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Self-Consistent Energy Bands of Metallic Copper by the
Augmented-Plane-Wave Method. II*
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The band structure, Fermi surface, and density of states from two self-consistent, augmented-p]ane-wave
calculations of copper are presented and compared with previously reported results. These calculations diBer
from those reported in the first paper on copper by Snow and %aber in that Hartree-Pock-Slater wave
functions given by Herman and Skillman were used in the present work in generating the starting potential
and fixed-core charge density; improved starting values for the numerical integration of the radial Schro-
dinger equation, obtained from a logarithmic radial mesh, were also used; and the calculations were per-
formed on a CDC 6600 computer, which retains about twice as many significant figures as does the IBM
7094 machine on which the original calculations were made. The present calculations diGer in that the
coeKcients of the Slater exchange term are 1 and -', .

1. INTRODUCTION

S INCE completion of the work presented in the 6rst
copper paper by Snow and Waber' (hereinafter

referred to as SW-I), improvements in some of the
methods of numerical calculation have been introduced
into the augmented-plane-wave (APW) program. Of
these, probably the most important is the use of a
radial mesh that varies logarithmically. In this mesh,
the value of the radius (R„) for each point is given by

g g g(n —l)Ib

where' is the mesh point number E~ is the smallest value
of the radius, and h is a constant that causes the mesh
to cover the desired range. The value of h is determined
by

h= ln
(E—1) Rt

work. Since the band calculation is nonrelativistic, use
of nonrelativistic core charge densities and wave func-
tions should make the calculations more consistent.

CoefBcients of 1 and —, for the Slater exchange term
were used in the calculations reported in S%-I. In that
paper, it was concluded that a coeScient between 1
and 23 should yield results in better agreement with
experimental findings. In the present work, coe%cients
of 1 and s, (hereinafter referred to as "Slater=1" and
"Slater=-,'") were used. It was expected that the results
of the calculation for Slater=-', would be in good agree-
ment with experimental 6ndings, as in fact they are.

Since SW-I was published, a CDC 6600 computer
has become available. This machine carries about twice
as many significant 6gures as does the IBM 7094
machine on which the original calculations were made.
Use of the CDC 6600, therefore, reduces roundoff
errors and improves the accuracy of the calculations.

2. METHOD OF CALCULATION

The same general method of calculation was used in
both the present and the earlier work, except as men-
tioned above. That method was reported in SW-I and,
therefore, will not be described in detail here. However,
a few remarks about the Noumerov' integration method
on a logarithmic mesh are in order.

On a linearly varying radial mesh, the radial function
P„(l,E) at the point R„ is given by Pratte as

crP„=(2P„ t(cr —SG„ t) —P„,(u+G„,)g/(cr+G„),
where

where E is the total number of points to be used, and
E~ and EN are the smallest and largest values, respec-
tively. This type of mesh has two highly desirable
features: (1) The radial points for small values of R
are close together in the range where the functions tend
to vary rapidly, and (2) the radial points for larger
values of E. are farther apart in the range where the
functions tend to vary much more slowly. A further
advantage of this type of mesh is that 8& may be chosen
to be as small as needed. If E1 is small enough, RI&'+'~

and R2&'+'~ are good approximations to the starting
values needed for the numerical integration of the
radial Schrodinger equation by the Noumerov' method.

Another diBerence between the present calculations
and those reported in SW-I is the use of nonrelativistic
Hartree-rock-Slater wave functions, given by Herman
and Skillman, ' to generate the crystal starting potentials
and the "frozen" core charge densities in the present

G =E+V —l(3+1)/R„'

~=12/(~R)s.
and

In these expressions, E is the energy, V„is the potential
at the point 8„, / is the orbital angular momentum
quantum number, and hR is the linear mesh size given
by

* V/ork performed under the auspices of the U. S. Atomic
Energy Commission.' E. C. Snow and J. T. Waber, Phys. Rev. 157, 570 (1967).'S. Noumerov, Monthly Notices Roy. Astron. Soc. 84, 592
(1924).'F. Herman and S. Skillman, Atomic Strgctgre Calcgla
(Prentice-Hall, Inc. , Englewood Cli6s, N. J., 1963).

AR=E —E
On the logarithmic mesh we solve for U„(l,g), which is

tions
e G. W. Pratt, Phys. Rev. 88, 1217 (1952).
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TABLE I. Starting values used in the numerical integration of
the radial Schrodinger equation. E& ——1.10152X10 ' Bohr units;
82=1.16031X10 4 Bohr units.

0.0—

OI-
-2.0—

Rs 0

2
3

5
6
7
8
9

10
11
12

1.1015205X10 4

1.1560827X10 6

1.2133475X10 8

1.2734488X10 "
1.3365271X10 '2

1.4027300X10 '4

1.4722121X10 '6

1.5451358X10 '8

1.6216718X10~0
1.7019988X10 "
1.7863048X10 24

1.g747g67X 10-26
1.9676514X10 's

1.1305356X10 '
1.2498671X10-6
1.3817945X10 '
1.5276472X10 '0

1.6g8g951X10 "
1.8671632X10 '4

2.0642480X10 '6

2.2821358X10-&8

2.5230223X10 '
2.7893351X].O-»
3.0837580X10 '4

3.4092582X10 "
3.7691160X10 '

-5.0—

-4.0
I.O I.5 2.0

RADIUS (BOHR UNITS )

I

2.5

Fzo. 1. Comparison of self-consistent potentials, for full and
—,
' exchange, shifted so that V, =O.O Ry.

related to the E„(/,E) above by

U„(/,E)= e ""t'P„(l,E)

and is given by the expression above with P„replaced
by U . G is then given by

G =E '(E+V„)—t(t+1)—e

and 0, is given by
cr= 12/h'

where h is the constant that determines the separation
of the radial points on the logarithmic mesh, as de-
scribed in the introduction. These are basically the
same relationships as described in more detail by
Loucks' in his recent book on the APW method.

Once V„has been determined, P„can be obtained
from

P enh/2U

To solve the U„equation, the values of U~ and U2 are
needed. Since these correspond to very small values of
the radius, R& and R2, the approximation given by
Hartree 6

I' R &'+'&Ll —(z/1+1)R„+ ~ ~ ],
was used. Also since Rj is approximately 1)&10 Bohr

' T. L. Loucks, Aggmegted Plage W'ave Method (W.A.Benjamin,
Inc. , New York, 196'l).

eD. R. Hartree, The Calcglatiog of Atomic Strgctgre Uohn
Wiley tk Sons, Inc. , New York, 1957).

units for the present calculation, the second term was
dropped. The starting values for the U„equation are
thus given by

Uy ——e "j' Ry&'+'~ and U2 ——e @R &~+'~

Thus Ur and Us will become very small for large values
of l, such as /=12, and may cause "under-Qow" prob-
lems on the computer. Since the solution of these
equations depends only on the ratio of Pj to P2, both
P& and P2 may be divided by a constant without
affecting the results in the APW calculation. Therefore,
the starting values given above were divided by e "t'

XR~'" to become

U~ ——R &'j'+'~ and U2 ——U~)&e"&'+'~ ~

3. RESULTS

A. Self-Consistent Potentials

The values for the 6nal self-consistent potentials
resulting from the calculations are available from the
author on request. The AP% sphere radius R, used in
these calculations was assumed to be half the distance
to the 6rst nearest neighbor, which was found to be
2.4152 Bohr units. Figure 1 shows the two self-con-
sistent potentials as the APW program would "see"
them, i.e., they have been shifted so that V,=O. The
starting values for the Noumerov numerical integration
of the radial Schrodinger equation are listed in Table I
and were used in both calculations, since they'were
both done on the same logarithmic radial mesh.

B. Energy-Band Structure and Fermi Surface

All the results presented here were obtained from
self-consistent calculations covering 2048 equally spaced
points in the Brillouin zone. The resulting eigenvalues
for all the points in 1/48 of the zone are also available
from the author on request.

Figure 2 shows the resulting E(k) curves, in the
directions of high symmetry, for both present calcu-
lations. These curves were plotted with respect to zero
Fermi energy (Et), as indicated in the figure by dot-
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TAnz, z II. Energy differences for states which indicate position and width of the sP and d bands (in Rydbergs).

Spicer
Lettingtonb

Xg-F j. Xg-Xg

Experimental
~ ~ ~ 0.205

X4 -I'I

0.147
0.147

~ ~ ~

0.162

Eg-l.2

0.026

Segall'
Burdick"
Mattheiss'
Faulkner et al. '

~Ir
~rrr

Wakohg
Snow and Waber (SW-I)h

Slater= 1
Slater= ~&

Slater= 1
Slater= 6

0.216
0.392

0.278
0.375

0.308 0.191
0.508 0.262

Present calculations
0.369 0.189
0.477 0.224

0.717
0.720

0.793
0.794

Previous calculations (not self-consistent)
0.331 0.470 0.300 0.807
0.399 0.512 0.249 0.804
0.463 0.570 0.252 0.794

0.808
0.799
0.804

Previous calculations (self-consistent)
0.386 0.499 0.245

0.183
0.143

0.159

0.228
0.111

0.223
0.149

0.197
0.154

0.240
0.123

0.232
0.159

0.064
0.045

0.056
0.089—0.019

0.020
0.102

—0.005
0.029

a Reference 7.
b Reference 8.

e Reference 9.
d Reference 10.

e Reference 11.
f Reference 12.

g Reference 14.
h Reference i.
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FIG. 2. Z(k) curves for self-consistent copper in directions of
high symmetry, for full and ~ exchange, shifted so that Ez=0.0
Ry.

~ C. W. Berglund and W. E. Spicer, Phys. Rev. 136, A1044
(1964).

dash lines labeled Ep. The d band for the Slater=1
calculation is seen to be narrower and lower in energy
with respect to the sp band then it is for the Slater= s
calculation. Energy differences for states, which indicate
the positions and widths of the sp band and d band are
given in Table II. The experimental results were taken
from the photoemission studies of Berglund and Spicer7

0.4
SLATER ~ I

0.2-

and Lettington. '
Among the previous calculations that

were not carried to self-consistency are the Green's-
function calculation of Segalis and the APW calculations
of Burdick' and Mattheiss. "Also included in Table II
are some of the results from a set of Green's function
calculations by Faulkner, Davis, and Joy." In their
calculations, they used three potentials; Vr, which
is essentially the Chodorow potential described by
Burdick'; Vzr, generated from a superposition of
atomic wave functions given by Watson"; and err,
generated from a superposition of atomic wave func-
tions given by Herman and Skillman. 2 The previous
self-consistent calculations reported are the Green's-
function calculation of Wakoh, '4 and the APW cal-
culation of Snow and Waber. ' In Table II, the energy
differences I'~5'-F1 and X5-F1 indicate the location of
the top of the d band with respect to the bottom of the
sp band; X&-X&and X4'-I'& give, respectively, the widths
of the d band and sp band; and Es Xs and Ez-l.s give-
the location of the top of the d band with respect to the
Fermi level. The energy difference Eg-1.2', which locates
the 6rst high-symmetry point with respect to the Fermi
level, is included because it has been located by
Berglund and Spicere from both direct and indirect
transitions.

The "neck" and "belly" radii of the Fermi surface
for copper from experimental results, previous calcu-
lations, and the two present self-consistent calculations
are given in Table III. The tabulated experimental

' A. H. Lettington, Phys. Letters 9, 98 (1964).' B. Segall, Phys. Rev. 125, 109 (1962).
"G.A. Burdick, Phys. Rev. 129, 138 (1963)."L.F. Mattheiss, Phys. Rev. 134, A970 (1964)."J.S. Faulkner, H. L. Davis, and H. W. Joy, Phys. Rev. 161,

656 (1967)."R.E. Watson, Phys. Rev. 119, 1934 (1960).
"Shinya Wakoh, J. Phys. Soc. Japan 20, 1894 (1965).
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results are from the de Haas —van Alphen work of
Shoenberg, "and the magnetoacoustic studies of Bohm
and Easterling, ' and Kamm. ' Among the previous
calculations are the Green's function calculations of

Segall, ' for his l-dependent potential and the Chodorow

potential; the self-consistent APW calculations of
Snow and Waber'; and the Green's-function calculations

of Faulkner, Davis, and Joy, 's for the three potentials
described above.

The neck radius of the Fermi surface does not exist
for the present Slater= 1 calculation, because the Fermi
surface does not contact the Brillouin zone boundary
in the L111) direction for that calculation. It is inter-

esting to note that a similar result was reported by
Faulkner, Davis, and Joy," for their V»r potential,
which was generated from Herman and Skillman

atomic wave functions. Their VIII potential should be
similar to that used as a starting potential in the present
Slater = 1 calculation.

C. Density of States

I

SLAT
2.5—

2.0—

I.5—

I.O—

0.5—

0
2.5—

~ 2.0-Ol-

a l

CO
LUI-
K l.0-
CO

Ef

Figure 3 shows the averaged density-of-states curves

resulting from the present Slater=1 and Slater=6
self-consistent APW calculations, and also the experi-
mental density-of-states curve resulting from the
photoemission studies of Spicer." All three of these
curves are given with respect to the Fermi level at
zero energy. The main points of comparison are the
width and the location of the d band with respect to
the Fermi level. The d band is described by that portion
of the experimental curve between —0.16 and —0.39
Ry. Note that in all three curves there are three major
peaks in the range of the d band.

4. DISCUSSION

In general, both the Slater=1 and Slater=6 calcu-
lations give results that are in reasonably good agree-
ment with those previously reported. However, as was
predicted in SW-I, the results from the present Slater =

~

calculation are in much better agreement with experi-
mental findings than are the results from the present
Slater=1 calculation. The values listed in Table II
show that the bandwidths and relative locations with
respect to the Fermi level for the Slater= 6 calculation
are in excellent agreement with the tabulated experi-
mental results, except for the d-band widths. However,

"D.Shoenberg, Phil. Mag. 5, 105 (1960).
16 H. V. Bohm and V. J. Esterling, Phys. Rev. 128, 1021 (1962)."G.N. Kamm, Bull. Am. Phys. Soc. 11, 446 (1966).
~ W. E. Spicer, in International Collogeilm on Optical Properties

and Electronic Strnctnre of Metals and Alloys, Paris 13—16 Sep
tember 1965. Proceedings, edited by F. Abeles (North-Holland
Publishing Co., Amsterdam, 1966).
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FIG. 3. Density-of-states curves from the two present self-
consistent calculations and that obtained from photoemission
studies by Spicer (see Ref. 18).

the d-band width given by Spicer has approximately
the value that would be obtained if the d band at half-
maximum on his experimental curve given in Fig. 3
were measured. On the other hand, the energy difference
X5-Xj represents the width of the d-band nearer the
base, which on Spicer's curve is about 0.23 Ry.

Further evidence of the excellent agreement of the
Slater= ~ results with experiment can be seen in the
density-of-states curves given in Fig. 3. Not only are
the d-band widths and locations in excellent agreement,
but the three main peaks in the d band align very
nicely with those in Spicer's experimental curve. The
peak on Spicer's curve at —0.5 Ry does not appear in
the calculated curve. However, Spicer's curve is an
optical density of states and there is some question as
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TABLE III. Summary of the present and previously published values for the neck and belly radii
of the Fermi surface for copper (in L ').

Shoenbergf'
Bohm and Esterlingb
Kamm'

Experimental
0.28
0.27

~(IO0)

1.40
1.41
1.44

1.38
1.30
1.31

&iioo)/&iso)

1.014
1.085
1.099

Segall~
l-dependent
Chodorow

Snow and Waber (SW-2)'
Slater =1
Slater = -',

Faulkner et al. '

Previous calculations

0.28
0.20

0.22
0.38

0.25
0.29

1.39
1.43

1.36
1.44

1.43
1.45

1.26
1.29

1.28
1.14

1.30
1.28

1.10
1.11

1.062
1.263

1.100
1.133

Slater= 1
Slater = —',

Present calculations
(does not exist) 2.36

0.31 1.39
1.30
1.29

1.044
1.077

a Reference 15.
b Reference 16.
o Reference 1'l.

d Reference 9; belly radii determined from Fig. 8 of Segall's paper.
e Reference 1.
& Reference 12.

to whether this peak should appear on the calculated
curve.

The neck radius of the Fermi surface for the present
Slater= —, calculation, as given in Table III, is slightly
larger than has been reported from experimental studies.
It is however, in much better agreement with experi-
ment than either the nonexistent neck radius of the
present Slater= 1 calculation or the neck radii reported
in SW-I. The belly radii in both the (100) and (110)
planes for the present Slater=-,' calculation are in good
agreement with the experimental results of Bohm and
Kasterling, " and Kansan. '~ The ratio of the two belly
radii which is a measure of the asphericity of the Fermi
surface, for the present Slater= 6 calculation is also in

good agreement with recent experimental 6ndings.

S. CONCLUSiONS

It is concluded that the self-consistent APW method
of calculating the energy-band structure of metallic
copper, with the exchange reduced to 6 of the Slater
free-electron approximation, yields results that are in
excellent agreement with experimental results, as was
predicted by SW-I.
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