N') r (s4'&r+——2(N, '&r

3 Vmax kp——,'hv+ g(v)dv
4x'm p s

' e""~~~—j

g(v) dv, (5)

3( '& = ( .') +2( .'&
-c(x,) 1-+-, (6)

X 4

9h'

4s ~QO" (T)
' A. Paskin, Acta Cryst. 10, 667 (1957).' D. R. Chipman, J. Appl. Phys. 31, 2012 (1960).
'P. A. Flinn, G. M. McManus, and J. A. Rayne, Phys. Rev.

123, 809 (1961).

where m is the atomic mass, v is the lattice frequency,
and h and k have their usual meaning. If the Debye
spectrum is employed in Eq. (5), the following familiar
relation is obtained:

A. Low-Temperature Approximation

Although it is indeed possible to work with the mean
square displacement (I'&r, it is more profitable to con-
sider its two principal components. As an artifice, the
"directional Debye temperature, " originally proposed
by Gruneisen and Goens' and later employed by
Brindley, is introduced. In essence, for an anisotropic
system, a directional Debye temperature is associated
with the component of the mean square displacement
in a given direction, as if the system were isotropic, and
all atoms vibrated with the particular component of the
mean square displacement associated with that direc-
tion, i.e.,

-C(x, ,,) 1-
+—,p=g or z (8)

x 4
&N.')r=

4s'mk0~ ~(T)
where Xr „and 4(xr „) are similar to the expressions
given in Eq. (7).

If Eq. (8) is substituted in Eq. (4), the following rela-
tion is obtained:

3ks -C(x„,,) C(x,,,)
4m'mk XP0 „'TP XP P'T

1 1 1+- —
I

=~v(T).
4 Xr, , „Ts Xr,„T)

Now, as argued by Flinn et a/. , if T is significantly
smaller than 0' (Ts), O~ (T), and Ts, then the second
two terms on the left-hand side in Eq. (9) are negligible
in comparison to the erst term, e.g., in the worst case
for Zn, with Tp=300'K and T=4.85'K, the secondand
third terms represent less than 0.1 and 1.5%%uo of the first
term, respectively. For such cases, Eq. (9) takes the
following approximate form:

3h' C(xz; „)
4x'mk &g, „'Tp

=~v(T)

Thus, with sufficiently low-temperature data, absolute

6K. Alexopoulos, J. Boskovits, S. Mourikis, and M. Roilos,
Acta Cryst. 19, 349 (1965).

7 R. M. Nicklow and R. A. Young, Phys. Rev. 152, 591 (1966).
s E. Griineisen and E. Goens, Z. Physik 29, 141 (1924).
s G. W. Brindley, Phil. Mag. 21, 790 (1936).

where
xr

C'(Xz') =— d$; Xr = O~~(T)/T
Xp ] pe& —1

A source of diKculty in the evaluation of the mean
square displacements, and hence of the x-ray Debye tem-
perature, lies in the determination of the reference
values (N. ..'&r, . Several techniques for solving the simi-
lar problem for cubic systems have been proposed in
the literature. ~7 VVe have extended two of these proce-
dures, the low-temperature approximation of Flinn et
al. ' and the derivative technique of Wicklow and Young, '
to this hexagonal system.
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values of (u, ,')rp can be evaluated and, hence, the mean
square displacements at all other temperatures can be
determined from Eq. (4).

B. Derivative Technique

As previously noted, the second procedure for evaluat-
ing the absolute value of the Debye temperature from
the measured mean square displacement differences in-
volves extension of the derivative technique of wicklow
and Young. ' The basic assumption of this procedure is
that the thermal variation of the lattice frequencies can
be attributed to thermal expansion effects only. For
a hexagonal system, the full derivative of the mean
square displacement is then given by the following:

(u')'r ——

I'a(u)r) aa (a(u')ri ac—
+I I +I

aa i, ,r81' k ac ),,z aT
~ (11)

The partial derivatives on the right-hand side of Eq.
(11) can be evaluated in a manner similar to that de-
tailed in the aforementioned reference. This evaluation,
in conjunction with the Debye frequency-distribution
function, leads to the following expression:

3h'
(u')'r = —f(x)+ T[v.(—2)~.+2v.(—2)~.3

4x'mkT' y'

where

P -+(x)
XI x +- +f(x) I, (12)

— x
x Pet

f(x)—=- d(.
( p (e&—1)'

o., and n, are the coefficients of linear expansion parallel
and perpendicular to the hexagonal axis, respectively;
y, (—2) and y, (—2) are the Griineisen parameters re-
lated to the inverse-second moment of the frequency
distribution for a hexagonal system as defined by Barron
and Munn. "It should be noted that in evaluating the
second term on the right-hand side in Eq. (11), it was
assumed that T& O'u(T). Thus, strictly speaking, Eq.
(11) is only applicable in this high-temperature region.
The left-hand side of Eq. (12) represents the sum of the
temperature derivatives of the principal mean square
displacements and can be evaluated directly at any
given temperature. The right-hand side of Eq. (12) can
then be varied until a fit is determined and a Debye
temperature thus evaluated. Since the function con-
tained in this averaging expression is slightly different
from that used in Eq. (6), the Debye temperature ob-
tained from Eq. (12) will not necessarily be equivalent

'PT. H. K. Barron and R. W. Mnnn, Phi1. Mag. 15, 85 (1967)."R.H. Wilson, E. F. Skelton, and J. I Katz, Acta Cryst. 21,
635 (1966).

to the Debye-Wailer Debye temperature; it is therefore
denoted by O'~'(T).

Additional physical significance can be attributed to
the temperature derivative of the mean square displace-
ment if one realizes that, in this temperature region,
the mean square displacement can be expressed in the
following approximate form:

(u')r =(3h'/4n-'mk) [T/O~~(T)'j. (14)

Thus, the degree to which a plot of (u')'~ versus tem-
perature departs from a horizontal line represents a
measure of the thermal variation of 0'~(T).

III. EXPERIMENTAL PROCEDURE

Three different zinc single crystals, grown from
99.999% pure zinc, were used in this investigation. The
samples were irradiated with filtered radiation from
a molybdenum x-ray tube; the diffracted radiation was
measured with a proportional counter in conjunction
with an electronic pulse-height discriminator. The
method of measuring the integrated intensities is similar
to that described previously. " In order to detect any
possible thermal fluctuations in the measured intensities
due to possible variation of the extinction or absorption
effects, e.g. , due to possible shifting of the mosaic blocks,
several reflections were studied, viz. , the (004), (006),
and (008) reflections for the parallel data and the (300),
(400), (600), and (210) for the data corresponding to
thermal vibrations in the basal plane.

The low-temperature data were obtained using an
automatically controlled cryogenic x-ray system manu-
factured by Electronics and Alloys, Inc. The tempera-
ture control and measurement are believed to be accu-
rate to within ~0.2 K. High temperatures wereachieved
by means of focused heating lamps and measured in the
manner described previously. "

IV. RESULTS AND DISCUSSION

A. Mean Square Disylacements

The basic experimental results of this investigation
are the components of the mean square displacement
differences in the two principal directions for zinc. Use
of the low-temperature measurements in Eq. (10) leads
to the following values for the two principal xnean square
displacement components at the reference temperature
300'K: (u, ') =0.0259+0.001 A' (u, ') =0.0112~0.0003
A'. Utilizing these results, the data can be plotted on
an absolute scale; the components of the mean square
displacement in the two principal directions are shown
in Fig. 1. The smooth curves running through the data
represent least-square curve 6ts.

Using thermodynamic data, Barron and Munn"
evaluated the mean square displacement (u')r for zinc.
Then, using the lattice dynamical force model of

"T. H. K. Barron and R. W. Munn, Acta Cr yst. 22, 170 (1967)
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FIG. 1. Components of the mean square atomic displacement of
zinc parallel to the hexagonal axis (I) and lying in the basal plane
(+).The calculations by Barron and Munn (Ref. 12) are shown in
circles.

DeWames et al. ," and an approximation for thermal
expansion eiiects, they calculated (u,s)&. Finally,
(u,s)r was found by taking the dilference between
(u*s)r and 2(u s)r. The results of their calculations for
(u, ')p and (u, ')r are shown in Fig. 1. The agreement
between the measured values and these calculated mean
square displacement components appears to be rather
good in the low-temperature region (4.85 &T&100'K).
Further, the agreement between theory and experiment
appears to be quite good over the whole thermal range
(4.85& T&600 K) for the components of the thermal
vibrations parallel to the hexagonal axis. The measured
values of (u ')r, on the other hand, show a discrepancy
with the calculated values which appears to increase
with increasing temperature; at 600'K, this difference
amounts to about 25%%uz of the measured value. It is in-
deed possible that this high-temperature discrepancy in
(u s)& may be caused by constant-volume anharmonic
effects.

B. X-Ray Debye Temperatures

Combining these mean square displacement compo-
nents as indicated in Eq. (6) leads to immediate evalua-

"R. E. De%ames, T. Wolfram, and G. %V. Lehman, Phys. Rev.
138, A717 (1963).
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FIG. 2. Debye temperature of zinc experimentally determined
by x-ray techniques (lower curve) and calculated by Barron and
Munn (Ref. 12) (upper curve). Q: measured by Jauncey and
Bruce (Ref. 14); O: calculated from the DeWames et al. force
model (Ref. 13); o: calculated from electrical conductivity by
Weisskopf (Ref. 16); ~: calculated from electrical conductivity
data of Pawlek and Rogalla (Ref. 17); ~: measured by Kiindig
et al. (Ref. 18) from Mossbauer experiments.

A. A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529
(1963).

tion of the x-ray Debye temperatures. These results are
shown in Fig. 2, along with other measurements and
calculations of the equivalent Debye temperature
O~~(T). The error bars reflect the scatter in the data,
as seen in Fig. 1. In the low-temperature region
(T&100 K) the Debye function is extremely sensitive
to the scatter in the data; the errors associated with the
calculated values of O~(T) in this region would be
inordinately large. Therefore, the O~~(T)-T curve is
shown dashed below 100'K; the true shape of the curve
cannot be accurately evaluated from the data in this
region. It is interesting to note, however, that the value
of 0'~(0) extrapolated. from 4.85 K is 219.6 K; as ex-
pected from the mean square displacements, this is in
excellent agreement with the Barron and Munn" cal-
culated value of 221&2 K.

The high-temperature thermal variation of the cal-
culated value of O~~(T) is based on thermal expansion
eGects only. Clearly, the eGects of volume expansion
can adequately explain the shape of the measured
0'~(T)-T curve over a rather broad thermal range
(100&T&400 K). Above 400 K, however, the mea-
sured Debye temperature appears to drop more rapidly
with increasing temperature than predicted by lattice
expansion effects alone. At 600 K, this drop represents
about 16% of the effect due to thermal expansion. It is
assumed that the increased slope of the O~(T)-T
curve above 400 K is caused by constant-volume
anharmonic effects. Not being aware of any theoretical
examination of the effects of these anharmonic contri-
butions to O~~(T), it is difficult to test the foregoing
assumption. (Maradudin and Flinn'e have examined
cubic and quartic anharmonic contributions to the
Debye-Wailer factor of cubic materials. ) Suflice it to say
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that this behavior of O~~(T) for zinc is similar to the
effects seen in Ag and Pb as reported by Alexopoulos
et al ,' .and in Al, Pb, and P-brass as reported by Chip-
man. 4 Furthermore, the size of this apparent constant-
volume anharmonic contribution is in keeping with
what might be expected for zinc."

The measurements of O~~(T) made by Jauncey and
Bruce'5 from diffuse scattering of x rays are shown in
Fig. 2. Realizing that this pioneer work was carried out
with film techniques, the limited agreement seen is
gratifying.

Also plotted in Fig. 2 are the calculations of O~~(T)
from the De%ames et ut. "modi6ed axially symmetric
force model and corrected for thermal expansion by
Sarron and Munn. "The results of the model calcula-
tion are consistently about 8% higher than the measure-
ments of this work. In consideration of the apparently
large value of 0~(T) calculated. from the DeWames
et aL model, "Barron and Munn" have suggested that
the model, like many short-range force models for Zn,
does not adequately account for the large dispersion
effects seen in the acoustical lattice waves propagating
in the basal plane with atoms vibrating normal to the
plane, as measured from coherent inelastic neutron
scattering data. Rather, the model tends to overestimate
these frequencies and hence leads to an excessive value
of O~(T).

It is interesting to compare these results with other
calculations of the equivalent Debye temperature. In
the high-temperature region, the electrical conductivity
of metals can be related to the mean square displace-
ment and hence to an equivalent Debye temperature
O~~(T). Although it is understood that to calculate
O~n(T) from the electrical conductivity is rather dificult
to perform exactly, approximate results can be obtained
using the expressions of Weisskopf" in conjunction with
the electrical resistivity data of Pawlek and Rogalla. '~

These results are shown on Fig. 2, and, in the light of
the approximations in.volved, appear to show surpris-
ingly good agreement with the results of this work.

Kundig ef a/. rs have evaluated the two directional
Debye temperatures for zinc from the Mossbauer effect
of Fe" in Zn. Averaging their directional Debye tem-
peratures yields O~~(296) =273»+"'K; this appears to
be in serious disagreement with the results of this work.
From this discrepancy one might infer that their basic
assumption, that "the force constants for the Fe im-
purity atoms in Zn are about the same as for the Zn
atoms, '"' is in serious question. (Note added ere proof.
This apparently high value of 8~(296) tends to suggest
that the binding forces betw'een the Fe and Zn atoms
are somewhat stronger than the binding forces between

"G. E. M. Jauncey and W. A. Bruce, Phys. Rev. SI, 1067
(1937)."V.F. Weisskopf, Am. J. Phys. 11, 1 (1943)."F.Pawlek and D Rogalla, Cr.yogenics 6, 14 (1966).

'8 W. Kundig, K. Ando, and H. Qgm~el, Phys. Rc:v. Q9, 5889
(1965).
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F&G. 3. Thermal variation of mean square displacement deriva-
tives. Curve A: (u')'r measured; curve B: (8(u')r/BT), r,.r cal-
culated; curve C: f(8(u')r/Ba). ,rBa/BT+(8(u')r/Bc), ,roc/BT]
calculated; curve D: (8(us)r/BT)1&, .0 calculated from DeWames
eJ aL (Ref. 13) force model; curve E: (8(u')r/BT)„, „determined
from Barron and Munn (Ref. 12) calculation; curve F: (8(u')r/
BT)or,,r determined from Barron and Munn (Ref. 12) calculation.
&&: (u')'r determined from Barron and Munn (Ref. 12) calcula-
tion; ~: p(8(u')r/Ba), rBa/BT+, (8(u')r/Bc), rBc/BT5 determined
from Barron and Munn (Ref. 12) calculation; X: (u')'r calculated
from Barron and Munn (Ref. 12) and corrected for constant-
volume anharmonic sects.

the Zn atoms themselves. As pointed out to us by Dr.
Nussbaum, this conclusion is consistent with his Moss-
bauer measurements on Zn t R. M. Housley and R. H.
Nussbaum, Phys. Rev. 138, A753 (1965)$}.

C. Mean Square Displacement Derivatives

As mentioned earlier, the fundamental measurements
obtained from this experiment are the mean square
atomic displacement differences. Since we can separate
the implicit temperature dependence of (sc') r into its
constituent parts, within the quasiharmonic approxima-
tion, it is interesting to examine the slopes of the average
atomic displacement. Curve A in Fig. 3 represents the
combined, measured slopes of the two principal com-
ponents of the mean square displacements for T& 200 K,
since the theoretical development is only valid for
T& O~~(T). Using these data in Eq. (12), an effective
Debye temperature O~ '(T) is calculated; these results
are shown in Fig. 4. Once the values of 0~sr'(T) are
known, one can return to Eqs. (11)and (12) and evalu-
ate the separate inQuences of temperature and lattice
expansion on the average displacement slopes. In Fig.
3, curve 3 represents the explicit thermal effect, i.e.,
(8(sc')r/f)T), ; curve C shows the calculated effects of
thermal expansion, Clearly the explicit effects of lattice
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expansion become signi6cantly more important at
higher temperatures; at 200 K they represent less than
8% of (I')'soo whereas, at 600'K, about 22% of (u')'sos
is attributable to explicit thermal expansion effects.

The values of (u')'i and the two partial derivatives
determined from the calculations of Barron and Munn"
are also shown in Fig. 3. In the intermediate tempera-
ture range (200& T&300) there appears to be limited
agreement, within experimental error, between the
measured values of (u')'z and the equivalent values
taken from the Barron and Munn work. However, at
higher temperatures (T)300'K), where anharmonic
effects become more important, the measured and cal-
culated results appear to differ by up to 18%.

Curve F represents the explicit constant-volume
thermal inhuence on the average displacement slopes,
as a function of temperature, i.e., (ej(N')r/BT), ~,r as
determined from the reported values of Barron and
Munn. "This is distinctly different from the thermal
variation and magnitude of the slope that one would ex-
pect if the lattice cell lengths were fixed at their O'K
value, i.e., (B(u')r/BT)„„. This latter effect, as calcu-
lated from the specific heat data, " is shown in curve
E; the value of (B(N')r/BT)„„„„,determined from the
DeWames et a/. " force model, is shown in curve D.
Clearly, these calculations indicate that if the crystal
exhibited no thermal expansion at all, the mean square
displacement would increase linearly with increasing
temperature. Thus, the region between curves E and
F indicates (1) that the thermal influence on the mean
square displacements will cause an increase in (I')z
above that predicted by the explicit temperature effect
at ap and cp, because the lattice parameters have ex-
panded; and (2) that this additional effect of the ex-
panded lattice tends to increase with increasing tem-
perature. Curves D and E correspond to a thermally in-
varient Debye temperature and the effect of the ex-
panded lattice discussed above will tend to cause a drop
in this Debye temperature, which increases with in-
creasing temperature.

The explicit inhuence of the lattice expansion on the
atomic displacements, as calculated from the Barron
and Munn" results, appears to show good agreement
with the results evaluated here (curve C); the small dis-
crepancy seen may well be due to the experimental error
involved in evalua, ting (u')'r.

Taking this as a check on curve C, we attempt to ex-
plain the difference between curves B and F. In the
analysis used to separate the measured values of (I')'i
(curve A) into the two components (curves B and C)
it was assumed that the thermal variation of the phonon
frequencies was due to lattice expansion effects only,
i.e., any possible constant-volume anharmonic effects
that might contribute to the measured values of (I')'r
(curve A) were neglected. Thus if it is assumed that
curve F does faithfully represent (8(u')&/BT) r,r, and
taking the above agreement between theory and experi-

ment as a check on curve C, it then follows that the
region between curves B and F represents the constant-
volume anharmonic effects. Indeed, if w'e add the
difference between curves B and F to the values of
(u')'r as determined from the Barron and Munn"
calculations, we get complete agreement with the
measured values of (I')'s over the entire thermal range,
within the experimental error.

Presuming the foregoing analysis to be correct, it ap-
pears that the derivative, (u )'z, is significantly more
sensitive to anharmonic effects than the Debye tem-
perature 0'~(T). The volume-expansion effect produced
by curve C at 600 K represents 22% of the measured
value of (u')'see, whereas the volume expansion causes
a reduction in O~(600) of only 11%. Similarly, the
constant-volume anharmonic contribution to (u')'seo,
as evaluated here, represents about 14% of the measured
effect, whereas similar influences on O~ (600) are pre-
sumed to be only about 3%.

D. Comparison of Debye Temperatures

It is commonly recognized today that one should not
expect quantitative agreement between Debye tem-
peratures relating to different averages over the fre-
quency spectrum. In the light of this fact, it is sometimes
informative to compare Debye temperatures as deter-
rnined by different experimental measurements; such
a comparison is made in Fig. 4.

The specific-heat Debye temperatures O~o(T) (curve
C) were measured by Martin" (3&T&30 K) and cal-
culated from the thermodynamic data of Eichenauer
and Schulze" by Barron and Munn' (T)30 K). The
dip seen at 150 K is believed to be spurious by the previ-
ous authors; no similar anomaly is seen in the O~(T)-T
curve.

As pointed out by Herbstein, ' in the high-temperature

region, the weighting factors involved in the average
over the frequency spectrum leading to O~iLr(T) will

weight the low-frequency modes more heavily than the
similar average leading to Oc(T). ln recognition of this,
the fact that O~c(T)) O~(T) (T)100'K) appears to
be consistent with the frequency-distribution function
calculated from the tensor force model of Young and

Koppel, " as well as with the calculations of Rauben-
heimer and Gilat, "i.e., the large low-frequency peak in

the frequency spectrum probably represents a domi-
nant influence on O~(T), whereas the two higher-fre-

quency peaks in g(v) should infiuence the specific heats
more strongly and thus tend to give a higher value of
Q~ (T)

The elastic constant Debye temperature 0'~(T) is

"D.L. Martin Phys. Rev. 167, 640 (1968}.
~0%'. Eichenauer and M. Schulze, Z. Naturforsch. 14a, 28

(1959)."J.A. Young and J. V. Koppel, Phys. Rev. 134, A1476 (1964}.
's L. J.Ranbenhenner and G. Gilat, Phys. Rev. 157, 586 (1967).
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FIG. 4. Thermal variation of the Debye temperature as deter-
mined by several methods. Curve A: elastic constant Debye tem-
perature Os(T) calculated from volume-expansion effects; curve
B: elastic constant Debye temperature O~E(T) calculated from
elastic constant data; curve C: specific heat Debye temperature
eo(T) I+ measured by Martin (Ref. 19); o: reported by Barron
and Munn (Ref. 10)];curve D: Debye-Wailer Debye temperature
O~~(T); curve E: Debye temperature evaluated from the mean
square displacement slopes, O~~'(T).
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related to the average lattice wave velocity. " '
The problem involved in calculating Ox(T) from the
measured elastic stiRnesses c;;(T) is that of performing
the average over all the wave velocities. Several methods
of evaluating this average without recourse to high
speed computers have been proposed in the litera-
ture. ' " "The averaging techniques for noncubic sys-
tems are complicated by anisotropic effects; methods
applicable to hexagonal systems have been developed by
Post ' Anderson '8 and Bystrova and Fedorov. ' An
excellent check on the accuracy of the calculation of
O~~(T) is the agreement between O~~(0) and O~o(0)

theoretically these Debye temperatures should agree at
absolute zero."The values of 0'~(T) shown in Fig. 4
(curve 8) are computed from the elastic constant data
of Alers and Neighbours" using Anderson's" expres-

sions. These results agree with the value of O~~(4.2) of
331.2 K determined from the Bystrova and Fedorov'
averaging process, as well as with the extrapolated value
of Oo(0).

Post attempts to account for the complications of
anisotropy by performing the averaging process within
the Christoffel equations themselves. However, the re-
sults obtained using the same elastic constant data in
the Post expressions show serious disagreement with
other calculated values of O~x(T); the computed value
of Ox(4.2) is 247 K and the extrapolated value of
0'~(0) is 247'K. This is in poor agreement with O'c(Q)

(see curve C). In his tables of the physical properties of
the elements, Gschneidner" reports that Masing"
evaluated O~x(298) to be 313 K, which is in excellent
agreement with curve B, however Gschneidner chose to
use Post's value of 231 K in the tables, because it com-
pared more favorably with O~o(298).

Since the ultrasonic measurements of the elastic con-
stants are related to the very long lattice waves, the
calculated values of O~s(T), reflect the behavior of the
frequency spectrum for the very low-frequency modes.
That 0' (2') falls with increasing temperature conflrms
the general supposition that the low-frequency slope of
the frequency spectrum tends to increase with increas-
ing temperature.

Curve A in Fig. 4 represents the expected decrease in
Ox(T) due to lattice expansion effects as calculated
from the following expression:

O (ar,cr)=O (ap, cp)

XL(./") '-&("!') '-&], (»)
where the Gruneisen parameters related to the inverse
third moment are given by Barron and Munn. " It is
assumed that the difference between curves A and 8
can be attributed to constant-volume anharmonic
effects. This represents about 8'%%uo of 0'~(600) and tends
to suggest that anharmonic influences are present for
the very low frequency modes, as well as for the higher
frequencies seen by O~(T), if one can think of anhar-
monic effects in 0'~(T) as being represented by shifts in
the frequency spectrum.

V. CONCLUSIONS

The components of the mean square atomic displace-
ments have been measured for atomic thermal vibra-
tions in the two principal directions in zinc. These mea-
sured values of (u, ')z and (I,')T have been compared
with the calculated values reported by Barron and
Munn. " At low temperatures (T(100'K) the agree-
ment between theory and experiment is very good; the
agreement between the measured and calculated values
of (s4')r is also quite good over the whole thermal range

'~ K. A. Gschneidner, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1964), Vol. 16.

"G. Masing, Lehrbuch der Allgemeinen Metaljkunde (Springer-
Verlag, Berlin, 1950).
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(4.85(T&600'K). The components of the mean squaer
displacements corresponding to vibrations in the basal
plane appear to show a discrepancy with the calculated
values. This difference tends to increase with increasing
temperature, amounting to about 25%%uo of the measured
value at 600 K. It is possible that this disagreement be-
tween theory and experiment may be due to constant-
volume anharmonic eQects.

The Debye temperature associated with the mean
square displacements, O~(T), has been evaluated. The
extrapolated value of O'~(0) is 219.6'K, which is in
excellent agreement with the Barron and Munn" com-
puted value. The value of O~(T) tends to drop with
increasing temperature to a value of 187 K at 600 K.
This decrease can be explained in terms of volume ex-
pansion effects over a broad thermal range (100&T
&400 K). Above 400'K an additional effect appears to
be present which is presumed to be attributable to
constant-volume anharmonic contributions.

The temperature derivatives of the mean square
displacernent, (u')'r, have been evaluated from the data.
These measured values of (u')'r have been compared
with theory and appear to be more sensitive to anhar-

monic efFects than Debye temperature itself. An analy-
sis of the constituent parts of (I')'z has led to an evalua-
tion of the constant-volume anharmonic contributions
to (u')'r. When these anharmonic effects are included in
the values of (I')'r determined from the Barron and
Munn" calculations, reasonable agreement is realized
with the measured results over the thermal range
involved.

Finally, the x-ray Debye temperature has been com-
pared with the Debye temperatures as determined from
specific heats 0'o(T) and from the elastic constant data
O~ii(T). '&he fact that O~c(T)& O~~(T)(T&100OK) ap-
pears to be consistent with calculated frequency spectra
for zinc.""Over the whole thermal range O~~(T)
&0"~(T), this is consistent with similar results for
most materials ""
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