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The connection between Taylor's recent self-consistent calculations of phonon frequency spectra in
disordered alloys and those of Davies and Langer in the usual self-consistent-Geld approximation is estab-
lished. It is found that Taylor's results are equivalent to summing the same diagrams summed by Davies
and Langer, but with proper compensation against multiple occupancy of sites by defects. The recently
developed technique of Elliot, Aiyer, and Leath, which self-consistently adjusts the diagram rules to obtain
proper compensation, is used. This method is quite general and clearly can be used for other self-consistent
calculations is disordered alloys.

ECENTLY, Taylor' has developed a self-consistent
method, within the multiple scattering formalism

of Lax,' for calculating phonon frequency spectra in
mass-disordered alloys. His calculations at large defect
concentrations produced results in quite good agree-
ment with recent machine computations for a simple
cubic lattice. ' He also made a comparison of his self-
consistent results for a linear chain with the earlier
results of Davies and Langer4 and reported a narrower
impurity band that did not extend above the maximum
frequency of the light lattice. The present author,
using Davies and Langer's self-consistent-Geld approxi-
mation for a body-centered cubic crystal, found that a
very broad impurity band was also obtained by this
method in three-dimensional problems. s It seemed clear
that Taylor's results were better than those produced
by Davies and Langer's method but there was no
obvious formal connection that would allow a more
critical comparison. This paper makes that connection
and, perhaps, suggests how further self-consistent cal-
culations should proceed.

The connection will be established for the displace-
ment Green's function D which gives the time-depen-
dent displacement-displacement correlations. ' lt satis-
fies the equations of motion

(Mto' —V)D(ps) =I,

we obtain
(D)=d+d(ts)d+d(tsdts)d+ . (3)

The terms in this series can be classiGed by a set of
diagrams6 that were introduced by Langer. 7 The self-
energy Z satisfies the Dyson equation

(D)=d+dZ(D).

The simplest class of diagrams which contributes to
Z consists of the one-vertex diagrams which would be
those shown in the Grst column of Fig. 1 if the propa-
gator lines were unperturbed d lines. This direct one-
vertex summation was carried out to first order in c,
the concentration of 8 atoms, by Langer' with the
result

Z! != cM+sto /L1 M~eto

dpi'

(5)

for the diagonal elements, where dp(co) =d(tttx, nn, &o) is
the diagonal part of d in real space.

Davies and Langer's self-consistent-Geld approxi-
mation was essentially to substitute the diagonal part
Do of the full propagator for do in the denominator of
(5). This procedure sums those diagrams shown in the
Grst column of Fig. j., where the cross-hatched double

where M is the diagonal mass matrix, and V is the
force-constant matrix. In an alloy with mass matrix
M=M~(I e), where M~ is the —mass of the A atoms
and t. is the fractional mass defect matrix which is zero

except at I3 atom sites, this equation becomes

(Mgpo' —V)D(co) =I+tsD(co),

where @=M&eo'. Upon multiplying from the left by
d(to) =. (Mgcos —V) ', the A lattice propagator, iterating,
and averaging over all configurations of the J3 atoms,
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FIG. i. The self-energy diagrams in the one-vertex self-con-
sistent-field approximation with corrections for coincidence of
defects.
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line represents the full propagator Do. The result is

ZnL&'& =cM~etp'/[1 —MgeoPDp].

In terms of do, many diagrams are summed, namely,
all one-vertex diagrams with any number of one-vertex
parts inserted between their interaction lines, where
each of these one-vertex insertions itself has all similar
insertions, etc.

Since the self-consistent-field approximation sums
many diagrams, it seems likely that it should represent
a better approximation to the exact result. Also the
self-consistent field is physically reasonable in a random
alloy since the phonon propagates between explicit
interactions by way of the impure crystal. But, perhaps
more important, the self-consistency gives the correct
analytic properties to the self-energy, in particular, a
branch cut along the impurity band.

%hat seems to be wrong with the naive summation

(6) of these diagrams is that no compensation is made
against multiple occupancy of sites by defects. ' For
example, the second diagram in the second row of Fig.
1 appears in the calculation of (D) with weight c'
whenever the diagram in the first row is put into Z
with weight c. But, in the evaluation of (D), a sum-
mation is made over internal indices, and whenever the
two sites coincide in the summation the diagram is
weighted incorrectly since its weight then is only c.
The correct weight c is put in by Davies and Langer's
approach by including the first diagram in the second
row in Z, but the c' is not subtracted out. This can be
done by subtracting from Z the second diagram in the
second row. The usual procedure has been to sum
across the second row to obtain weight (c—c') for the
second-order vertex. ' Similarly, if one sums across each
row in Fig. 1 one obtains a multiple-occupancy poly-
nomial P„(c) to associate with the rth-order vertex
which corrects for defects coinciding on lattice sites in
the summations. The straightforward procedure is the
usual cluster expansion obtained by subtracting from c
in each one-vertex diagram the weight of each diagram
that can be obtained by breaking the vertex, and results
in a combinatorial problem which can be solved in
closed form for P„(c).s However, this procedure corrects
for diagrams which do not appear explicitly in any
particular approximation to Z and leads to spurious
behavior of Z.' Thus, it seems that one must take care
to include in the corrections only those diagrams which
eventually appear in one's particular calculation. That
is, the value P„(c) associated with each diagram is
determined implicitly' by the diagrams that are to be
summed. This feature can be incorporated by inspection
or by induction in only the simplest cases. For example,

the direct one-vertex calculation of Elliott and Taylor'
has this feature. '

A more powerful implicit method must be used in
general. Recently, Elliott et a/. have developed such a
method and applied it to the two-vertex summation. "
The method is quite general and can be adapted to
self-consistent calculations.

Instead of summing across each row in Fig. 1 to
obtain P„(c) for each diagram, one sums down each
column first to obtain 0, and then across to obtain an
implicit expression for Z without learning the contri-
bution of each diagram.

If we use this technique here, we find that the con-
tribution from the first column in Fig. 1 is

The minus sign occurs because the corrections are
subtracted. Similarly, we find 0-3 to be

o's = Z[Dp/(1 —ZDo)]DoZ[Do/(1 —ZDo)] ~ (9)

The remaining columns are obtained similarly so that
the final result for Z= P;=t" o.; is

Z[D,/(1 —ZD,)]cMg6M
+Z. (10)

1 Mgetp'Dp 1——Z[Dp/(1 —ZDp)]Dp

The last term on the right cancels the left-hand side
so that the solution for Z[Dp/(1 —ZDp)] is simply

Z[Dp/(1 —ZDp)] =cM~so~'/[1 —(1—c)M~au'Do]. (11)

In order to evaluate Z=Z[Dp] we must make the
replacement, in Eq. (11),

Do/(1 —ZDo) ~ Do

or

Do +Do/(1+ZDo) . — (12)

The result of this substitution in both sides of Eq. (11)
ls

Z=cMg '/(1 —(1—c)Mg '[Do/(1+ZDo)]}. (13)

o i= ceM~to'/(1 Mgeto—'D )

as obtained by Davies and Langer. The first concen-
tration compensations come from the second column
which contains all diagrams with one irreducible part
but all possible explicit insertions. This contribution
can be evaluated by treating Z =Z[Dp] as a functional
of its internal propagator. In terms of Z[Dp], these
diagrams are Z[Dp/(1 —ZDp)], minus the term with
no insertions. That is, we write

8 For example, see a discussion of this point by P. L. Leath and
B. Goodman (to be published).' The word "implicit" here means self-consistent and is used to
prevent confusion with the self-consistent-held approximation.

' R. J. Elliott and D. W. Taylor, Proc. Roy. Soc. (London)
296, 161 (1967)."R.J. Elliott, R. N. Aiyer, aud P. L. Leath (to be published).
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This self-consistent equation is the same as the one
Taylor obtained by another method as can be seen by
multiplying both sides by (1+ZDo) 'L1+ZDo —(1—c)
X3f~eM'Do j to obtain

&(1+ZDo) 'L1+&Do—(1—c)MxerosDoj=cMxeco' (14)

which is Eq. (3.7) of Taylor's paper. '
It now seems, with Taylor's calculations and this

connection with the usual diagrams, that implicit com-
pensation in diagrams is important. Furthermore,

Yonezawa and Matsubara" have pointed out that any
theory at large concentrations should be symmetric in
the 3- and 8-atom types. Taylor has shown that Eq.
(14) has this symmetry, so that implicit compensation
also seems to restore A-B atom symmetry. A further
feature of this method is that, with the resulting im-
plicit equations in any calculation, the perturbation
expansion is no longer a power series in c and can
possibly yield results that are not analytic at c=0.

12 F. Yonezawa and T. Matsubara, Progr. Theoret. Phys.
(Kyoto) 35, 357 (1966).
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The frequency-versus-wave-vector dispersion relations for the normal modes of vibration of a series of
alloys of the transition metals niobium and molybdenum have been measured at 296'K, and previous
measurements on the pure metals have been extended, using coherent, one-phonon scattering of thermal
neutrons. The phonon dispersion relations are very diGerent for the two pure metals, suggesting that the
electronic structure, acting through the electron-phonon interaction, plays a significant role in the deter-
mination of the dynamics of these materials. The observed neutron groups corresponding to the phonons
in the alloys are not significantly broader than in the pure metals. The dependence of the dispersion curves
on alloy composition is found to be complicated, both the general level of frequencies and the shape of the
curves changing significantly. Fourier analysis indicates that the interatomic forces in the metals are oscil-
latory and of long range. Suspected Kohn anomalies are observed on several branches of the dispersion
curves. With the assumption of a rigid-band model, the positions of several of these anomalies correlate
with the calculated electron band structure for tungsten. The dimensions of the Fermi surface obtained
from this correlation are in agreement with other Fermi-surface information.

1. INTRODUCTION

RANSITION metals are characterized by a par-
tially 6lled inner electronic shell. This un6lled

shell results in many unusual properties' and might be
expected to have a significant e6ect on the interatomic
force system. This paper presents extensive measure-
ments of the phonon dispersion curves of niobium and
molybdenum and their alloys which demonstrate that
such effects are quite marked. In favorable cases the
results can yield information concerning the details of
the electronic band structure.

The dispersion curves of the column-V transition
metals niobium' (in the 4d series) and tantalum' (5d)
show many similarities, as do those of the column-VI
metals chromiumo (3d), molybdenum' (4d), and tung-

1For a review of the properties of transition metals see S. V.
Vonsovskii and Yu. A. Izyumov, Usp. Fiz. Nauk 77, 377 (1962)
(English transl. : Soviet Phys. —Usp. 5, 547 (1963)g.' Y. Nakagawa and A. D. B.Woods, in Lattice Dynamics, edited
by R. F. Wallis (Pergamon Press, Ltd. , Oxford, England, 1965),
p. 39; Phys. Rev. Letters 11, 271 (1963).' A. D. B. Woods, Phys. Rev. 136, A787 (1964).

4 H. Bjerrum Mufller and A. R. Mackintosh, in Inelastic Scatter-
ing of Neutrons in Solids and Liquids (International Atomic
Energy Agency, Vienna, 1965), Vol. I, p. 95.

5 A. D. B.Woods and S. H. Chen, Solid State Commun. 2, 233
(j.964).

sten' (5d). The dispersion curves of the column-V
metals, however, differ greatly, both in shape and fre-
quency level, from those of the column-VI metals. 7

Such effects imply a strong dependence of the inter-
atomic forces on the electronic structure for thesemetals.
Measurements of the dispersion curves of other metals'
indicate that the interatomic forces in some are com-
plicated while in others they are comparatively simple.

The electronic structures of the column-V and col-
umn-VI metals differ in that the column-V metals have
Q.ve electrons outside the closed shell and the column-
VI metals, six. Consequently, measurements of the
phonon dispersion curves of a series of binary alloys of
metals in columns V and VI in the same row should
provide information on how the addition of d electrons
to the un6lled shell changes the normal modes of vi-

' S. H. Chen and B. N. Brockhouse, Solid State Commun. 2,
73 (1964).

'A. D. B. Woods and B. M. Powell, Phys. Rev. Letters 1S,
778 (1965); see also A. D. B. Woods, Brookhaven National
Laboratory Report No. 940(c-45), 1965, p. 8 (unpublished).

'For general reviews of previous measurements of v(q) for
metals see G. Dolling and A. D. B. Woods, in Thermal Neutron
Scattering, edited by P. A. Egelsta6 (Academic Press Inc. , New
York, 1965), Chap. 5; B. N. Brockhouse, in I'honons, edited by
R. W. H. Stevenson (Oliver and Boyd, Ltd. , Edinburgh, 1966),
Chap. 4.


