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disuse intensity at the ordered superlattice points of
100, 110, etc., is also con6rmed.

The diffuse scattering data of Spruiell and Stansbury
on Ni4Mo is well reproduced by the theory by setting
Vs/Vi ——0.300. This ratio, while not predictable from
the ordered structure, is consistent with it. In addition,
for completeness, the recent results of Mozer, Keating,
and Moss on CuNi are brieQy summarized, where it is
shown that the theory applies as well to clustering
systems as it does to ordering ones.

Finally, the case for a long-range oscillatory inter-
action in P-brass is reexamined. We show that only at
the ~ ~ 2 position in reciprocal space will the eGect of

an interaction beyond V2 be remarkable. It is thus
suggested that very careful neutron-scattering data be
collected above T, at that position in order to test for
the presence of longer-range interactions.

Ke hope by these papers to have demonstrated the
usefulness of an approximate theory in generating some
interesting information on the pair interactions in a
variety of binary alloys. As the techniques for incorpo-
rating longer-range interactions into the more exact
theories are developed, these will in turn demand more
exacting data on binary alloys. It is thus our further
hope that a systematic collection of such data will be
forthcoming.
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Experiments have been reported in which liquid argon and xenon have been shock-compressed up to two
to three times their initial densities. An inspection of the two sets of data indicates a surprisingly large
compressibility in xenon at high temperatures and compression. The results of calculations for argon and
xenon indicate that the energy gap between the 6lled valence band and empty conduction band in xenon
is decreasing rapidly with increasing density. Using these results, a theoretical Hugoniot curve has been
calculated that is in good agreement with experiment. On the basis of these results, we conclude that the
highest pressure xenon points, which are at 500 kbar and 18 000'K, represent a metallic-like form of xenon
that is similar to cesium. This state is one in which the conduction bands are partially ulled as in a metal,
and it has been reached by a combination of temperature and compression.

I. INTRODUCTION

' 'N recent years, a considerable amount of interest has
~ ~ centered on the subject of the conversion of insula-
tors to metals. ' ' This paper will discuss the possibility
of such a conversion occurring in a highly compressed
inert gas system.

A classic example of an insulator is an inert gas solid.
It has a filled valence band, and its lowest excited states
are from 8 to 12 eV higher in energy. Following tradi-
tional thinking, to convert an inert gas into a metal it
would be necessary to compress it until the energy gap
between the valence and conduction bands became
sma/1 or disappeared, resulting in a transition to a
metallic state.

A transition to a metallic state from an insulator has
never been observed in an inert-gas system, because the
compressions necessary to close the gap between the
filled and empty bands have never been attained. How-
ever, with the advent of explosive shock techniques, it

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' N. F. Mott, Phil. Nag. 6, 287 (1961}.' H. G. Drickamer, Solid State Phys. 17, 1 (1965).

has become possible to compress the liquid inert gases
up to two to three times their initial normal densities.
Recent shock experiments in argon and xenon have
been reported in the literature'4 and have been dis-
cussed in the previous papers in this series. ' '

The present report will show that as a result of high
temperatures and compressions, compressed xenon is
converted to a metal-like state in which electrons from
the filled 5p valence band have been promoted to an
unllled 5d-l.ike conduction band, resulting in a material
which is similar to cesium at very high pressures.

II. REVIEW OF EXPERIMENTS

Figure 1 shows the experimental Hugoniot for argon,
and Fig. 2 the experimental xenon Hugoniot. In a
previous paper, ' the theoretical curve A in Fig. 1 was
determined by the Monte Carlo method of statistical
mechanics, using the pairwise additive intermolecular

~ R. N. Keeler, M. van Thiel, and B.J. Alder, Physica 31, 1437
(1965).

4 M. van Thiel and B.J. Alder, J. Chem. Phys. 44, 1056 (1966).
I M. Ross and B.J. Alder, J. Chem. Phys. 46, 4203 (1967).' M. Ross and B.J. Alder, J. Chem. Phys. 47, 4129 (1967).
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FIG. 1. Filled circles are experimental argon Hugoniot points.
Curve A (solid line) is the theoretical argon Hugoniot with no
electronic excitation. Curve 3 (dashed line) includes electronic
excitation. Temperatures along the Hugoniot are signified by
g, 22 000'K; 0, 8000'K; ~, 2000'K.
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where r*=3.85 A, e/)'r = 122'K, and n = 13.5. The curve
in Fig. 2 was calculated for xenon with r*=4.47 A,
e/k=235'I, and n=13.5, and was obtained by corre-
sponding states scaling from argon using the ratios of
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FIG. 2. Filled circles are experimental xenon Hugoniot points.
Bars indicate experimental error. Curve A is the theoretical xenon
Hugoniot that obeys corresponding states with the argon Hugo-
niot; T is the TFD curve. Temperatures along the Hugoniot curve
are signified by V, 30000 K; +, 18000'K; Q, 12 000'K;
0, 8000'K.

the triple-point measurements. The solid part of this
curve denotes the range of the argon experiments of
Fig. 1 also scaled up to xenon by corresponding states.
The over-all agreement of theory with experiment is
very good in the case of argon, whereas agreement with
the xenon measurements, though good at low pressures,
becomes poor at high pressures. Since argon and xenon
are inert gases with closed-shell configurations, one
would expect to observe approximately corresponding
behavior in their thermodynamic properties. While some
deviations might be anticipated in the two Hugoniots
as a result of the possible nonapplicability of correspond-
ing states under these conditions, the large observed dis-
crepancies between the two sets of experiments would
not be expected. Qualitatively, it is possible to account
for these differences by the following considerations. It
is shown in Fig. 1 that the maximum temperature
attained along curve A is about 1 eV in argon and would
be 2 eU in xenon if it had obeyed corresponding states.
The first excited state of atomic xenon is 8.4 eV as
compared to 11.6 eV in argon. It is, therefore, to be
expected that as a result of the high temperatures,
xenon will undergo considerably more electronic excita-
tion than argon, and its Hugoniot will be softer as a
result of absorbing energy in internal degrees of freedom
rather than as thermal pressure.

In a previous publication, ' the eBect of electronic
excitation was treated quantitatively by using the
temperature-dependent, Thomas-Fermi-Dirac (TFD)
model of the atom. The nuclear motion contributions to
the thermodynamic properties were calculated using
the Lennard-Jones-Devonshire (LJD) cell model. r A
severe limitation of the TFD theory is that, because it
is based only on electrostatic theory and Fermi-Dirac
statistics, it has no band structure or region of forbidden
energy states, but instead allows electrons to be excited
into a continuous series of energy levels immediately
above the ground state. Consequently, the TFD model
correctly predicts the average Hugoniot of argon and
xenon, but fails to show some of the more subtle be-
havior, such as the effects of stripping oB shells of elec-
trons when the temperature becomes comparable to the
gap in energy between the filled and empty bands. This
is seen in Fig. 2 where the TFD curve for xenon, which
was calculated in the previous publication, ' is shown by
the dashed curve T. The pressure of curve T is too low
at low pressures because the electrons are excited into
the low-lying levels just above the valence band at
relatively low temperatures, and there is no bending
over at high temperatures as the result of the sudden
onset of electronic excitation. Instead, one observes a
gradual behavior as the Hugoniot goes from low to high
temperatures, which is in good average agreement with
xenon. This averaged-out type of agreement is a typical
characteristic of the Thomas-Fermi theory. The TFD

' J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Ls~qu&s (John Wiley gt Sons, Inc., New York,
1954).
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curve is not shown for argon, but is in good agreement
with the experiment. In order to overcome this defect of
the TFD model, it is necessary to introduce into
Hugoniot calculations energy levels which are discrete
and, therefore, more realistic. For this purpose, the
signer-Seitz model was used to calculate the energy
levels of an electron moving in the crystal potential of
the TFD compressed atom. These calculations were
made over a large range of volumes, and are described
in Sec. III. Section IV discusses the thermodynamics of
a system of electrons with a band structure that is a
function of volume. In Sec. V, thermodynamic equa-
tions derived in Sec. IV are combined with the energy
levels calculated in Sec. III and are used to calculate
Hugoniots for argon and xenon.

III. ELECTRONIC ENERGY LEVELS
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In this section, the signer-Seitz model will be used to
calculate discrete electronic energy levels for the TFD
compressed atom as a function of volume, using the
TFD crystal potential.

In the signer-Seitzs method, the Schrodinger equa-
tion is solved in a spherical cell of atomic volume, with
the boundary conditions on the wave function and its
derivative as imposed by the Sloch condition. Solutions
of the Schrodinger equation were obtained for only the
points of highest symmetry in the Brillouin zone at
k=0. For these states the boundary conditions on the
one-electron radial wave function, f(r), at the cell
surface r= E can be shown to be'

f'(R)= 0, l=0, 2, 4, even,

f(R) =0, l=1, 3, 5, odd,

where f'(R) is the derivative of f(r) at R and l is the
angular momentum quantum number. The alternate
solutions f'(R) =0, with l odd, and f(R) =0 with l even,
are often taken to give estimates of the energy at the
maximum k values in a band. "These latter solutions
do not enter into any of the quantitative considerations
of this paper, but are useful in estimating the width in
energy of the valence bands. The crystal potential of the
electron used in solving the Schrodinger equation was
determined from the TFD model of the solid calculated
for the same atomic volume as used in the signer-Seitz
calculations. As a result of both models using identical
cells, it was possible to calculate a new potential energy
and electron density for each density. The crystal
potential was of the form

U(r) = V(r) —6((3/Str) p(r) Jts,
where p (r) is the Coulombic interaction of a test charge
with the nucleus and all of the electrons as calculated by
TFD and does not include the exchange as it is calcu-

s F. ~j8ner and F. Seitz, Phys. Rev. 46, 1002 (1934).». Brooks, Nuovo Cimento Suppl. 7, 186 (1948).
'e J. C. Slater, Phys. Rev. 45, 794 (1934).

FIG. 3. Comparison of argon crystal potential due to Mattheiss
(dashed curve) and that derived from TFD and used in present
work (solid curve) at V of 22.6 cc/mole. r is in atomic units.
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FIG. 4. Calculated energy levels of argon with atomic notations.
Solid curves are solutions for k =0.Dashed curves show bandwidth
based on the estimate of the energy at the maximum k value.

"J.C. Sister, Qttoltgttt Theory of Atomeo Strttetlre (McGraw-
Hill Book Co., New York, 1960), Pol. 2.

'~ F. Herman and S. Skillman, Atotnic Strectgrc Cglcalutioes
(Prentice-Hall, Inc., Englewood Clitfs, N. J., 1963)."L. F. Mattheiss, Phys. Rev. 133, A1399 (1964).

lated by TFD. Instead, the exchange was added sepa-
rately. It is given by the last term which is the usual
Hartree-Fock-Slater exchange term, " and p(r) is the
electron density calculated by TFD. The TFD calcula-
tions have been discussed previously. In addition, it has
already been shown' that p(r) for atomic argon is in
good agreement with p(r) calculated by Herman and
Skillman" using a self-consistent Hartree-Fock-Slater
method. The TFD calculated p(r) does not show the
detailed shell structure, but does correctly predict the
averaged behavior. Figure 3 shows the crystal potential
used for argon at r=22.6 cc/mole (solid curve) com-
pared to one used by Mattheiss" (dashed curve) in an
augmented-plane-wave (APW) band calculation. The
results of the calculations are shown in Figs. 4 and 5,
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Fro. 5. Same as Fig. 4 but for xenon.

and are based on taking V(r) =0 at the cell boundary.
In discussing the energy levels, atomic notations are
retained. The calculations take no cognizance of crystal-
field splitting and they assume a single s state, the

p state to be threefold degenerate, and the d band to be
fivefold degenerate, as in the free atom.

Before analyzing the results, it is worthwhile to
digress slightly and discuss the electronic transition
found in cesium so that the properties of xenon and
cesium may be best interrelated. In 1947, Bridgman"
reported that cesium underwent a first-order phase
transition without a change in crystal structure (elec-
tronic transition) at a molar volume of 35 cc/mole, twice
normal density, and a pressure of 42.5 kbar at 25'C.
The interpretation of this transition was first presented
by Sternheimer'5 on the basis of a signer-Seitz model.
He showed that at normal density (70 cc/mole) the
lowest conduction band was s-like and the next lowest
d-like. Under compression the empty d-like bands de-
creased in energy relative to the partly 6Hed s-tike,
crossing the Fermi surface near 35 cc/mole, thereby re-
sulting in the observed transition by promoting s-like
electrons into the d-like conduction bands.

In the calculations for xenon shown in Fig. 5, the 6s
band is the lowest conduction band at normal density
and lies 6.8 eV above the valence band. The bottom of
the 6s and 5d bands cross at about 27 cc/mole. This is
the transition which cesium undergoes when the upper-
most 6lled 6s levels at the Fermi surface intercept the
5d band, and, therefore, the observed transition occurs
at a somewhat larger volume (35 cc/mole) than that
predicted by the simple crossing of the two bands. This
has been discussed by Sternheimer, and our xenon
energy levels are in agreement with his cesium calcula-
tions. The present calculations predict that the valence
band will intersect the conduction band at about 11.7
cc/mole, and a pressure at O'K of about 0.7 Mbar based
on TFD calculations. In argon, the 4s band at k=O is
the excited state of the lowest energy and lies 9.9 eV
above the top of the valence band which is the 3p (4=0)
state. The calculations predict that the 3d and 4s levels

'4 P. W. Bridgman, Phys. Rev. 72, 533 (1947); Proc. Am. Acad.
Arts Sci. 76, 55 (1948)."R.Sternheimer, Phys. Rev. 78, 235 (195P).

will cross at a volume of 11.5 cc/mole. This is then the
approximate region of volume at which potassium
wouM be expected to undergo an electronic transition
similar to the one observed in cesium. This transition
has never been observed in potassium because the
necessary compression of four times the initial density
has never been achieved. At 4.5 cc/mole the conduction
and valence bands cross, and argon should become
metallic. Unfortunately, compressions of argon to this
density and a pressure at O'K based on TFD calcula-
tions of about 4.4 Mbar are far beyond the capability of
static techniques, and even well outside the range that
can be reached by explosive techniques.

Baldini" has measured the ultraviolet spectra of Ar,
Kr, and Xe. For argon he reports an absorption band
edge at 11.2 eV, a lowest energy peak at 12.0, and by
use of the Wannier exciton theory, he estimates the
conduction band to be at 14,3 eV. In xenon these respec-
tive values are 8.0, 8,4, and 9.26 eV. The lowest energy
peaks in all three so~.ids are in good agreement with the
lowest excited state of the free atom. In other theoretical
calculations using considerably more sophisticated
Inethods, Knox and Bassani, '7 using an orthogonalized-
plane-wave (OPW) method, and Mattheiss, "using an
AP% method predicted, respectively, that the lowest
conduction bands will be the s-like I'~ and will lie 12.4 eU
(Knox) and 13.3 eV (Mattheiss) above the valence
band. Using a somewhat more elaborate form of the
signer-Seitz model than used here, Gandel'man" used a
Thomas-Fermi potential to estimate when argon would
turn metallic. This model predicts a normal density
band gap of 6 eV, which is from a 3p to a 3d state in
disagreement with the works cited above. He predicts
metallization in argon to occur at about 7 cc/mole and
1.29 Mbar at O'K. In work to be reported, "APW cal-
culations have been made for argon and xenon. at high
compressions and the results are consistent with those
in Figs. 4 and 5.

In the next section the thermodynamic treatment of
the electron system is based on a spherical wide-band
approximation. Figures 4 and 5 will clearly show this
to be a good approximation in the high-pressure, high-
temperature region of the Hugoniot where signi6cant
amounts of electronic excitation will be shown to occur.
The APW calculations are in qualitative agreement with
the estimated signer-Seitz bandwidths.

The purpose of the calculations in this section is to
interpret the properties of a highly compressed Quid at
temperatures of 1 to 2 eV. Therefore it will be assumed
that the energy levels for argon and xenon depend only
on density and not on temperature or on any specific
atomic order (this assumption is implicit in the Wigner-

' G. BaMini, Phys. Rev. 128, 1562 {$962)."R.S. Knox and F. Bassani, Phys. Rev. 124, 652 (1961).' G. M. Gandel'man, Zh. Eksperim. i Teor. Fix. 48, 758 (1965)
LEnghsh transL: Soviet Phys. —JETP 21, 5P1 (1965)j."M. Ross (to be published).
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Seitz model), and thus may also be applied to these
Auld s.

The signer-Seitz calculations shown in Figs. 4 and 5
are calculations made with the simplest model of a so).id
and only at the highest symmetry points. Consequently,
only very limited information can be obtained as to the
shape of energy bands and their changes with volume.
The proper calculations can only be made by using
more sophisticated approaches, and the %igner™Seitz
calculations can in no way replace them. However, these
energy levels do constitute a signiGcant improvement
over the TFD model of a continuous set of energy
levels, and as compared to the more sophisticated band
calculations involve a very small amount of computa-
tional eGort. In addition, the experimental conditions of
a Quid at high temperatures is hardly compatible with
the usual band-theory assumptions. Consequently, the
present approach should prove useful in equation-of-
state calculations over wide density ranges where the
eGects of gaps in the energy levels must be considered.

E,(V,k)= E( V)+ 'k'k/2m, ~,

E (V k) =E„(V) k'k'/2srt. *.—
(2a)

(2b)

N(E) is the number of states with energy between E
and E+dE and is given for the conduction bands by

N(E) =N)E, (V,k)g= r4(t/g)kV(2sN, *)st'

XLE—E,(V)jt" E)E,(V) (3a)

and for the valence bands by

N(E) =Nt E„(V,k)j=4sr(g„/k') V(2sst„*)et'

X t E„(V)—Ej" E&E„(V). (3b)

The forbidden range of energy levels is dined by

N(E) =0, if E,(V) &E&E.(V).

The symbols g, and g, are the orbital degeneracies of
the bands, V is the molar volume, and m, * and m, * are
the eBective masses of the electrons in the respective
bands.

The free energy for this system of electrons is

IV. STATISTICAL THERMODYNAMICS OF
NONINTERACTING ELECTRONS WITH

FORBIDDEN ENERGY LEVELS

In this section we will consider the statistical thermo-
dynamics of a system of noninteracting electrons in
valence and conduction bands which are well repre-
sented by spherical energy surfaces and in which the
band edges are a function of volume. For this system,
let E,(V) and E„(V) be the conduction and valence
band edges; then the energy levels in the two bands are

given by

given by'o

A, =Np, —k (in/1+et 's)) N(E)dE, (4)

where N is the total number of electrons and y is the
chemical potential. By direct differentiation of (4) it
can be shown that the pressure P, and energy E, are
given by

P, (T,V) =P*(T,V)+P'(V),
P*(T,V) = —[BAE(V)/8 V]r,~,N. (T,V) (3)

+P, (T,V,N.)+Prr (T,V,N, )

E,(T,V) =E*(T,V)+E'(V),
E*(T,V) =DE(V)N, (T,V)+E,(T,V,N, ) (6)

+Err (T,V,N,),
where hE(V) =E,(V) E.(V), wh—ich is the difference
in the energy of the valence and conduction band edges.

The terms Pe(V) and E (V) are the pressure and
energy of the filled valence band at O'K; N, (T, V) is the
total number of electrons in the conduction bands; and
P, (T,V), Prr(T, V), E,(T,V), Err(T, V) are the pressures
and energies due to the electrons in the conduction
bands and the holes in the valence bands. By the usual
method as described by Fowler" to determine the
number of conducting electrons in a semiconductor, one
can show that

/2srkT 't'
N. (T,V)= (2,gg)' 'lt

h'

Xexp—
DE(V)-

(7)

and results from the Boltzmann limiting case of small
concentrations of excited electrons. The terms A, (T,V),
P,(T,V), and E,(T,V) refer only to electronic properties
and do not include the contributions from the nuclear
motion which will be included in the Hugoniot
calculations.

In Sec. V, the statistical thermodynamic formalism
developed here will be combined with the energy levels
of the previous section in a direct calculation of the
Hugoniot.

Before proceeding further, it will be instructive to
discuss certain qualitative aspects of the physics in-
volved by comparing the experimental Hugoniots with
the theoretical energy-level curves of Figs. 4 and 5. The
smallest volume achieved along the experimental argon
Hugoniot is 13.8 cc/mole, and at this volume the energy
gap is unchanged from its initial value and the tempera-
ture is still small in comparison. In addition, the tran-
sition is from a threefold-degenerate p state to a single

se E. C. Stoner, Phil. Mag. 28, 257 (1939)."R. H. Fowler, Statistica/ Mechanics (Cambridge University
Press, Neer York, j.936).
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4s conduction band. However, in xenon in the volume
range of 18 to 22 cc/mole where the Hugoniot is bending
over, the 5d level has dropped below the 6s so that the
lowest transition is to a fivefold-degenerate d state, and
the energy gap is decreasing rapidly with decreasing
volume. This will lead to enhancement in the electronic
excitation, but in addition the (BAE/BV)r, ir, term in
(5) will contribute a negative term to the total electron
pressure. As a result, one can anticipate that the result-
ing xenon Hugoniot will be signi6cantly affected by the
shape of the band, while argon will not.

V. HUGONIOT CALCULATIONS

The shock Hugoniot curve is obtained as a solution of
the equation

E(T,V)—E(Tp, Vp)

= ALP(T, V)+P(To Vo)7(Vo —V) (8)

The subscript 0 refers to the initial conditions which
were Vp ——28.46 cc/mole, Tp ——86'K for argon, and
Vp=44. 6 cc/mole, To=165'K for xenon. Both sub-
stances are initially in the liquid in corresponding states
with one another at P(Tp Vp) 1 bar.

Using (6) and adding to it the contribution to the
energy from nuclear motion E(T,V)„,

E(T,V) =EP (T,V)+Eo(V)+E(T,V) .
We may then write

E(T,V) E(T„V,) =—[E'(T,V) E*(T„V,)7—
+Ão(V) —Eo(Vo)7+%'(T, V) —E(To,Vo)7' (9)

The first term on the right-hand side of (9) is the
change in energy due to electronic excitations and is,
therefore, equal to E*(T,V), since the system is in its
electronic ground state at To and Vo. The next term
represents the change in electronic energy at O'K due
to compression and is therefore equal to the change in
lattice energy on compression at O'K. The last term is
the change in thermal energy due to nuclear motion.
Consequently, these two terms are simply the change in
total energy on compressing and heating the system in
its electronic ground state from (Tp, Vp) to (T,V). This
has been calculated by using the LJD cell model. ' Like
the TFD and Wigner-Seitz models, the LJD cell model
uses a spherical cell whose volume is that of the atomic
volume. The LJD is a one-particle model and the atom
moves in a potential Geld obtained by summing the
pair potential over all its stationary neighbors and then
taking its spherical average. The atom is taken to be
in its electronic ground state. The energy of the system
of E atoms in the LJD model is

8 lnQi
E(T,V)„=;XE(V)+ ,'eke&-kT'—

aT &v

= U(V)+E(T, V)g„, ,i,

where Qi, the one-particle partition function, is

Qi= exp( —
t E(r)—E(V)7/kT}dv.

The integration is taken over the volume of the cell and
E(r) is the sphericalized potential field calculated using
the pair potential of (1). r is the distance of the atom
from the center of the cell. —,'XE(V) is the lattice energy
and represents the energy of the system at volume V
when all atoms are located at their respective lattice
sites and the term in brackets is the thermal energy of
the system.

Then the change in electronic energy or lattice energy
on compression at O'K is

(E'(V) —E'(Vp)) = U (V)—U(Vo)
and

(E(T,V) E(To,V—o))„=(E(T,V) E(T„V—,)). .. , .
We may then write (9) as

E(T,V) E(Tp, Vo—) =E'(T,V)+E(T,V)Lin
E(TO, Vo) L JD (10)

where

LE'(V) E'(V )o7+t E( TV) E(To Vo)7
=E(T,V) r.zn —E(To, Vo) Lm.

Adding the contribution to the pressure due to nuclear
motion P(T,V)„ to (5) gives us

P(T,V) =PP(T, V)+Po(V)+P(T, V)„.
In the LJD model the pressure of the solid may be

written as

P (T,V) Lgn ——P (V)+P (T,V),h„m,i.

The term P(V) is the pressure of the lattice at O'K and
P(TgV)t, homal ls the thermal contribution to the pres-
sure. Since Po(V) is the pressure of the solid at 0'I,
then

P(T,V) =PP(T,V)yP(T, V)„.
In a previous publication5 it was shown by com-

parison to exact Monte Carlo calculations that for the
potential (1) the cell model predicts a Hugoniot in
good agreement with the Monte Carlo calculations and
is, therefore, a reliable method of calculating the
Hugoniot and thermal properties. Using (1), (10), and
(11) in (8), Hugoniot calculations were made and the
results are shown in Fig. 6. The Hugoniot curves were
calculated from the Wigner-Seitz results of Figs. 4 and 5
and by adjusting the energy of the Bp and 5p valence
states so that the transitions to the lowest excited states
would agree with the conduction band gap as deter-
mined from the optical spectra using exciton theory.
It was also assumed that m, ~ and m„~ were equal to the
electron mass ns, . In all. of the calculations the electron
densities were smalt enough and temperatures suKi. -
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ciently high such that the conduction electrons and holes
could be treated as weakly degenerate gas. The calcula-
tions for argon in Fig. 1 (dashed curve B) show that the
inclusion of electronic effects has negligible inQuence on
its Hugoniot. However, the calculations for xenon,
curve 3, Fig. 6, show large electronic effects, and the
results are in good agreement with experiment (&0.5
cc/mole). If no adjustment had been made in the band
gap and the calculated energy levels had been used then
the predicted Hugoniot would have been in agreement
with the lower part of the highest pressure points rather
than with the upper part. Also shown in Fig. 6 is a
Hugoniot curve C for which the term (r)EE//)V) r,~, in
8"(T,V) was neglected, but otherwise, the same calcu-
lation was carried out as in curve B. Curve C, while an
improvement over curve A which includes only inter-
molecular forces and neglects any electronic excitations,
still fails to predict the experimental result. The
significance of this point will be expanded upon in the
discussion. The results of the calculated xenon Hugoniot
of curve B are shown in Table I. The hE(V) listed is
the adjusted band gap. The value E,(E) near the
highest experimental point is only 0.15 electron/mole in
all 6ve bands, justifying the use of Boltzmann statistics.

All the Hugoniot calculations were made using the
same intermolecular force law (1), thereby assuming
that these forces do not change signi6cantly as a result
of electronic excitation. This is probably a good ap-
proximation for small excitations, but is dificult to
assess for the conditions of the experiment. Rather than
become involved in arbitrary adjustment, these forces
have been kept as unchanged.

VI. DISCUSSIONS

It is clear from Table I that the bending over of the
xenon Hugoniot is coincident with the onset of signi6-
cant amounts of electronic excitation. As discussed
previously, this excitation decreases the amount of
energy going into thermal pressure and results in a
softer Hugoniot. However, a comparison of curves 3
and C shows that this effect alone is insufhcient to
account for the experimental results. It is also necessary
to include the effect on the pressure of the decrease of
the energy gap with compression, BEE/r)V. At the top
of the valence band, —r)E.(V)/r) V is large and positive,

600

500—

400—

I

~ 300—

200—

100—

I

18
I

20 22

V cc/mole

l

24 26

FIG. 6. Filled circles are experimental xenon Hugoniot points.
Bars indicate experimental error. A is the theoretical xenon
Hugoniot that obeys corresponding states with the argon Hugq-
niot, and 8 is the theoretical Hugoniot using the band results.
C excludes effects of —BnZ/8V on pressure. Temperatures along
the Hugoniot curve are signi6ed by ~, 30000'K; +, 18 000'K;
g, 12 000'K) 0, 8000'K.

while in the Sd band this derivative is negative. The
result is a large nega. tive contribution to the total pres-
sure when an electron at the top of the valence band is
excited into the Sd band. This decrease in the pressure
amounts to 15% of the total pressure at 18.3 cc/mole.
However, because of the therma, l pressure of the free
electrons, the total decrease only amounts to 9%.

The large value of r)E, (V)/rlV or broadening of the
5P band under pressure is a manifestation of the large
repulsive forces between xenon atoms at small inter-
atomic separations. Consequently, excitation of elec-
trons into the Sd state, whose energy is decreasing with
compression, has the effect of removing some of this
repulsion, thereby lowering the pressure. This decrease
in repulsion may be thought of as a decrease in the
effective core size of the atoms or of a softening in the
effective intermolecular force. For example one could
have, in a purely phenomenological manner, interpreted
the xenon Hugoniot in terms of a softening in the
repulsive intermolecular force rather than in terms of
electronic effects.

TABLE I. Summary of results.

T ('K)

4000
8000

12 000
16 000
18 000
18 500
19000
20 000

(cc/mole)

25.70
23.88
22.40
20.30
19.00
18.66
18.31
17.62

sE(v)
(eV)

9.23
8.89
8.53
7.86
7.34
7.19
7.03
6.69

&c
(moles)

~10—&

0.008
0.015
0.074
0.134
0.153
0.174
0.222

p
(kbar)

98.8
182
271
396
484
509
536
594

—(BAR/8 V)S,
{kbar)

0—0.2—39—26—56—67—79—iii

pg
(kbar)

0—0.1—2.5—16—35—41—49—68

(kcal/mole}

20.13
42.9
69.6

113
146
156
166
189

(aE)JV .
(kcalimole)

0
0.2
2.9

13
23
25
28
34

(kcal/mole)

0
0.2
4.0

20
37
43
48
61
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In contrast to the results of the TFD theory, curve 8
predicts the correct shape of the Hugoniot because it
includes a gap in the energy levels, and thereby predicts
negligible excitation at low temperatures and a rapid
onset of electronic excitation at the higher temperatures
and compressions. Consequently, the present treatment
is a more realistic approach to the calculation of in-
sulator or semiconductor Hugoniots than could be
obtained from TFD theory. At the highest pressures,
curve B and the TFD curve are crossing. Since the TFD
curve predicts averaged eRects, it would be expected to
crisscross an exact calculation a number of times as the
pressure and temperature ionize more electron shells.
Eventually, at very large compressions, the TI'D will
become exact.

One must conclude from these results that the highest-
pressure xenon Hugoniot points represent a form of the
material significantly different from that of the usual
loosely bound inert-gas insulator. This state is one
in which the 5d conduction bands are partially filled
as in a metal and has been reached by the combination
of temperature and compression. By compression alone
at normal temperatures, the system would have to be
compressed by a factor of about 5.5 from the initial
conditions, before electrons could be promoted into the
conduction band. However, because of the high tem-
peratures achieved by the shock process, significant
numbers of electrons can be excited into conduction
bands so as to enable the electron promotion to take
place at a significantly smaller compression.

The transitions in cesium and the bending of the
xenon Hugoniot both occur as a result of the same
qualitative change in their band structure, which is the
decrease in energy under compression of the d-like con-
duction levels of the two materials. In cesium at 35
cc/mole, these levels fall below the Fermi surface
promoting electrons into them, and the sharp increase
in the number of available states of decreasing energy
leads to the observed 6rst-order phase transition. Under
continued compression, as in shocked xenon, the d-like

states become the lowest in the conduction band. These
states continue to lower their energy with compression,
resulting in a decrease in the energy gap above the
valence band. This decreasing band gap along with the
high temperatures generated in the shock experiments
promote enough electrons into the d-like conduction
band to convert xenon into a metal-like material, which

is similar to cesium.
The question naturally arises as to whether this type

of electronic eRect under shocked conditions may have
occurred or can occur in other Inaterials. The alkali
halides are insulators with closed-shell atoms like the
inert gases, and Kormer et u/. 22 have shock-compressed
some of these to pressures of several megabars. One
of the alkali halides studied, KCl, appeared to undergo
a transition at a compression of 2.5 times its normal
density, and a pressure of about 1.5 Mbar. Their data
suggest the possibility of this transition being of erst or
second order; however, the experimental scatter is much
too large to be definitive. These workers have observed
transitions similar to KC1 in KBr, NaCl, LiF, and
possibly in CsI, but the data for the latter are somewhat
incomplete. KC1 has an initial molar volume of 37.6
cc/mole. If we assume each atom occupies an equal
volume then the "atomic" volume per atom will be
18.8 cc/mole. When compressed 2.5-fold, this "atomic"
volume will be 7.5 cc/mole. Since KC1 is isoelectronic
with argon, we may expect that the two materials
will have qualitatively the same band structure. At
normal densities, the conduction band gap in KCl is
'7.5 eV so that if the 3p levels in Fig. 4 are adjusted
to agree with experiment, then at the "atomic" volume
of 7.5 cc the band gap is 4.9 eV to the 3d state and the
band gap is closing rapidly. Since temperatures in this
pressure range are of the order of 2 eV, then DE/2k'

1.2, and using (7) this leads to a predicted conduc-
tion-electron concentration of approximately 0.25 elec-
ton per atom or one conduction per two KCl molecules.
Considering that the band gap is rapidly closing at
these densities, it is even possible that the gap closing
has been experimentally achieved. Consequently, one
might expect some anomaly in the shock Hugoniot
curve at this density and it would appear Kromer et ul.
may have shocked some of the alkali halides into a
metal-like state. This argument is, of course, contingent
on the assumption that the band structure of an alkali
halide under large compression is qualitatively like its
isoelectronic inert gas.

ACKNOWLEDGMENTS

VVe wish to acknowledge many valuable conversations
with Dr. Hemi J. Alder, and to thank Dr. Frank
Herman and Dr. Edwin B. Royce for reading the
manuscript.

"3.B. Kormer et ul. , Zh. Kksperim. i Teor. Fiz. 47, 1202
(1964) LEnglish transl. :Soviet Phys. —JETP 20, 811 (1965)g.


