
OPTICAL PROPERTIES OF Zn

The rt, tt plot corresponding to Eq. (13) approaches
the value 2, the number of valence electrons in Zn, but
it is not an asymptotic approach as, e.g., in the case of
Al."The n.tt plot corresponding to Eq. (14) beings to
increase only near the plasma frequency. The absence
of saturation in these cases is perhaps related to the
presence of d states within a few eV of the valence band.
Even so, the curve corresponding to Eq. (13) is quite
simple.

Pote added irt proof The r.eflectance was measured at
100A intervals for X)1600A, and at 25A intervals
at shorter wavelengths. The curves in Fig. 3 are drawn

exactly through the measured reQectances. The rms
deviation between the calculated optical constants and
the smooth curves shown in Figs. 4 and 5 is about 5%
for X)1400A; it is about 10%%uz for X(1400A.
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The linear magnetoresistance of single-crystal specimens of potassium, which is observed far into the
high-magnetic-field regime, is not in accord with generally accepted ideas concerning the bands structure of
potassium. The linear dependence of resistivity on field is, however, in accord with a charge-density-wave
model for the metal. The charge-density wave modifies the Fermi surface by introducing many energy gaps
that slice the Fermi surface. These heterodyne gaps undergo progressive magnetic breakdown. The model
predicts the largest magnetoresistance for crystals in which the magnetic field is oriented along the (100j
or L111)directions, and the smallest efiect for crystals in which H is oriented parallel to L110); these pre-
dictions are in agreement with observation.

I. INTRODUCTION

1
~~NE of the most puzzling and unexplained obser-

vations on the alkali metals is that of their mag-
netoresistance: first, that they show mangetoresistance
at all, and secondly, that the magnetoresistivity is linear
in field to the highest magnetic fields measured. "At-
tempts to explain away the magnetoresistance as due
to probe effects have not succeeded since probeless
techniques also yield a linear change in resistance with

field. ' Recently, Penz and Bowers4 used the helicon
method to determine the magnetoresistivity of single-

crystal specimens of high-purity potassium to fields of
55 kG and of polycrystalline potassium to 110 kG.
Although the results show the magnetoresistivity to
vary somewhat with crystallographic direction, it again
is linear in field over the range studied.

It is well known that a degenerate electron gas with a
spherical Fermi surface shows no magnetoresistance,
and with a closed (although not necessarily spherical)
Fermi surface shows constant magnetoresistance in large
magnetic fields. It is generally believed that the alkali

' E. Justi, Ann. Physik 3, 183 (1948).
~D. K. C. MacDonald, in Huedbgch der Physik, edited by

S. Fliigge (Springer-Verlag, Berlin, 1956), Vol. 14, p. 137.
'F. E. Rose, Ph. D. thesis, Cornell University, 1964 (unpub-

lished).
4 P. A. Penz and R. Bowers, Solid State Commun. 8, 341 (1967);

P. A. Penz, Ph.D. thesis, Cornell University, 1967 (unpublished).

metals can be characterized by such a model and that
their Fermi surfaces (at least those of sodium and
potassium) deviate only very slightly from sphericity. '
Even if the Fermi surfaces are more complicated than is
generally believed, it is dBBcult to understand the linear
magnetoresistance; theory predicts' that the transverse
magnetoresistance should saturate in the high-field re-
gime if all orbits are closed, but should vary as H' for
certain crystallographic directions if open orbits are
present. (The situation is somewhat different in com-
pensated metals, but here again the only predicted be-
havior at high fields is an II' dependence or saturation. )
Once open orbits are admitted, an approximately linear
magnetoresistance over a restricted range of magnetic
fields might be obtained through an averaging over
various pieces of the Fermi surface. But to achieve this
result, a complicated Fermi surface would be required.
Since the Fermi surfaces of the alkali metals are gen-
erally thought to be simple (and closed) the resistance
versus field ought to saturate for ~,v &1, whereas ex-
perimentally it remains linear to co,v=100. (Here co, is
the cyclotron frequency and v is the relaxation time
for scattering of electrons. )

~D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London)
A281, 62 (1964); M. J. G. Lee, tbtd. A295, 440 (1966).' I.M. Lifshitz, M. Ya. Azbel, and M. I.Kaganov, Zh. Eksperim.
i Teor. Fiz. 31, 63 (1956) LEnglish transl. : Soviet Phys. —JETP
4, 41 (1957)g.
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The purpose of this paper is to show that one model
of the Fermi surface of potassium does in fact lead to a
linear magnetoresistivity over a large range of magnetic
Gelds, although it would eventually saturate at very
high Gelds. The model requires the existence of either
a charge-density wave (CDW) or a spin-density wave
(SDW), which is orientable by the field. A CDW (or
SDK) state has not been established conclusively for
any of the alkali metals, but the existence of such a
state has been postulated to explain other anomalies
which have not been explained on other bases. ' The
CDW (or SDW) modifies the Fermi surface by intro-
ducing many additional energy gaps which are pro-
gressively broken down by the magnetic Geld through
the phenomenon of magnetic breakdown. ' The trans-
verse magnetoresistance shows a linear dependence upon
Geld throughout the breakdown region.

In Sec. II we review the experimental situation for
single crystal potassium. In Sec. III we discuss several
model calculations of magnetoresistance in which mag-
netic breakdown plays a role. Finally, in Sec. IV we
discuss the CD% model of potassium and calculate its
magnetoresistance.

II. SINGLE-CRYSTAL MAGNETORESISTIVITY
OF POTASSIUM

Penz and Bowers4 measured the transverse rnagne-
toresistance of single crystals prepared from high purity
potassium with residual resistance ratios (RRR) at
4.2 K in the range 1000 to 4000. These were measured
to 55 ko, which for the purity mentioned corresponds
to a co,v of the order of 100. Penz and Bowers used a
probeless technique, namely, the helicon method; with
the s direction being defined as that of the magnetic
field, this technique measures is(p„+p»).

Their results are summarized in Table I in which the
data are presented in terms of the parameter S, defined
as

p(H) —p(0)5= X100%.

S is essentially the normalized slope of the linear vari-
ation in resistivity p as a function of field H. One inter-
esting result is that S apparently depends upon the
orientation of magnetic Geld relative to the crystallo-
graphic axes. When the field is oriented along $100] or
$111] the magnetoresistance (averaged over the sam-

ples measured) appears to be two and one half times
larger than when the Geld is oriented a,long $110$.This

' A. W. Overhauser, Phys. Rev. Letters 13, 190 (1964).
'D. R. Gustafson and G. T. Barnes, Phys. Rev. Letters 18, 3

(1967).
'A. W. Overhauser, Phys. Rev. 167, 691 (1968). This paper

introduces the concept of the charge-density wave and shows that
the earlier discussed anomalies can be explained in terms of either
the CDW or the SDW. As is further shown in this paper, the CDW
appears to be a more likely candidate for the alkali metals.

"M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 8, 231
(1961);E. I. Blount, Phys. Rev. 126, 1636 (1962).

TABLE I. Magnetoresistivity of single-crystal potassium. '

Sample

1
2
3

5
6

8

[hhl]
Geld direction

100
100
100
100
100
100
100
100

mcr
at55kG SP/)

133 0.34
146 0.42
143 0.26
56 0.54
46 0.54
64 0.65
63 0.43
61 0.25

10 3 RRR

3.1
3.4
3.4
1.3
1.1
1.5
1.5
1.4

9
10
11
12
13
14
15

16
17
18

19
20
21
22
23
24

110
110
iio
110
110
110
iio

123
123
123
123
123
123

143
39
54
61
74
50
60

165
127
136

92
139
166
59
49

100

0.20
0.18
0.18
0.20
0.26
0.10
0.10

0.55
0.31
0.33

0.55
0.22
0.46
0.22
0.10
0.10

3.4
0.9
1.3
1.4
1.7
1.2
1.4

3.9
3.0
3.2

2.2
3.3
39
1.4
1.2
2.4

a Reference 4.

is an important point for the present paper, since the
model to be discussed in Sec. IV predicts strong direc-
tional dependences. For Gelds oriented along L123) the
situation is less clear since the spread in S values is
quite large; however, the average S is less than that for
L100j or Liiij.

The samples used to obtain the data in Table I were
prepared in such a way that they were subjected to a
minimum amount of strain. By deliberately straining the
crystal Penz was able to increase the slope S by as much
as a factor of two. Presumably the spread in S values
for various specimens with the same Geld orientation is
due to small residual strains in these crystals.

kk= —(%)vX 8,
v(k) = i'-'Lr) e(k)/rlk).

(2)

(3)

The conductivity tensor 0;; as a function of magnetic
field may be calculated by the path integral method"

"R. G. Chambers, Proc. Phys. Soc. (London} A65, 458 (1952);
A238, 334 (1956).

III. MODEL CALCULATIONS OF MAGNETO-
RESISTANCE IN METALS WITH

MAGNETIC BREAKDOWN

Magnetoresistance calculations for metals with speci-
fied Fermi-surface topology are usually made by a semi-
classical approach in which the time dependence of the
electron's group velocity v is determined from the
equations
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Fro. 1. Magnetoresistance
and'. .Hall~resistance&for a tran-
sition via magnetic breakdown
from a closed-hole to a closed-
electron orbit Drom Falicov
and Sievert (Ref. 12)J. (a) The
low-field orbit (as H —&0); (b)
the high-field orbit (as EI ~~ );
(c) the transverse magnetore-
sistance; (d) the Hall resistance.
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yielding

0
o;;=—(e'/4trp) e,(k) d'p e, (s)

ILll k A
s—t

)&exp ds.

An alternative dehnition of ~0 is the following: at high
magnetic fields, when the orbit is almost completely
broken down, oro is the probability per unit time of
Bragg reQection into the low-6eld topology by the en-
ergy gap under consideration. Thus, the effective scat-

(4) tering time at high magnetic field is

&off = & +ppp ~

Here fp is the electron distribution function, k is the
electron's wave number, and H is the magnetic Geld.
This method does not include quantum oscillatory ef-
fects (de Hass —Shubnikov oscillations) but does repro-
duce the gross features of the Geld-dependent conduc-
tivity.

%hen magnetic breakdown eQects the important, the
connectivity of the various electron orbits is changed
as a function of Geld, and Eq. (4) cannot be used
directly. Falicov and Sievert" devised a suitable matrix
generalization of (4) which allowed them to include
magnetic breakdown, and, as a result, they were able
to investigate a large number of models in which the
connectivity of the Fermi surface is modified in a pre-
scribed way by the magnetic Geld. Thus, for example,
they studied the transition from open to closed orbits,
the transition from extended orbits to circular closed
orbits, and transitions from closed hole-like orbits to
closed electronlike orbits. Each model calculation was
investigated as a function of the following parameters:
pp cop, and r ot,=eH/tttc is t.he cyclotron f—requency,
is the relaxation time, and coo is a frequency related to
tice probability of magnetic breakdown; in fact, the
probability of an energy gap being broken down by the
field is exp( —(dp/pp ) per passage through the gap region.

~~ L. M. Falicov and P. R. Sievert, Phys. Rev. 138, A88 (1965).

coo depends upon the magnitude of the energy gap d.
Falicov and Sievert write otp ——CA'/eth with C a con-
stant of order unity, and ep is the Fermi energy. Actu-
ally, as has been pointed out by many authors, " "the
"constant" C depends on the geometry of the orbits,
and otp may be written as

Q2P 2

COO =
8hetK (k&&b)

where K is the wave vector corresponding to the energy
gap 6 and b is a unit vector in the direction of the
magnetic Geld.

Of the various idealized calculations considered by
Falicov and Sievert, the only ones that appear to apply
to the potassium case (to be discussed in Sec. IV) are
transitions from extended closed orbits to circular
closed orbits, and transitions from closed (hole) orbits
to closed (electron) orbits. Only the latter model calcu-
lation seems capable of explaining the lirIear magnetore-
sistivity of the metal. The results of Falicov and Sieverts
calculation for this model are presented in Fig. 1.
"A. S. Joseph, W. L. Gordon, J.R. Reitz, and T. G. Eck, Phys.

Rev. Letters 8, 334 (1961).
'4 W. A. Harrison, Phys. Rev. 126, 504 (1962).' J. R. Reitz, J. Phys. Chem. Solids 25, 53 (1964).
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FIG. 2. Structure of the Fermi surface of potassium as modiGed
by the heterodyne periods. The 0 vector is assumed parallel to
the magnetic field H. (a) H[[L100j; (b) H))I 110j; (c) H))$123).
The deformation of the Fermi surface at the heterodyne gaps
and the conical points of the surface (due to the Q vector, itself)
are neglected. A low-Geld hole orbit is marked out by the arrows
in (a); the broken arrows correspond to paths on the back side
of the sphere.

IV. FERMI SURFACE OF POTASSIUM

We are now in a position to discuss the Fermi surface
of potassium and its eGect on the magnetoresistance of
this metal. The Fermi surface to be discussed derives
from a charge-density-wave model with a single charge-
density wave of wave vector Q which is orientable by
magnetic fields of j.o kG or more. The orientation effect
is such that Q aligns approximately parallel to the
field. "Stability arguments demand that Q be slightly
larger than the diameter of the Fermi surface, and calcu-
lations' for potassium indicate that Q=1.33(2s/u),
where a is the lattice constant.

Since Q) 2k &, the charge-density periodicity does not
change the connectivity of the Fermi surface. There are,
however, other periodicities in the structure; there are,
for example, periodic potentials associated with the re-
ciprocal-lattice vectors Gsst. But gaps arising from these
do not intersect the Fermi surface either. Further, there
are beat periods or heterodyne periods arising from
interaction of the charge-density and lattice periods. "

"An SDW model is equally acceptable. The Q vector does not
have to align exactly parallel to the Geld, but can align approxi-
mately along the Geld, picking a compromise position determined
by crystal strain and magnetic Geld.

'~The importance of subsidiary periods and their e8ect on
galvanomagnetic properties has been studied previously for the
case of Cr: W. M. Lomer, in I'roceediegs of the International
Conference on Magnetisrn, Nottingharn, 1964 (The Institute of
Physics and the Physical Society, London, 1965), p. 127;.L. M.
Falicov and M. J. Zuckermann, Phys. Rev. 160, 372 (1967).

The most pronounced heterodyne periods are those
governed by the relation

K= 2~6„,+Q
and these give rise to energy gaps which we denote by
h. We thus have an energy-band structure which de-
pends on the orientation of the magnetic Geld.

Figures 2 and 3 show all of the periodicities (7) whose
K is less in magnitude than the diameter of the Fermi
surface for magnetic fields (and Q) oriented along $100),
[110),L123), and [111).These give rise to energy gaps
and an associated zone structure. The magnitude of the
energy gaps 6 is unknown; this will be treated as a
parameter to be determined from Gtting to the mag-
netoresistivity. For two of the orientations shown there
is a group of hole-like orbits at low fields. For V~~[100)
the orbit marked with arrows is such an orbit (solid
line represents that part of the orbit on the front sur-
face of the sphere and broken line that part on the rear
surface). For H~~L111), a remapping of the orbit on the
midplane shows one of the hole orbits. These hole orbits
are converted into electron orbits at high fields as a re-
sult of magnetic breakdown. Magnetic breakdown
causes other connectivity changes also—small electron
orbits being converted into large electron orbits, —but
the largest effects and those which contribute to the
linear magnetoresistivity are those caused by the change
from hole orbits to electron orbits. For H strictly paral-
lel to $110) there is no change in connectivity as a func-

rernapped zone
on midplane

(b)

H Il [I I I]

FIG. 3. Same as Fig. 2. (a) H~ L1111.The arrow marks part of a
low-Geld-hole orbit; (b) A cut through the midplane of the Fermi
surface shown in (a). Parts of the Fermi surface are remapped
inside the zone formed by the heterodyne planes in order to show
the hole orbit.
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tion of field. If H (and hence Q) is misaligned slightly
from the [110)direction, there will be a few extended
double orbits at low field which can be broken down.
This effect does not lead to a linear magnetoresistivity.
For H~~[123) we again have only changes from extended
orbits to circular orbits.

We return now to the [100) and [111)orientations,
where we have hole orbits at low 6eld. We have a group
of orbits and hence a range of coo. [For the geometry
considered the K (k&&b) element gives rise to a cosO~

factor, where O~ is the angle between the orbit tangent
at the zone intersection and K.) At large co,r we thus
have a magnetoconductivity which is made up pre-
dominantly from circular orbits but with a small ad-
mixture of orbits which are transforming (via magnetic
breakdown) from hole orbits to electron orbits. These
orbits are characterized by a range in the parameter,
cop. The contributions to the conductivity from various
parts of the Fermi surface add together.

In order to test this model to see if it produces a linear
magnetoresistance, the calculations of Falicov and Sie-
vert (Fig. 1) were inverted to obtain the components of
their conductivity tensor as a function of co,r. The con-
ductivity of a small group of these orbits, with copr's

ranging from 50 to 150, was added to that of circular
orbits without breakdown. The result (transformed back
again to resistivity) is an essentially linear magnetore-
sistance over the range of interest: to co,r=150. With
breakdown orbits making up about 1%%uo of the total
orbits, the increase in resistivity over this range is 60%.

V. CONCLUSIONS

A charge-density-wave model for potassium in which
the Fermi surface is modi6ed by heterodyne gaps and
varies with orientation of the magnetic field gives rise
to a linear magnetoresistance for single crystals when
the magnetic Geld is oriented either along the [100)or
[111)direction. The resistance will eventually saturate
at very high magnetic 6eld. The intrinsic energy gap
(corresponding to cos0~=1), obtained by Gtting the
model to Penz and Bower's data, corresponds to orpr
=50; this gives 8 =0.07 eV. Such a value appears to be
reasonable since the energy gap associated with Q has
been estimated at 0.6 ev.

There is no linear magnetoresistance predicted for
8~~[110) and H~~[123); in fact, if the Geld and Q are
oriented precisely along [110)in a strain-free specimen,

we would predict no magnetoresistance at all. In a
strained crystal the charge-density wave vector Q will
pick a compromise alignment depending on the strain
6eld and the magnetic field. This will produce a dif-
ferent zone structure. Since low-6eld hole orbits do not
appear to be uncommon, orbits of this type may be
mixed in, even though they do not appear in the "ideal"
orientation. In order to test this possibility vre have
looked at the band structure resulting from small
misalignments of Q and H. With H~~[110), but Q
misaligned 11' (toward [100)), three new pairs of
heterodyne gaps intersect the Fermi surface. At a 13'
misalignment a we11 developed hole orbit appears.

The Fermi-surface model described here predicts a
number of small low-Geld orbits which can possible be
observed in de Haas —van Alphen studies of the alkali
metals. There are, however, reasons why these might
not have been seen before: (1) the curvature of the
Fermi surface in the vicinity of the extremal orbits may
be so large that not enough orbits contribute in phase
with one another to be observed; (2) since strain effects
are more important at low magnetic fields there is the
likelihood of competing zone structures at low field
which would again make individual orbits more diKcult
to observe; and (3) low-Geld de Haas —van Alphen
studies in strain-free alkali metal crystals have perhaps
not been adequately investigated. One observation
which lends support to the Fermi-surface model pro-
posed here is that of Okumura and Templeton" con-
cerning high-field de Haas —van Alphen studies in cesium.
They found that the quality of de Haas —van Alphen
signals depended upon crystal orientation in the mag-
netic Geld, the best signals being obtained when H~~

[110).For other Geld directions, e.g. , H([[111),it was
dBBcult to obtain a signal at all.¹teadded in proof. The model discussed in this paper
predicts that the Hall"-coeKcient of potassium should
decrease with increasing H. This e6ect arises because
the high-Geld Hall coeKcient essentially measures the
difference between electron and hole concentrations.
P. A. Penz [Phys. Rev. Letters 20, 725 (1968)) has
indeed observed this phenomenon on both single-crystal
and polycrystalline material. The largest eBect was for a
polycrystalline specimen, which had a reduction in
Hall coefficient of 7% at ai.r=300.

"K. Okumura and I. M. Templeton, Proc. Roy. Soc. London
A287, 89 (1965).


