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It has been previously established on the basis of an Ising model of alloy ordering (part I of this series)
that the observed maxima of short-range-order difFuse scattering in disordered alloys mark the positions
of the minima of V(k), the Fourier transform of the pairwise interatomic potential V(r). It was suggested
in I that the superlat tice spots of the ordered state should occur at these same positions. This would establish
a consistency requirement connecting the ordered and disordered configurations. We prove here that this
is a sufhcient but not a necessary condition, and we derive the full set of necessary conditions. Ke also
show that for most of the difFuse maxima locations observed in bcc and fcc alloys, it is possible to establish
the ordered configuration required by the disordered phase, or conversely to use a knowledge of the ordered
configuration to restrict the possible choices of V(r) in fitting the disordered-phase scattering data. The
linear approximation for correlation functions in binary alloys presented by the authors in I is compared
quantitatively with the more exact but less general formula of Fisher and Burford. Except at temperatures
very close to T„ it is found that the theoretical shape of the short-range order difFuse scattering
is in agreement but the temperature dependencies difFer. We note also that all the currently
known approximate calculations of n(k) for arbitrary V(r) can be represented in the same functional
form, n(k) =Gs(T)/L1+Gr(T)V(k)), where the temperature-dependent factors Gs and Gs vary according
to the method of calculation used, but that V(k), the Fourier transform of V(r), is the same for all. This
leads to the conclusion that the ratios V (r„+&)/V(r„) determined by fitting the theoretical form to experi-
mental data are insensitive to the particular choice of Gs and Gs, but that the magnitudes of the V (r„) so
determined vary according to this choice. As a consequence, the values obtained for V(r„+&)/V(r ) are to
be regarded as more accurate than those for V(r ).

I. INTRODUCTION
' 'N a previous paper' (hereafter referred to as I), the
& ~ authors derived an expression for the disuse x-ray
or neutron scattering intensity produced by the short-
range order present in an alloy above its ordering tem-
perature T.. The equation LEq. (34) of Ij relates the
scattering intensity n (k) to the Fourier transform of the
pairwise interatomic potential V(k), the fraction of A
and 8 atoms in the alloy m&, m& and the Boltzmann
temperature factor p (or 1/kT). It is written as

u(k)=C/L1+2sn~ssstsPV(k)js (1.1)

where C is a normalization constant whose value is
determined by the condition that the integral of n(k)
over a unit cell of the reciprocal lattice be unity. An

explicit expression for C is given by Eq. (34b) of I.
This part has been written to supplement the theoret-

ical exposition of I in two principal areas. Section 2 is
devoted to a more quantitative analysis of the approxi-
mations inherent in Eq. (1.1).Section 3 offers a partial
analysis of the problem of predicting the ordered con-
figuration of an alloy from a knowledge of the pairwise
interatomic potential, and defines the region of values
of the interatomic potential in which a given ordered
configuration is the ground state of the system.

Since writing I, we have become aware of several
derivations by other authors of equations closely
related to our Eq. (1.1). deGennes and FriedeP and

1P. C. Clapp and S. C. Moss, Phys. Rev. 142, 418 (1966).
' P. G. DeGennes and J. Friedel, J, Phys. Chem. Solids 4, 71

(1958).

Brout derive equations for magnetic spin-spin correla-
tions (which are analogous to atomic pair correlations
in AB alloys) that differ from our equation in the choice
of C and the restriction that en~ =m~ = 2. Brout's deriva-
tion is particularly informative, since it shows that the
expression can be derived by either a random-phase
approximation (RPA) or an extension of the molecular-
field concept to correlations. Krivoglaz's' derivation is
for alloy systems and is not restricted to the case
nsg=m~. He obtains a different value for C, however,
which is the infinite-temperature limit, namely, 1.0.

Equation (1.1) has several advantages as a tool for
analyzing diGuse scattering data. It can be used to
fit the corrected data directly, rather than fitting to
Fourier coeKcients of the scattering intensity (as is
necessary with Cowley's' equations) so that no experi-
mental information is wasted. Furthermore, fits can be
made to data that do not cover all three directions in
reciprocal space, although it is necessary to have
measurements in the regions of reciprocal space that
are most sensitive to variations of V(k) in order to
establish V(k) within reasonably narrow limits.

One of the most useful aspects of Eq. (1.1) is that it
is easy to obtain a graphic picture of the eGect that
inclusion of second, third, or even higher-neighbor
interactions have on the shape of the disuse intensity.

s R. Brout, Phase Transstions (W. A. Benjamin, Inc. , New York,
1965), p. 15.

s M. A. Krivoglas and A. A. Smirnov, The Tlseory of Order
Dssorder sn Alloys (MacDonald tk Co., Ltd. , London, 1964),p. 345.' J. M, Cowley, Phys. Rev. 77, 669 (1950).
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For instance, the disklike intensities observed in Cu3Au
by Cowley' and Moss, ' the almost-spherical peak
shapes observed by Roberts' in CuAu, and the egglike
contours seen by Batterman for CuAus can all be
obtained by suitably adjusting the strengths of V2 and
V3 relative to V~, so that it is possible to get a rough
idea of the importance of higher-neighbor interactions
by looking at contour plots of the diffuse intensity.
These points will be covered in detail in the following
paper (paper III).

Another quite useful aspect of Eq. (1.1) is that it
is possible to put sharp limits on the range of values
for Vs/Ut, Vs/Vt, etc., that will produce maxima of
the diffuse intensity at the correct locations in reciprocal
space. This may be seen from the fact that the maxima
of n(k) occur at the minima of V(k), and so the values
of the V 's must be chosen to locate correctly the
minima of V(k). This statement will be expanded upon
in Sec. 3.

2. THEORY AND NATURE OF THE
APPROXIMATIONS

In this section, two essentially different aspects of
the theoretical background of Eq. (1.1) are discussed.
The first concerns the validity of the Ising model itself
in describing the configuration energy of a real alloy
system. The second deals with the mathematical
accuracy of the approximations used to derive Eq. (1.1)
from an Ising model formulation.

In I it was assumed that the configurational energy
of an alloy could be written as a standard Ising model
Hamiltonian modified for unequal atom fractions:

(2 1)

where o,= (2m~, —2m~) if an (A,B) atom is at site i
and (m~, m~) are the fractions of (A,B) atoms in the
alloy. V,; is the familiar combination s(V;,""+V;»
—2V,;~s), which is assumed to depend only on the
neighbor distance between i and j and not on direction
or location in the crystal. The V; s may be assumed to
be nonzero for an arbitrary range of neighbor distances,
and they are the adjustable parameters of the theory.
Very little success has been achieved in attempting to
calculate the V; s from first principles, and a basic
motivation of this work is to establish their values for
a number of real-alloy systems from available experi-
mental data.

The pairwise interactions are thought to arise from
the overlap of neighboring atomic-core orbitals (which
would not be expected to have much effect beyond
nearest neighbors) and in some cases from the inter-
action of incompletely screened ion cores (leading to a
long-range oscillatory potential decaying as 1/r').

' S. C. Moss, J. Appl. Phys. 35, 3547 (1964).' B. W. Roberts, Acta Met. 2, 597 (1954).' B. W. Batterman, J. Appl. Phys. 28, 556 (1957).

Historically, two other major ideas have competed
with the pairwise interaction model to describe ordering.
The first is the well-known 8rillouin-zone —Fermi-
surface interaction model originally proposed by Jones
to explain the Hume-Rothery phases and most recently
applied by Sato and Toth' to long-period superlattices.
This model provides a mechanism for lowering the
energy of a particular ordered state, relative to the
ensemble of disordered states, but it does not cause
different disordered states to have different energies.
Consequently, it cannot be used to explain changes in
the short-range order of the disordered phase, nor
the configuration of the short-range order, which is
the principal concern here.

If it is correct to say that the short-range forces
postulated for the Ising model are responsible for the
local order in the disordered phase, these forces will

produce an ordered phase at some lower temperature.
It is possible that this process will be interrupted by
the appearance of a different ordered phase caused by
the Jones mechanism, and Sato and Toth suggest that
this explains the interruption in the ordering of the
CuAu I phase by the onset of the CuAu II long-period
ordered phase. The disappearance of the CuAu II
phase at a lower temperature remains paradoxical.

The second concept of ordering, which has more
relevance to the disordered phase, is that of strain
ordering. Ordering in this model is caused by a reduc-
tion in the strain energy of an alloy composed of atoms
of different size. A recent calculation based on this
model is that of Rudman. " Apart from providing a
basis for rough estimates of the nearest-neighbor
ordering forces, the strain-ordering theories suggest
that the energy per atom is not simply a sum of pair-
wise interactions, but is an e-body interaction, where
n is the nearest-neighbor coordination number. Rudman
could rewrite his elastic strain energy in terms of a
pairwise nearest-neighbor interaction that was de-
pendent on the nearest-neighbor short-range-order
parameter a. Rudman states that this dependence on o,

was very weak, causing the interaction to change by
less than 5% as n varied from 0 to —0.2 (roughly the
range of n for the disordered phase). These approxima-
tions, however, appear to be less valid as the size dis-
parity between atoms increases, and for cases where
large shifts of atoms off the regular lattice sites occur,
Rudman's theory predicts irreducible n-body forces.

Given then that we expect the Ising Hamiltonian to
describe properly the configurational energy of an alloy
(with the possible exception of the long-period super-
lattices and large size-effect alloys noted above),
Eq. (1.1) is still limited by the fact that it is not an
exact solution of the Ising model. The details of its
derivation and a comparison with the approximations

9 H. Sato and R. S. Yoth, in Alloying Behavior and E ectsin
Concentrated Solid Solltions, edited by T.&3. Massalski Gordon
and Breach Science Publishers, Inc. , New)York, 1965), p. 295.

ts P. S. Rudman, Acta Met. 13, 38'7 (1965),
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FIG. 1. Comparison of the maximum value of n(k) as predicted
by Fisher and Burford (Ref. 11) and by our linear approximation
for a fcc AB alloy with a negative nearest-neighbor interaction.

of Cowley and Zernike are the substance of I, and will
not be repeated here. A rough estimate was made in I
that Eq. (1.1) would be reasonably close to the exact
Ising solution at temperatures greater than 10% above
T„for bcc and fcc alloys. This estimate is in accordance
with an estimate of Brout's' that the expression is
accurate at temperatures above (1+1/z)T„where s
is the nearest-neighbor coordination number of the
lattice.

Fisher and Burford" have recently obtained a more
accurate expression for n(k) in the case of nearest-
neighbor interactions and an equiatomic alloy by
applying the method of Pade approximants to exact
high-temperature expansions. It is thus possible to com-
pare Eq. (1.1) with a more accurate approximation for
this special case.

With the exception of temperatures very close to
T, (T/T, (1.03) our equation for n(k) and that of
FB can be put in the same functional form":

rr(k) =A (t)/t 1+E'(k)/Ets(t)), (2.2)

"M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583 (1967),
referred to as FB.

"The complete FB expression for three dimensions is

A (t) 1+y'Z'(k) ~~ss

n(k)—
1+rpZ'(k)/Zrs(t) Zrs(t)

Here P and @ are essentially temperature-independent factors. P
differs from unity by a negligible amount (less than three parts in
10 000). For values of k inside the half-width, Zs(k)/ZP(t) &1,
the factor containing ft' is negligible at all temperatures, because
it diBers from unity by two parts in 10 000 at most. This factor
is also insigni6cant for T/T, )1.03 for all positions in k space
(it diB'ers from unity by less than 2%). However, in the tempera-
ture region T/T, &1.03, and for values of k outside the half-
width, this term does become appreciable and, as FB point out,
this causes n(k) to fall off as k &' '~"& (rather than k ') at tem-
peratures close to the critical point.
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Fro. 2. Variation of the correlation-range parameter Z~(t)
for two- and three-dimensional AB alloys as given by the Bethe
approximation (the curves labeled with coordination numbers q)
the Fisher-Burford calculation (curves labeled by lattice type),
and our approximation, which gives the same results for E~(t)
as the mean-Geld approximation. Either positive or negative
nearest-neighbor interactions may be assumed, except for the
fcc lattice, where the positive case is special and must be con-
sidered separately. This figure is taken directly from Ref. 11.

where t= T/T, and the nearest-neighbor lattice separa-
tion is taken as unity. The temperature-dependent
functions A (t) and Et(t) in our case differ from that of
the FB approximation but the k dependence of n(k)
Lcontained in E(k)] is identical in the two cases, and
has the form

E'(k) = 2dL1 —V(k)/V(ksr)],

where d is the dimension of the lattice and k~ is the
position of minimum V(k). For small departures of k
from kyar, E'(k)—(k—k~)', so that Eq. (2.2) represents
a Lorentzian of amplitude A (t) and half-width Et(t)
in the neighborhood of the disuse peak.

In Fig. 1, A (t) is plotted for the two approximations
for an fcc lattice with negative nearest-neighbor inter-
actions (i.e., a clustering alloy). In our theory, A(t)
is given by-C(t)/(1 —f '), where C(t) is the normaliza-
tion constant previously dined. We have approxi-
mated the A(t) of FB by 1/Lr&(t)E&(t)j' 't' where

rt(t) is a parameter plotted by FB in Ref. 11.Note that
at a temperature 10% above T, the peak height A(t)
given by our approximation is roughly —, that predicted
by FB. Figure 2 has been taken directly from Fig. 5 of
Ref. 11, and indicates that at 10% above T„ the Et
of FB is roughly s smaller than our E& (the mean-Geld
value).

Although this comparison indicates that Eq. (1.1) is
not as accurate as might have been hoped, it does show
that the k dependence of Eq. (1.1) for T/T, )1.03 is
essentially correct, and that it is the temperature-
dependent parts of Eq. (1.1) that are in error. In fact,
our expression for n(k) can very nearly be brought into
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n(k)=
1+Gt(1)V(k)

d'k.
1+Gt(1)V(k)

In fitting this theoretical formula to experiment, the
adjustable parameters are seen to be G~V~, G~V2, G~V3,
etc., and as a consequence the absolute values of the
V s will depend upon which theoretical method is used
to provide the value of Gt(1). However, the ratios of
the V s will be model-independent and once they are
determined for a particular system, the estimate of the
absolute values of the V,'s can be improved as more
accurate theoretical calculations of Gt(t) become avail-
able. This, of course, assumes that higher-order calcula-
tions of n(k) will have the same functional dependence
on V(k). We have used our estimate of Gt(t), namely,
2mzms P, to evaluate the V, 's for various alloys in III,
because our principal interest here is to determine the
range and relative importance of higher-neighbor inter-
actions in real-alloy systems, and because most of the
other estimates of G~ are difFicult to evaluate for
m~&m~. To summarize then, we believe that the ratios
of the V s determined in III can be accorded a reason-
able degree of reliability, but that the values given for
the magnitude of the V s should be taken with a grain
of salt.

3. ORDERED STRUCTURES

We discuss here the theoretical problem of inferring
the ground-state configuration of an alloy from V(r),
and the converse problem of obtaining restrictions on
the possible form of V(r) from a knowledge of the
ordered-alloy configuration. The diGraction pattern of
a disordered alloy is characterized by one or more diffuse
peaks. Upon ordering, sharp peaks (or superlattice

"G.Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961).
14 R. Z..sell, Phys. Rev. 143, 215 (1966).

coincidence with FB by choosing a different value for
T/T, (i.e., for T/T. =1.10, we find that an effective
value of 1.05 is necessary in our expression to achieve
agreement). This points up a general characteristic of
all the approximate theoretical expressions for a(k)
for arbitrary V(r) known tous. These include the equa-
tions of deGennes and Friedel, ' of Krivoglas, 4 the RPA, '
our linear approximation, the spherical-model approxi-
mation, ' the linked-cluster-expansion calculations of
Brout' and of Horwitz and Callen, " and the Green's
function calculation of Bell.'4 The results of all of these
treatmentscanbe writtenin the form givenby Eq. (2.2)
or, equivalently,

n(k) =Gs(t)/$1+Gi(1) V(k)$,

where the functions of temperature G~ and G2 depend
upon the particular approximation employed. If this
expression is normalized to satisfy the sum rule
Jn(k)d'4=1, then a(k) can be written in terms of
Gt(t) and V(k) alone, i.e.,

spots) appear which may or may not be located at the
position of the former diffuse peaks. We have shown in
I that Eq. (1.1) predicts that the location of the diffuse
peaks should coincide with the minima of V(k). We
now consider the question of the relationship between
V(k) and the superlattice-diffraction spots, assuming
that V(r) does not change appreciably on passing
through T„and that no radical distortions of the lattice
occur. We assume also that the ordered phase appearing
at T, remains the stable phase down to zero tempera-
ture. "Under these circumstances, the ordered structure
will be the atomic arrangement that minimizes the con-
figuration energy.

The configurational energy of the lattice can be
written directly in terms of the scattering intensity and
V(k), by Fourier transforming Eq. (2.1):

H=D d'k V(k)n(k), (3.1)

where D=Sm~m~/(2w)'and theintegrationis over the
first Brillouin zone of the disordered lattice. As we show
in the Appendix, n(k) for a perfectly ordered structure
is a linear combination of 8 functions, i.e.,

n(k) = Q A;8(k —K,),
(Ki}

(3.2)

where the K; are the positions of the superlattice spots.
For convenience, we shall include the origin (000) as a
superlattice point, although the weight factor Ao will
always turn out to be zero. There are m K, 's per unit
cell of the disordered reciprocal lattice of volume ~, and
m is the ratio of the number of atoms per unit cell in
the ordered and disordered phases. The weight factors
A; are proportional to the square of the structure factor
for that reQection of the ordered lattice. They are never
negative but may be zero, and they must satisfy the sum
rule+A;=1, in order that the condition n(r=0)
=(1/e)l d'kn(k) =1 be satisfied. Inserting Eq. (3.2)
in Eq. (3.1) yields

H=D Q A;V(Kg),
IKi}

(3.3)

» I or the idealized case of V(r) independent of temperature,
Tahir-Kheli, Callen, and Jarrett (Ref. 20) have shown for the
closely related problem of a Heisenberg antiferromagnet with
second-neighbor interactions, that at all points in the phase
diagram for the three cubic lattices the ordered phase that mini-
mizes the conhgurational free energy at T, does so at all lower
temperatures, and thus minimizes the con6gurational energy at
O'K. They computed the con6gurational free energy at Gnite
temperatures by the method of two-time Green's functions.

and it is clear that Eq. (3.3) is minimized by that
ordered structure for which the K, are located only at
minimaof V(k). If therewereno other conditionson the

s, the prediction could be made that the superlattice
spots of the ordered phase should occur precisely at the
maxima of the diffuse peaks of the disordered phase
(although not necessarily at all such positions).
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Fro. 4. Cg(br&20) for the fcc lattice.
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This, then, is the proper theoretical basis for our
suggestion in I that the superlattice spots of the ordered
phase should occur at V(k) minima, and it is clear that
this conclusion is based entirely on the fundamental
Ising Hamiltonian, and is independent of statistical
approximations. It is, however, only a sufficient con-
dition, and not a necessary one, because it is not always
possible to 6nd an ordered structure of the correct com-
position that satisfies this simple condition. This is so
because there are additional restrictions on the A s that
stem from the fact that each site of the ordered lattice
must be occupied by either an A or a 8 atom, with
fractional occupation prohibited. These necessary con-
ditions are derived in the Appendix and are contained
in Eqs. (A10) and (A12).

Luttinger" was apparently the first to consider this
problem of finding the ground-state configuration of an
antiferromagnetic Ising system for arbitrary V(r). He
could Gnd no general solution, but suggested a pro-
cedure that is equivalent to initially relaxing the subsid-
iary conditions on the A s. This has come to be known
as Luttinger's "weak condition, " and the procedure is
then to check whether any of the solutions generated
with the weak condition also satisfy the necessary con-
ditions. If one is lucky, at least one solution will, and
the search is over.

This development has been continued by a number of
other workers, '~ ~ so that we now know the ground-
state con6gurations for an AB alloy with first- and
second-neighbor interactions in the three cubic lattices.

r6 J. M. Luttinger, Phys. Rev. 81, 1015 (1951)."J.S. Smart, Phys. Rev. 86, 968 (1952).' D. ter Haar and M. E. Lines, Phil. Trans. Roy. Soc. London
A254, 521 (1962).

» D. H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960).
~OR. A. Tahir-Kheli, H. B. Callen, and H. Jarrett, J. Phys.

Chem. Solids 27, 23 (1966).

Our approach here is diferent from that just cited,
in that we treat compositions other than AB and use
conditions based on the Fourier transform of the Ising
Hamiltonian [i.e., Eq. (3.3)j, which enables us to
consider V(r) of arbitrary range as long as the positions
of V(k) minima or, equivalently, the positions of diffuse
maxima of n(k) are known.

Philhours and HalP' have recently published several
investigations based upon our suggestion in I that the
wave vectors (or superlattice spots) of the ordered
phase should lie at the positions of V(k) minima. They
found independently that this is a sufhcient but not a
necessary condition for the ground state, and that it is
dependent only upon the fundamental Ising Hamil-
tonian and not upon any statistical approximation.

The sufficient condition is satisfied for many of the
familiar ordering systems, such as CuAu, Cu3Au,
CuPt, CuZn, etc., but there are also exceptions, such
as Au3Mn" which are explicable only by including the
subsidiary conditions on the A s. Before proceeding to
a discussion of the full set of conditions, we shall
examine the possible locations of the minima in V(k)
as determined by the strengths of near-neighbor
interactions.

We erst take the case of a fcc lattice. The vector from
an atom to its (lme) neighbor is expressed by

r(lan) =-,'l ar+-,'m a,+-',e a„
where a~, a~, a3 are the three cubic axes; 1, ns, e are
integers, and i+I+a is even. The continuous vector
k in reciprocal space is represented by the continuous
variables hr, h2, hs and the three vectors br, b~, bs

"J.Philhours and G. L. Hall, Phys. Rev. 163, 460 (1967).
22L. E. Tanner, Ledgemont Laboratory Internal Report No.

TN-33, 1967 (unpublished).
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Fro. 5. C3(k~k~0) for the fcc lattice.

100
Fro. 6. Locations of the minima of V(h) as a function of the

ratio V2/Vr for the fcc lattice.

reciprocal to the a s,

klhl+ksb2+ksbs ~

In this notation, the Bragg rejections occur at (ktksks)
all odd or all even integers, i.e., (111), (200), etc.
Writing out V(k) explicitly for up to third-neighbor
interactions, we have

V (k)—= Q V~ „cosa-lkt cosa-nsks coss.mks,
lmn

=Q Z~V,C;(ktksks),

= 12VrLs (cosa'kt cosvrks+coss'k2 cosa'ks

+cosskr cosaks) j+6VsLsr(cos2akt+cos27rks

+cos2aks) j+24VsL's (cos2s kt cosaks cosahs

+cosa kt cos2a'ks cosm'ks

+cosa'kr cosa'ks cos2sks)i, (3.4)

where Z; is the coordination number of the i shell,
V; is the ith-neighbor interaction, and C;(krk&ks) is the
appropriate sum of cosine terms, normalized such that
C;(000)=1. Ct, Cs, and Cs have been plotted in the
h3=0 plane in Figs. 3—5. C~ can never be greater than
+1, nor less than —1, so that (000) is always a maximal
point, but it may not be the only such point. The
minimum value of C~ is —

3 and this occurs at all points
of the line between (100) and (1 —,

' 0) and all equivalent
points (i.e., all points obtainable from these by applying
the syxnmetry operations of the body-centered space
group). Henceforth, the mention of a point (krksks) will

imply its equivalents as well.
The maxima of Cs occur at (100) as well as (000) and

the minima occur at (sr sr s) having a value of —1. The

point (rssr0) in Fig. 2 where Cs is —s is only a minimax.
The maxima of Cs occur only at (000) and Cs takes on
its lowest value —rsat (ss 0 0). (100) is a minimax.

Varying the strength of V2 and V3 relative to V~
will obviously affect the location of the minima of
V(k). Figure 6 shows the position of the minima for the
case when only V& and V2 are no@zero. Figures 7 and 8
are similar plots for the case when V3 is also nonzero.
Where ordered structures are known that have super-
lattice spots at the given minima, their Struktgrbericht
symbols have been designated and a few examples
indicated. Figure 9 illustrates the structures for AB
and A38 stoichiometric compositions. It is interesting
that the AB analog of the DO22 structure has not yet
been found in any system, and the only alloy known to
be a possible candidate for the A38 analog of the Li~
structure is CuPta.

Vi POS1TlVE

FIG. 7. Locations of the minima of U{k) for UI, V2, and V3 with
V~ positive in an fcc lattice.
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Fro. 8. Location of the minima of V(Ir) for V~, Vs, and Vo with
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FIG. 9. Ordered structures on an fcc lattice showing location of
superlattice spots and Strlkturberichl symbols. The upper row is
AB composition and the lower row is AIB.

For a bcc lattice, a similar analysis is easily carried
out. The atoms are again separated by the vector

r(l41sr4) = -', fat+-', novas+-,'44as,

where now l, m, Is are all even or all odd, and the k
vector has the same meaning as above, but with
ht+hs+ks even for the Bragg reflections, namely,
(110), (200), etc. A plot of the positions of V (k) minima
is given in Fig. 10 as a function of Vs and Vt. V(k)
is now

V (k) = SVjLcos7rk1 cos7l ks cos7rksj+ 6Vs(s (cos21rht

+cos21rhs+cos2ahs))+12V, Ps~(cos21rht cos21rhs

+cos21rhs cos24rhs+cos21rht cos21rhs)). (3.5)

The two ordered structures of AB composition that have
superlattice spots at the U(k) minima are shown in
Fig. 11. In both cases the disuse short-range-order
peaks of the disordered phase would be centered about
the superlattice positions of the ordered phase.

%e now return to the problem of predicting the con-

FIG. 10. Location of the minima of V (k) as a function of the ratio
Vo/Vr for the bcc lattice.

figuration of the ordered phase from a knowledge of the
positions of the n (k) diffuse maxima. As a first example,
assume that the disordered lattice is fcc, that the com-
position is 338, and that the di6use maxima are at
(100) and (110) positions. Solving the necessary con-
ditions for the ordered structure LEqs. (A10)$ requires
two steps: (a) specifying the location of the super-
lattice spots (i.e., the set {K;)),and (b) solving Eqs.
(A10) for the structure factors F(K;), and hence the
A s via Eqs. (A12). The set {K;)can only be the four
points 000, 100, 110, and Ojl0 if the superlattice spots
are to appear only at minima of V(k). Equation (A10)
then gives us four equations in the four unknown struc-
ture factors F(000), F(100),F(110),and F(010), which
will be denoted as Fo, Ii ~, F2, and F~ in that order. The
four equations are

Fo'+F1'+Fs'+Fs'=1,
2FrFs+2FsF4=0,
2FtFs+2FsF4=0,
2FtF4+2FsFs=0.

(3 6)

The composition 338 immediately fixes Ii0 to be ~~ and

by a process of eliminating variables the only solution
is found to be

P2 P2 P2 P2

Equations (A12) then give Ao ——0, At ——As ——As ——s. This
obviously corresponds to the L12-ordered structure, and
this proves it to be the unique solution for the
ordered ground state.

For the composition AB and the disuse maxima as
above, one again obtains Eqs. (3.6), except that now
Iio——0. This leads to a degeneracy of three solutions
(Ao=O, At=i, As=0, As=0), (Ao=O, At=0, As=i,
As ——0), or (Ao ——0, Ar ——0, As ——0, As ——1), which corre-
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FIG. 11.Ordered structures on a bcc lattice for AB composition.

FIG. 12. (a) Minimum set (K, l
necessary to locate a superlattice
peak at (1 q 0). (b) Superlattice
spots of the DO~2 structure. Con-
tributions from the three possible
orientations of the tetragonal axis
are labeled by separate symbols.
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sponds to the well-known Lio structure with three
possible directions for the tetragonal axis.

Finally we consider an example where all of the super-
lattice peaks cannot be located at the V(k) minima,
namely, when the diffuse peaks are at (1 ts0) positions,
as in Ni3V and Au3Mn. We begin with the AB case,
The simplest starting assumption is that {I,}consists
of the two points (000) and (1 st 0), implying an ordered
structure with two atoms per unit cell. However, the
set {I;}must have the property that any integral
multiple of a member also be a member of the set, since
they form a lattice, and that any two points separated
by a lattice spacing of the disordered reciprocal lattice
are equivalent. These requirements make it necessary
to include the point (1-,'0), which is located at a
minimum of V(k), and the point (010), which is not.
Figure 12 shows the proposed location of superlattice
spots.

The second step of determining the A s may be done
either by generating all possible values of the F(K;)'s
from Eq. (A4b) by trying the various arrangements of
atoms in a four-atom unit cell, or by finding the possible
solutions to Eqs. (A10) by successively eliminating
variables. By either method one finds a unique solution
for both the AB and 338 compositions as follows:

AB: A(000)=0,

A (1 -', 0) = -', , A (1 ss 0)= ts, A (010)=0,
AsB: A(000) =0,

A (1 -', 0)= —', , A (010)= s.

The AB solution corresponds to the (2a) structure of
Fig. 9, and the fact that the A s are nonzero only at
minima of V(k) implies that this structure has the
lowest possible configurational energy for this type of
V(r) as in the two cases above. It is perhaps puzzling
that such a structure has never been observed in nature.
The 238 solution is the DO» structure illustrated in
Fig. 9, and, since A (010) is now nonzero, we see that if
this is indeed the arrangement of lowest configurational
energy for 338 composition, the subsidiary conditions
for the A s force 3 of the superlattice intensity in the
ordered phase to appear at locations different from the
diffuse maxima positions of the disordered phase.

0

0 & 0 b, Q

000
tb)

0
200

4. SUMMARY AND CONCLUSION

The primary motivation of our first investigation
(I) in this series was to provide a tractable method for
determining the pairwise interaction strengths in alloys
from an analysis of the short-range order diffuse scat-
tering in the disordered state. In this paper, we have
examined the accuracy of our method in greater detail
to provide a better understanding of its limitations and
its strengths. We have shown, by comparison with the
recently published equation of Fisher and Burford for
the special case of an AB alloy with nearest-neighbor
interactions, that it has the same k dependence as ours
but has a different temperature dependence. The two

The question naturally arises, whether the diffuse
intensity pattern anticipates this "anomalous" super-
lattice peak before the ordering temperature is actually
reached, or if this peak emerges abruptly below T„as
our theory would suggest. Tanner" has found from
electron-diffraction measurements on thin films of
Au3Mn that, for this system at least, the latter sugges-
tion fits the observations. Tanner's results will be dis-
cussed further in III.

Summarizing this discussion, we can say that we
have provided a method for predicting the ordered con-
figuration of an alloy by knowing only the location of
the diffuse peaks in the disordered state in a number of
simple cases. We do not claim to have completely
solved the general problem of determining the ordered
structure that is compatible with a given V(k), and
we have shown that, in at least one case (AusMn), it
is necessary to know more about V(k) than just the
location of its minima. It is clear that the stability of
the DO» structure, relative to others that may be
imagined, will depend critically on the magnitude of
V(k) at the nonminimal (010) position.
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predictions become nearly identical if (T T,—)/T, is
reduced by roughly a factor of two in our equation in
the neighborhood of (T T,)—/T, =0.1. For interactions
beyond first neighbors, we have shown that the relative
values of the V s can be determined with greater
certainty than can their absolute values.

We have also shown that a study of the ordered state
is valuable in determining the pairwise interactions in

alloys, because the relative strengths of the pairwise
interactions compatible with a given ordered structure
are limited to a certain range. This is useful in narrowing
down the field of interaction strengths that may be used
to fit the disuse short-range order scattering data of a
particular alloy, assuming that the ordered structure is
known and that it remains stable at lower tempera-
tures. However, the actual values of the V; ratios can
be determined only from a detailed fit to the diffuse-

scattering data. It should be realized that these con-
sistency conditions do not depend in any way on the
approximations used in I to derive our diGuse-scattering

equation, but rely only upon the basic Ising model
formulation of the configurational energy of an alloy.

We now have the theoretical framework necessary
to provide a reasonably complete analysis of available
diffuse short-range order scattering data in alloy
systems. This is the subject of the following paper
(III).
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APPENDIX

For the purposes of describing ordered alloys, we

shall use operators 0.;, which are given, the value

(+1, —1) for an (A,B) atom at site i The o; o.perators
are related to the 0-; operators of I by the relation

g;= g;+ (mg —me),

be understood for the other types of lattices which we
shall consider. For the sake of simplicity we confine the
discussion to disordered lattices having a single atom
per unit cell (i.e., the Bravais lattices).

Upon ordering, a larger unit cell is formed containing,
say, e atoms. Equivalent positions in the ordered struc-
ture form a superlattice whose points are now separated
by vectors R;.

We define a "structure factor" O-i, for the ordered
lattice of X sites, where X will ultimately become
indefinitely large.

(A3)

with

gg=S(k)xp(k), (A4a)

(A4b)

N —],

S(k)—=n Q e,~.R~ g b(k Kr) (A4c)

where E'=E/n and 8(k—K;)=E if k= K;, and is zero
otherwise. The set of points {K;) are the points of the
lattice reciprocal to the superlattice, and there will be
m of them contained within a unit cell of the disordered
reciprocal lattice. In the limit of X very large, 8(k—k')
becomes a Dirac delta function and has the property

G(k)~(k-k)d ~=6( ) (A5)

if k' is within the unit volume g of reciprocal space
integrated over, and is zero otherwise. G(k) is an
arbitrary function of k.

The inverse of Eq. (A3) is

(A6)

which becomes, on using Eq. (A4)

which can be immediately factored into a unit-cell
structure factor F(k) and a superlattice structure factor
S(k) in the usual manner:

and, recalling the relation between n;, and (o.;o;) given

by Eq. (12) of I, i.e., (o.;)= 0, the result is as follows:

gr QF(K;)e '——
IKi)

(A7)

(o,o;)=4mgmso. „+(mg me)'—
The E atoms of a disordered alloy are assumed to be

on the points of a regular lattice located at endpoints
of vectors r;, where j=0, E—1. ro is taken to be the
null vector; and rj., r2, and r3 are taken as the unit
vectors of the unit cell. An analogous convention is to

Since g~ can only be +1 or —1, we have

g =1=+ Q P(K;)P(Kr')e 't:*&'+*'&'~ (Ag)

Using the variable change

K,= K;+K and H(K;) =g F(K;)F(K,—K )
Kg'



DISORDERED BINARY ALLOYS. I I 763

Eq. (Ag) becomes

~ '=1=+ H(K, )e 'I"-i
and from (A2) and (A7) we get

1 N(A9)
n(k) = Z E Z F(Kr)F(Kr')~""

4mgmgE f, g (K&} IK&'}

The left-hand side of Eq. (A9) is the same regardless
of the choice of f, and in order that the right-hand side
also be independent of f, the following conditions must
hold: which becomes

(mg —ms)' &
)(' e—i(k+Ki) ~ rg g &ik ~ (rf rg)—

4m~mgS f, g

and
a(0)=—P F(K)F(—K)=1. (Aiob)

H(K;)—=g F(K,)F(K;—K;)=0, if K,WO (A10a)
n(k) = Q F(K,)F(—K;)()(k—K,)

4mgmg fK&}

mg —m~
S(l ). (A13)

4mgm~
These equations provide e interrelations among the

e F's, so that in general there will only be a small By mp ' g (A ) w' Eq (3
limited set of F's that are allowable. In addition, F(0)
is fixed by the composition and is given by (3.2)

1 n—1

F(0)=——Q 0.) =my —
mph'.

S f=o
(A11)

We shall now show that the A s of Eq. (3.2) are
related to the F(K,)'s as follows:

A p= Fk(0) —(mg —m))) = 0 (A12a)

A; =F(K;)F( Kr) /j4m&m&, —j/0. (A12b)

We have

it is apparent that Eqs. (A12) are recovered when the
relation given by (A11) is included.

In conclusion, the F(K,)'s are restricted by the m

equations given above and the A, 's in turn are deter-
mined by the F(K;)'s. The I conditions (A10) cannot
be written in terms of the A s directly, with the
exception of (A10b), which converts to

This was mentioned in Sec. 3 as the condition necessary
to ensure that n(r=0)=1.


