
P H VSI CAL RE VI EW VOLUME 1'7i, NUMBER 3 2$ JULY 1968

Atomic Migration in Monatomic Crystals*
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A theory of the diffusion-jump process in monatomic crystals is presented. The theory treats large atomic
displacements causing diffusion jumps as a summation of phonon amplitudes. By using the Debye approxi-
mation to the phonon spectrum, a theoretical basis for the empirical Zener relation is established. The
elastic theory gives a satisfactory quantitative account of (a) the motion energy; (b) the motion entropy;
(c) the motion volume; (d) the isotope etfect, Low-temperature diffusion phenomena may be examined
because the theory employs a sufficiently general description of the phonon system. Attention is drawn to
some enhanced diffusion effects caused by zero-point phonons. A quantum-mechanical calculation of diffu-
sion rates for very light impurities is made with a model potential. Anomalous isotope effects are f'ound at
temperatures below the characteristic temperature of the localized mode. The relevance of these results to
low-temperature annealing of radiation damage is discussed.

I. INTRODUCTION

A TOMIC migration in crystals is an extremely com-
plex phenomenon; lying well outside the bounds

of conventional harmonic-lattice theory, its mechanisms
are more grossly anharmonic than any likely Quctua-
tions of the perfect lattice. Moreover, whether diffusion
of atoms from one site to the next takes place by an in-
terstitial process or by means of lattice vacancies, the
elementary jump always occurs in a defective region of
the lattice, where translational symmetry no longer pre-
vails. The latter is, perhaps, of greater concern to the
theoretical physicist than to the crystal itself, for while
the crystal spectrum may often suffer only a slight dis-
tortion, the increase in mathematical complexity is very
considerable. So much is this the case that the harmonic
theory of defective lattices is a field of current interest,
and calculations, for the main part, are still performed
on model systems. A second important reason for this
limitation is that the calculation of crystal free energies
of perfect solids remains very difficult, and only the
most intrepid tackle phonons in a defective lattice from
first principles. Indeed, it has become fashionable to
approach even metallic systems using two-body central-
force models and a digital computer. Thus, the correct
description of atomic migration processes lies in the
union of three areas of major difficulty in crystal theory:
cohesion, anharmonicity, and defect vibrations.

Yet, the complexity may in part be peripheral to the
main problem of understanding, in reasonably quanti-
tative terms, the factors limiting atomic diffusion. The
perturbed-lattice modes near a vacancy may, in most
cases, be suKciently similar to unperturbed states for
their inclusion to be a matter of detail, rather than of
central interest. Moreover, a wealth of information con-
cerning the crystal energy near equilibrium is available
in the phonon spectrum itself; if as yet the spectrum
cannot be calculated precisely, it is at least susceptible
to experimental determination. Properties relevant to
atomic migration may therefore be obtained. Finally,
anharmonicity may be of direct concern only to the ex-

~ Supported in part by the Advanced Research Projects Agency
under Contract No. ARPA SD-131.
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tent that the magnitude of Quctuation needed to efIect
an elementary atomic jump is determined by the crystal
energy in a configuration containing one atom well re-
moved from an equilibrium site. But this energy is just
a parameter, which we may hope eventually to obtain
from first principles and which at present appears to be
well approximated by the relaxed saddlepoint energy;
the essential point —the variation with thermodynamic
variables of the transition probability —may well be
contained in the almost harmonic vibrational structure
of the normal modes near equilibrium.

Existing treatments of the di6usion-jump process in
solids have fallen into two categories. The approach
that has hitherto proved the more useful, due initially
to Wert and Zener, ' has been elaborated by Vineyard'
to a form identical with that now employed in the
theory of chemical reaction rates as applied to molecu-
lar transitions (see Slater'). lt is essentially a classical
treatment, not only because of the classical partition
functions customarily employed, but also because its
development rests upon the existence of a saddlepoint
configuration in which the velocities and positions of
each particle are specified simultaneously without tak-
ing due cognizance of the uncertainty principle. Some
corrections to the classical statistical formulation have
recently been incorporated into the theory by I eClaire, 4

but it seems likely that in those cases (diffusion of H and

D) for which the statistical corrections are most neces-
sary, the uncertainty principle makes the basis of reac-
tion-rate theory least tenable. We consider this point in
more detail below (Sec. X).

The merits and difhculties of the reaction-rate treat-
ment are discussed in the literature. ' ' It results in a
prediction that migration parameters are associated with
the relaxed crystal constrained in the saddlepoint con-
figuration, although the configuration must be very

' C. A. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).
2 G. H. Vineyard, J. Phys. Chem. Solids 3, 121 E,

'1957).
' N. B. Slater, Theory of Unimotecsclar Reactions (Cornell Uni-

versity Press, Ithaca, N. Y., 1959).
4 A. D. LeClaire, Phil. Mag. 14, 1271 (1966).

D. Lazarus, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1960), Vol. X.

6 H. R. Glyde, Rev. Mod. Phys. 39, 373 (1967).
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short-lived. This is seen clearly in the frequency factor2

3N 3N

i=2

with vi and v phonon frequencies in the normal and the
constrained saddlepoint configurations. Equation (1.1)
measures the entropy change of the phonon system; a
calculation of the entropy based on this prescription~
falls short by several entropy units, of experimental
values. Similarly, the activation "volume" for motion is
found to be the equilibrium-volume change of the lat-
tice constrained to remain in the saddlepoint. It has
often been thought unsatisfactory that such equilibrium
quantities for a fully relaxed conhguration should ap-
pear relevant to processes occupying only a fraction of
any phonon period.

An alternative formulation by Rice' emphasizes
fluctuation processes; it has fallen into disrepute be-
cause, in the final evaluation of jump rates, necessary
simpli6cationa of the general equations lead to a pre-
dicted temperature variation of diffusion that is not in
accord with experiment. However, this approach has
been shown to have the same formal content as reaction-
rate theory. ' It falls down when the jump is ascribed to
a particular activated mode, thereby producing a varia-
tion of D with T other than the simple Arrhenius
relation.

In the present paper, we present a fresh calculation of
the jump rate that is more akin in spirit to the dynami-
cal approach than the rate-theoretic method. The reason
for this choice is that it leads very simply into a quan-
tum-statistical treatment of the lattice modes. Instead
of continuing the general theory to a point where
physical arguments become dificult, we choose im-
mediately a particular reaction coordinate x on physical
grounds, and then express Quctuations of this coordinate
in terms of the phonon structure. On making the as-
sumption that jumps occur when the coordinate exceeds
a critical value q, one may then obtain the jump rate
from Kac's equation using an approximation due to
Slater. Calculations are carried through in the harmonic
approximation and our 6nal expressions contain the
parameter q. For a well-chosen reaction, coordinate q is,
in effect, the energy parameter we discuss in the opening
paragraphs of this introduction: It measures the type
and size of fluctuation needed to eRect a jump.

Several interesting results follow from this approach.
When the phonon spectrum is treated in the Debye
approximation one obtains the motion free energy in
terms of elastic constants. A theoretical basis for the
empirical Zener relation. ' may then be established.
Moreover, it is found that the critical quantity q is a

~ H. B.Huntingdon, G. A. Shim, and E. S. Wadja, Phys. Rev.
99, 1085 {1955).

s S. A. Rice, Phys. Rev. 112, 804 (1958); O. P. Maniey, J.
Phys. Chem. Solids 32, 1046 {1960).

9 C. Zener, in Imperfections in 3learly Perfect Crystals, edited by
W. Shockley (John Wiley 8r Sons, Inc., New York, 1952).

sensibly constant fraction of the jump path for all
monatomic materials with the same crystal structure.
As a result, the migration energy may be predicted with
fair accuracy. When quantum statistics are used to ob-
tain the phonon amplitudes, we may also trace an
anomalous diRusion behavior to be anticipated at tem-
peratures below the lattice Debye temperature.

These and other results are presented in later sections
of this article. In the next section, we consider the choice
of a suitable reaction coordinate.

II. FLUCTUATIONS OF THE REACTION
COORDINATE

No general prescription for calculating the motion
energies of defects in solids is, as yet, available. Ap-
proximate computations using pairwise forces derived
from equilibrium properties have not met with great
success, particularly for metals. "Nevertheless, it does
seem intuitively reasonable that short-range repulsions
between a migrating atom and certain of its neighbors
dominate the dynamics of the compressed saddlepoint
configuration. These forces must therefore be empha-
sized in a correct selection of the reaction coordinate.
Furthermore, the criterion for completion of a jump is
closely tied to the position of a migrating atom with re-
spect to its neighbors barring the jump path. The neigh-
bors exert strong repulsive forces on the jumping atom
as it approaches the saddlepoint, and the jump will be
completed only if the fluctuation is sufficiently strong
to force the moving atom past its neighbors towards the
vacancy.

Evidently the instantaneous reLative position of the
ring of neighbors. and the migrating atom is of central
interest in the diffusion process. As a first crude approxi-
mation to the mechanics of atomic migration we there-
fore choose

(2.1)

as a suitable reaction coordinate, with u~ the position of
the diffusing atom and u„ the position of the neighbor
e along the jump path. In eiIect, the quantity K ' P„u„
defines the saddlepoint as the center of gravity of these
R neighbors; the scalar product selects only those dis-
placements parallel to the unit vector x directed along
the jump path.

With Eq. (2.1) we lose immediately any many-hody
generality of the subsequent argument; attention is
focused on the behavior of a particular set of atoms
crucial to the completion of a jump, and the configura-
tion of all other atoms is ignored. Moreover, it is clear
that no single choice of reaction coordinate can be ideal
for all crystals and all types of defect. That the resulting
predictions prove useful presumably. indicates that the
assumption is a satisfactory first approximation. Note

"See, e.g., R. A. Johnson, J.Phys. Chem. Solids 28, 275 (1966).
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that these dBBculties only enter into the criterion for an
adequate fluctuation. The statistics of phonon Quctua-
tions may, in principle, be treated using the exact spec-
trum of lattice vibrations.

Equation (2.1) is open to substantial criticism on the
grounds that, even inside the assumption that certain
chosen atoms alone are important, a relevant part of
their motion is still ignored; for it is obvious that the
lateral motion of saddlepoint neighbors is essential to
minimize the required Ructuation energy. However, it
is likely that this process will enter into the theory only
as an adjustment of the parameter q which eventually
measures the energy of motion. On the present approach
this quantity is not determined from crystal theory, but
is obtained by correlating observed diffusion data with

theory. We proceed in the belief that future elaboration
of this theory will clarify the question raised here.

The theory now develops according to the following

argument:
In the harmonic approximation" we may resolve lat-

tice vibrations into a spectrum of normal modes with
eigenfunctions

i' t

I
I
I

I 1
I
I l

/
tr

So

number of modes involved makes an approximation due
to Slater particularly attractive. When

q«p x„qs, (2.7)

Pro. 1.Hypothetical potential energy of a migrating atom as the
reaction coordinate varies. The harmonic potential and a potential
cut off at V(q) so as to be consistent with the harmonicassumption
are shown.

u„),(r„,t) = e„gl„x(r„)e'"' (2.2)

having frequencies co and polarizations e„&, with )
identifying a branch of the spectrum, and r„ locating
the atom in the eth cell. The modes have an average
thermal equilibrium energy

e„=-',t'tto coth(Aoo/2kT) . (2.3)

The classical peak amplitudes in a perfect lattice of S
ions with mass M may be obtained as

ros
(
x 0

(

2- 1/s

- Z-), [x.x'f'

2

exp— (2.8)
Z.x (x.),'~'

In the present case it is obvious that

one may represent displacements by a Gaussian distri-
bution, under which conditions the upzero frequency
is13

iu„g'i'=2e /EMtos. (2.4) (2 9)

Consider a particular atom which is free to migrate,
either by virtue of its interstitial location, or because it
neighbors a lattice vacancy. Each harmonic mode gives
rise to a motion of this atom along the reaction co-
ordinate x. The mode (oo),) will contribute to the fluctua-

tion of x according to

x ~ x ~og$405 (2 5)

x(t) =g x„),——Q x„gee*'"'.
coX cyX

(2.6)

In the harmonic approximation, x Quctuates wildly with

peak amplitudes ~10"u for a crystal with ~10"lat-
tice points. Fluctuations with x a s&scient to cause
a diffusion jump, occur substantially more frequently.

The criterion for a jump is that x(t)—q have an
"upzero" (i.e., swing through zero in an increasing

sense). Upzero frequencies of sums such as (2.6) may
be obtained from Kac's" equation, and the enormous

» J.M. Ziman, Ptlonons and Jrtectrons (Oxford University Press,
Oxford, England, 1960).

"M. Kac, Am. J. Math. 65, 609 (1943).

where x„), may be obtained from the phonon structure
and Eq. (2.1).Thus,

since, typically, atoms in solids have vibrational am-
plitudes reaching a fraction of the lattice spacing at the
melting point. The lattice potential associated with the
migrating atom, as approximated by our present model,
is shown in Fig. 1.It is harmonic up to x= q, and for any
displacement larger than q the jump proceeds to com-
pletion. Note that one need not pay attention to the
velocity of the migrating atom. Atomic motion is so
rapid, and jumps so rare, that it is sufhcient to regard
diGusion jumps as being effected with the frequency of
appropriate Quctuations.

Equation (2.8) has been applied to jump processes
previously', the novel part of the present theory lies in
its application to a particular reaction coordinate with
a simple model of the phonon system. '

III. PLANE-WAVE APPROXIMATION

To obtain the jump frequencies from Eq. (2.8) we
need values of the x z . These may be obtained in prin-

"This is strictly true only for cases where the x ),' are equal
(see Ref. 3).

~4 Two further articles in which an inappropriate reaction co-
ordinate is used have recently come to the author's attention.
They are (a) G. O. Alefeld, Phys. Rev. Letters 12, 372 (1964); (b)
H. R. Glyde, J. Phys. Chem. Solids 28, 2061 (1967).
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ciple from the crystal phonon spectrum, but it must be
recalled that the migrating atom is found in a disturbed
region of the crystal, either neighboring a vacant site
(vacancy mechanism) or being itself an interstitial
atom (interstitial mechanism). Calculations of phonon
spectra for such atoms have been of intense interest in
recent years, ""but have not yet reached a level of
accuracy sufhcient for reliable polarizations, amplitudes,
and frequencies to be generally available. The main
di%culty lies in evaluating the energy of real crystals as
a function of the ionic displacements.

In the absence of detailed and general information,
we make the assumption that the phonon spectrum is
little altered by the defect, and we represent the eigen-
functions by plane waves with atoms occupying sites of
the perfect crystal lattice:

u„),(r) = e gu. goe'"'. (3.1)

Suppose in addition that the saddlepoint is de6ned by
the location of atoms separating the migrating atom
from the 6nal site. According to the discussion of Sec.
II, a reasonable choice for the reaction coordinate is then
the quantity

, n,

+IG. 2. Geometry of the
atomic jump into a vacant site
in the fcc lattice.

&np

values of the sums p„i I
x„io

I

' and p„i,co'
I x„&,

I

' quite
easily because the polarization vectors may be chosen
for convenience. We take X of the 3E modes to be
polarized parallel to x, and find the average of

I
x„qo

I

o

over all directions of k for a fixed k (and co), finally sum-
ming over the crystal frequency spectrum. The average
over k in Eq. (3.4) may be performed using the following
results:

(cos'(k yi)) = (I Q(—1) '(4/+1) j&t(kpi)At(coset„) I
')

x(t) =Q x„ioe'"t =Z(4&+1)jot'(&p), (3.6)

(cos(k pi) cos(k y&))=P(4/+1) j~t'(kp)P&t('o),
u„g(rg) ——P u„i,(r„) xe'"t (3.2)

since

(3 7)

where rg is the equilibrium position of the dMusing
atom, and the r„ locate the equilibrium sites of the X
atoms surrounding the saddlepoint. The scalar product
selects only those relative displacements parallel to the
unit vector 9 along the jump direction.

It is instructive erst to carry out the calculation of
m for a speci6c lattice, for which purpose the fcc struc-
ture serves as a useful example. Four atoms bar a direct
migration jump; they are situated on the plane per-
pendicularly bisecting the jump distance, each lying
a distance p= (-,'Qoo)a from the jump path (Fig. 2). The
two opposite pairs lie at &yj and ~y2 with p~. y2= ~p'.
We have, from Eq. (3.2),

x„io=u„qo(1——',e'"'o[cos(k yi)+cos(k yo)g)

X (e„i x)e'"'" (3.3)

where so is one-half the jump path. Thus,

Ix„i,'I'= Iu~i'I '(1+4 cos'(k yi)+i~ cos'(k yo)
+-', cos(k gi) cos(k po)

—cos(k so)

X[cos(k pi)+cos(k po)j), (3.4)
in which

Iu„i,ol'=2e /lVMco'. (3.5)

For an isotropic crystal we may obtain approximate
'~ See, e.g., A. A. Maradudin, K. %.Montroll, and G. H. gneiss,

in Solid State Physics, edited by F. Seitz and D. Turnbull (Aca-
demic Press Inc. , New York, 1963), Suppl. 3.' R. F. S. Hearmon, in Landolt-Bornstdn Tables, edited by
K. H. Hellwege (Springer-Verlag, Berlin, 1966).

and
leil=leol=p and ei i.o=ot',

X{[1+&oi($)jjot(kp) —4Eoi(osr) joi(kso)) . (3.9)

The remarkable feature of Eq. (3.9) is that almost
the same result is obtained by assuming that the saddle-
point position is displaced by the plane-wave amplitude
at a position a~so, in which case we 6nd

I
x i

o
I
'=4 lu~&'I ' sin'(k s/2) (3.10)

and

(I x-i'I ')/ lu-~'I '=2(1—jo(»))=o(»)', (3.11)

where the approximate equality follows because ks is
only 2 even for the maximum crystal k. Equations
(3.9) and (3.11) are shown, in Fig. 3, as functions of k
for s~1.2so. Evidently, Eq. (3.11) is quite adequate; it is
as if the saddlepoint fluctuation were given by the plane-
wave amplitude at a point slightly beyond the saddle-
point. Consequently, we may take

Q I
x g'I '= os' P k'I u„),'I ' (3.12)

(cos(k yi) cos(k so))=g(4l+1) jot(kpi).
l

X jot(»o)&oi(o~) (3.8)

(since pt so=go so=0). In Eq. (3.6), Ho, signi6es the
angle between k and y. On collecting terms one 6nds

(lx )ol')/Iu )ol'=1+-', Q(4l+1)jot(kp)
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FIG. 3. Comparison of P q Jx q'~ ' and -,'(ks)' for s—1.2so.

and from Eq. (3.5) 6nd

P ~x ),'~'=(2$'/3lVM)g k'e /o)' (3.13)

The summation in Eq. (3.13) can always be performed
if the dispersion curves of the crystal are known; it may
be obtained trivially for a Debye crystal. In the iso-
tropic Debye approximation k'/(0s=v ', where v is the
sound velocity. For a crystal with all elastic constants
equal,

where e& and e& are, respectively, the vibrational energy
per atom in longitudinal modes and in each polarization
of transverse modes. The jump frequency is therefore
found to be

15'&'vp'q'
rv=(o)'~'vr) exp—

2(3e)vP+2 e~v))'s
(3.19)

The preexponential factor, when evaluated at high tem-
peratures with 8~= 8~= kT, contains

vi)' ——(o)))')/4sr'(o)r)), (3.20)

with averages taken over mode polarizations at the
Debye limit. Given the detailed crystal vibrational
spectrum the summations could be effected more ac-
curately. The pre-exponential factor, although derived
for T) Oo, is so insensitive to temperature that we are
justified in presuming throughout that it is temperature-
independent, and that the entire pre-exponential factor
is just

rvo= (o)'"vD, (3.21)

where vD is the average Debye frequency obtained from
specific-heat data.

Through use of the Debye approximation we have
now obtained an expression for the migration rate of
atoms in a monatomic crystal, in terms of measurable
quantities and one parameter q that measures the en-
ergy Quctuation needed for the jump to continue to
completion.

P ~x~),'i'= (2s'/3Mv )e)), (3.14)
IV. ELASTIC THEORY: METALS

where cD is the vibrational energy per mode of the spec-
trum. The small discrepancy between Eqs. (3.9) and
(3.11) at high frequency may be regarded as simulating
dispersion in the relation between k and cu. In the same
approximation, but limited to high temperatures where
e, =AT, we may also evaluate

It has been realized for some years that there exists
a connection between the diffusion rate in a solid and
its elastic constants; however, the basis of this observa-
tion has not been fully understood. Zener' has pointed
out a most useful relationship between Dp and the shear
modulus fs(T). For interstitial impurities he gives

=3=5vD p (3.15) Do= va'Q
1 BPp

- pp 8T
(4.1)

with v& being the Debye frequency. The jump frequency
follows from Eq. (2.8):

(o)1Is&&s ssrvsos jeD82- (3.16)

Turning now to the case of crystals with several elas-
tic constants, we find that the summations cannot be
effected without much more detailed calculation. How-

ever, the Debye approximation may be employed for
longitudinal and transverse waves of different velocities.
For longitudinal waves in the approximation of Eq.
(3.11), we find

where Q is the activation energy for self-diffusion, and
v is a frequency factor often associated with the lattice
Debye frequency. For solvent vacancy diffusion, a simi-
lar equation gives quite good results when a factor of
0 55f is inserted . on the right, with f being the correla-
tion factor. The qualitative interpretation of this equa-
tion usually offered is that p measures the lattice strain
at the saddlepoint.

With Eq. (3.19) we have already made contact with
the elastic theory, for the sound velocities may be
written

Q ),(), o)~x„),o~'=(2s'/5Mv)s)el, (3.17)
and

and for transverse waves summed over both polariza-
tions

v)'= 9+2p)/p

v~ =Is/p

(4 2)

(4.3)

P„,(„,„,) i g„),'i '= (4s'/15Mvt') eg, (3.18) Here, p is the density and P, p, the Lame elastic con-
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TABLE I. Elastic theory applied to fcc metals. Elastic data are
obtained from Hearmon (Ref. 16) and activation energies from
Lazarus (Ref. 3) and Corbett (Ref. 33) unless otherwise noted.
Theoretical values of E~ obtained using 8'=0.104 (column 5)
are to be compared experimental values (column 6).

C11 (Cll C12) C44

(10"dyn cm ') (eV)

Experimental

(eV)

values

Cu 1.762
Ag 1.315
AU 2.016
Ni 2.612
Al 1.143
Pb 0.555

0.256 0.818 0.84
0.171 0.511 0.83
0.159 0.454 0.82
0.552 1.317 1.42
0.262 0.316 0.83
0.050 0.194 0.48

0.88'
0.82.
0.83~

~1.3
?
0.56~

1.17
1.08
0.98

~ ~ ~

0.73b
0.49~

2.05
1.91
1.81
2.90
1.48 —1.28'
1.05

Values obtained directly or indirectly from Zy and 0.
b J. Bass, Phil. Mag. 15, 717 (1967).
& F. Y, Fradin and T. J. Rowland (Ref. 22).
d R. Feder and A. S. Nowick, Phil. Mag. 15, 805 (1967).

stants. With these substitutions Eq. (3.19) may be ob-
tained in the form

zt/= (—')'/'vD exp (4.4)
6e(/() +2p)+ 4e,/Ia

where P=q'/s' and the atomic volume 0,=3II/p. But
at high temperatures

Therefore,
el= c&=kT.

(s) r/2p e-(cns&/kt)

(4.5)

(4.6)

15 3 2 1—=—+ +
2C C11 C11—C12 C44

(4.8)

which has weighting factors in accordance with Eq.
(3.19).

The quantity P= cQ8' plays the part of a Gibbs func-
tion for migration. Ke therefore need elastic constants
at 0 K and zero pressure to obtain the motion energy
Esr (assuming that c varies linearly with T and p). Elas-
tic moduli" are given for various fcc metals in Table I,
together with measured and deduced experimental
values of Q, E/& and E,~. The theoretical estimates of
E~ obtained by assuming 6'=0.104 for the fcc lattice
are in remarkably good agreement with experiment, and
we show in Sec. V that nonmetallic fcc crystals also fall
within the scope of this theory. While an approximately
constant value of 6' may be expected if pairwise repul-
sive forces invariably predominate, the present results
suggest a surprising degree of uniformity among these
crystals.

Much less is known about bcc crystals. Table II gives
elastic data for various bcc crystals, and values of E,~

where c is an average elastic constant for migration given
by

15'() +2p)
c= (4 7)

2 (2K+7@)

Even cubic crystals are, in reality, anisotropic. We then
use in place of Eq. (4.7) an average reciprocal modulus:

TABLE II. Elastic theory applied to bcc metals. Elastic data are
obtained from Hearmon (Ref. 16) and activation energies from
Ref. 23 unless otherwise noted. Theoretical values of E~ are ob-
tained using 5'=0.067.

cn g (&n &12) &44

(10"dyn cm ') (eV)

Li 0.134 0.011 0.100 0.031
Na 0.062 0.008 0.059 0.039
K 0.046 0.0042 0.038 0.042
Cr 3.50 1,41 1.01 0.85
V 2.325 0.565 0.460 0.62
Fe 2.43 0.606 1.381 0.70
Mo 4.80 i.58 1.087 1.73
Ta 2,665 0.541 0.873 0.95
Nb 2.46 0.56 0.287 0.68
W 5.326 1.616 1.631 2.8

Experimental

(eV)

0.025 0.42

~ ~ ~

2.85.
~ ~

3.15'

values

0.445b
0.42
3.2

~3 6
2.6
4.0
4.8
4.1
5.9

a Values obtained from By and Q.
b See Ref. 37.
e Va. A. Kraftmakher and P. G. Strelkov, Fiz. Tverd. Tela 4, 2271

(1962) LEnglish transl. : Soviet Phys. —Solid State 4, 1662 (1963)g,

obtained by fitting 5' to the two cases, sodium and
tungsten, for which the motion energy is known approxi-
mately. Once more a single value, 9=0.067, explains
these data, and it is remarkable that materials so difter-
ent as Na and W should be amenable to so simple a
procedure. 'r The an.omalously small fraction of Q taken
by the motion energy of sodium is thus explained by the
small shear modulus C'. Predicted values of E~ for
other bcc crystals are also shown in Table II. It appears
that small motion energies are to be anticipated in all
alkali metals, because of the anomalously large ampli-
tude of shear modes polarized in (110)directions.

The deduced values of 8 are only 30% of the saddle-
point displacement, and one must inquire why such
small fluctuations are sufficient to cause a diffusion
jump. The meaning becomes clear when the saddle-
point energy of the cusped harmonic potential is calcu-
lated: Mco'so' 10 eV. The potential is cut off at the
motion energy, so the cutoB distance is small. Why,
then, does the harmonic approximation give sensible
results' The following argument seems to oGer at least
a partial justification: Although we have calculated the
probability of certain displacements, and therefore of
certain potential-energy Quctuations, occurring we could
equally well have discussed kinetic-energy Quctuations.
The kinetic energy is largest near equilibrium, where a
harmonic approximation is valid, and the effect of
neighbors barring the jump of an atom with sufficient
kinetic energy is just to slow it down to an extent mea-
sured by the barrier height. Rather than being carried
by a cooperative motion, the atom is thrown over the
barrier by an energy fluctuation achieved at small
displacements.

We obtain from the temperature dependence of p an
estimate of the motion entropy. On writing

elf
~(T)=~(0)+&, (49)

8T y
"This result is to be contrasted with that of Ref. 14(b), in

which Ez and E~ are found to vary in a 6xed proportion between
diferent crystals.
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the results

and
1 /8$

y(0)18T „

(4.10)

(4.11)

follow very easily. The 6rst we have used above to ob-
tain E~, the second is essentially Zener's empirical
result, for the derivative of P depends principally on
(8c/8T)a, and c is dominated by the shear modulus. In
place of 0.55Q we have Esr, which is usually a satisfac-
tory approximation when some allowance is made for
the effect of formation entropy on Do. The success of
the empirical relation has provoked suQicient com-
ment'" to make further tabulation unnecessary. It is,
however, worth noting that the existing correlations
make use of data obtained by Koster" from measure-
ments of Young's modulus. When suQicient information
concerning high-temperature elastic moduli has ac-
cumulated it would be of interest to compare more exact
calculations of S~ with experiment. There is a second,
more obscure point, concerning the need for such data,
to which we return below.

It is interesting to consider further the anomalous
case of Na for which the motion energy is only a small
fraction of Q."This feature is well represented in the
elastic theory, as we have demonstrated. A second
anomaly is that the motion entropy appears to be small
or slightly negative, the experimental result being
S~=—2.3&1.8 eu. But since the temperature deriva-
tive @(0) '(8$/8T) is observed to be normal for Na,
and Ese is small, we should, from Eq. (4.11), anticipate
the approximately zero motion entropy, which is deter-
mined by direct experiment. However, the small motion
energy must make the region almost Quid and so give
rise to a complex pattern of motion that makes the
choice of reaction coordinate questionable.

In this discussion of entropy we have tacitly assumed
that the Debye approximation at any given temperature
gives a correct account of the vibrational structure, and
that the mode frequencies shift with the elastic con-
stants. This appea, rs obviously true for low-frequency
modes, but it may be in error at high frequencies.
Theoretical insight into this relationship is obscured by
the complexity of anharmonic effects, while experiments
at temperatures near the melting point are made im-
practicable by short phonon lifetimes. Recent experi-
ments performed below the Debye temperature on
copper crystals" suggest that, up to the Debye tem-
perature at least, high-frequency modes shift consider-
ably less than low-frequency modes; on the other hand,
the optical-mode frequencies of ionic crystals are ob-

'8 A. D. LeClaire, Acta Met. 1, 438 (1953).
"W. Koster, Z. Metallk. 39, 1 (1948}.
se R. Feder and H. P. Charbnau, Phys. Rev. 149, 464 (1966)."R. M. Wicklow, G. Gilat, H. G. Smith, and L. J. Rauben-

heimer, Phys. Rev. 164, 922 (1967).

Q=34T (4.12)
~~ G. O. Jones, D. H. Martin, P. A. Mawer, and C. H. Perry,

Proc. Roy. Soc. (London) A261, 10 (1961).
'3 Various tabulations of activation energies in bcc metals are to

.be found in Digusion ia Body Ceatered CNbio Met-als (American
Society for Metals, Cleveland, Ohio, 1965).

s' F. Y. Fradin and T. J. Rowland (to be published)."R.I owrie and A. M. Gonas, J. Appl. Phys. 58, 4505 (1967).

served" to suffer quite large shifts with temperature.
Thus, it is not possible at present to assess fully the
degree to which temperature coefficients of elastic
moduli give a satisfactory measure of the average mode
frequency changes. Certainly, the Gruneissen assump-
tion predicts a shift of co' with temperature comparable
to the observed change in elastic constants.

The intimate connection between elastic constants
and diffusion rates is found not only for the motion en-
ergy as given by the present theory, and the Zener re-
lationship, but also for more subtle features. In Sec. V,
we show that the elastic constants also account for the
"motion volume".

In recent years, curved Arrhenius plots for diffusion
have been obtained in certain metals and the origin of
these effects, if real, remains obscure. The bcc metals
have provided well-documented examples, " but the
combination of several independent investigations of
diffusion in aluminum apparently points to equally non-
linear behavior. '4 It is interesting to note that at high
temperature the elastic constants of bcc tungsten vary
with temperature in a markedly nonlinear fashion" and
that, from Eqs. (4.10) and (4.11), one 6nds a corre-
sponding curvature of the Arrhenius plot, which indi-
cates larger values of the E~ at the higher temperatures,
as is observed in many systems. If similar curvature is
found in the elastic constants of other bcc metals then
it may be that anomalous diffusion effects that have not
been understood will 6nd a natural explanation on the
elastic theory. We have been able to 6t the combined
diffusion data for aluminum remarkably well using rts(T)
estimated from Koster's" measurements of elastic
properties of aluminum at high temperature. However,
since these data are obtained from polycrystalline
samples, and are therefore uncertain at high tempera-
tures to the extent of possible grain-boundary effects,
the presentation of detailed results would appear pre-
mature. Single-crystal data are at present available
only at temperatures less than 780 K,'e which unfor-
tunately lies below the region of greatest interest. One
should notice that the formation energy also varies with
the elastic constants and may, therefore, contribute to
curvature. In the Appendix, we offer a rough estimate
of this effect. It is shown that Ep is only one-third as
sensitive as E~ to fractional changes of the elastic
constants.

It is appropriate to conclude this discussion of the
elastic theory applied to metals with some general re-
marks concerning well-known empirical formulas' that
provide good estimates of the activation energy for self-
diffusion, namely,
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TABLE III. Elastic theory applied to valence crystals. Elastic data are taken from Hearmon (Ref. 16).Theoretical
values of Esr are obtained using 4'=0.087. Values in parenthese are theoretical (see footnotes).

C
Si
Ge

10.2
1.676
1.32

$ (@11 Cls)

(10"dyn cm s)

2.59
0.512
0.405

&44

2.5
0.80
0.686

1.56
1.17
1.06

(1.85', 2.0b)
(1,0%' 1 06b)
Ia(0.98a' 0.95b)

Other data
gg

(eV)

(315~ 42b)
(213~ 232b)
2a(1.91' 2 07b)

~ ~ ~

5.13O

2.98'

a K. H. Benneman (Ref. 34).
b R. A. Swalin (Ref. 35).
J. M. Fairfield and B.J. Masters, J. Appl. Phys. 38, 3148 (1967), Note that this activation energy is not compatible with the cohesive energy of Si

and low migration energies quoted in the literature (Ref. 33).
d See Ref. 33.

and
Q= 16.5L (4.13)

where T is the melting temperature and L is the
latent heat of melting. The physical basis of these corre-
lations is surely this: The vacancy-formation energy" '7

and (through the elastic constants) the motion energy,
are largely determined by the plasma interaction be-
tween conduction electrons and the positive ionic back-
ground of the lattice. The melting temperature also de-
pends on the plasma interaction, " and, furthermore,
it appears likely that the latent heat of melting measures
mainly the effect on plasma energy of the volume change
on melting, through sects similar to those that limit
liquid expansion. "Thus Eqs. (4.12) and (4.13) essen-
tially interrelate plasma properties, and it seems quite
probable that their general validity in metals will even-
tually be traced to this common link. This explanation
also makes self-evident the reason why the correlations
are successful for metals.

The case of Na also points to a validity of the Zener
relationship more broadly based than is indicated by
a separate analysis of E~ and Ep, for the diRusion en-

tropy is given rather well despite the anomalous division
of Q between these components. As we have pointed out,
the underlying connection between these variables ap-
pears to be the plasma interaction.

"F.C. Fumi, Phil. Mag. 46, 1007 (1955).
'r C. P. Flynn, Phys. Rev. 125, 881 (1962).
's J. E. Enderby and N. H. March, Advan. Phys. 16, 691 (1967).
so C. P. Flynn, J. Appl. Phys. 35, 1641 (1964)."H. R. Moeller and C. F. Squires, Phys. Rev. 151, 689 (1967).
31 A. Berne, G. Boato, and M. dePaz, Nuovo Cimento 46, 182

(1966).

V. DIFFUSION IN NONMETALLIC CRYSTALS

The elastic theory is limited to monatomic crystals,
but not to metals alone; polyatomic crystals have a
more complex vibrational structure to which elastic
constants certainly do not provide a reasonable guide.
We shall consider diatomic crystals elsewhere; the fol-
lowing discussion for fcc materials is restricted to solid
argon, for which both elastic" and diffusion" measure-
ments have been completed, although with limited pre-
cision. Di6usion has been studied in Xe, but the elastic
constants have not.

At O'K, the elastic constants of Ar (in units of 10"
dyn/cm') are believed to be: c»=4.819, err=1.277, and
c44=1.235. Consequently, c(0) from Eq. (4.8) is 2.50
&&10"dyn/cm'. With 8'= 0.052 for the fcc structure, we
thus obtain

8~=0.091 eV.

Q is observed to be 0.168 eV and theoretical arguments"
support a value of Esr somewhat less than Q/2, in good
order-of-magnitude agreement with our result. It is re-
markable that structures having such different cohesive
properties as, e.g., Cu and Ar are equally well described
by the present theory. Berne et al. have noted previously
that the Zener relationship appears to hold satisfactorily
for solid Ar. From our present viewpoint, this result is
not unexpected.

Table III shows elastic constants of the valence crys-
tals C (diamond), Si, and Ge."Only for the case of Ge
has the motion energy been obtained from experiment. 's

A value of 8~0.087, midway between its values of the
fcc and bcc lattices, appears to reproduce in a satisfac-
tory manner the theoretical motion energies due to
Benneman'4 and to Swalin35 who, respectively, employ
a pseudopotential approach and the Lennard-Jones po-
tential in crystal-energy calculations.

VI. ACTIVATION VOLUME FOR MOTION

It is observed experimentally' that the application of
hydrostatic"'pressure to crystals modi6es the diffusion
rate. For crystals dominated by vacancy diffusion, this
change occurs mainly because lattice vacancies (which
increase the crystal volume) are suppressed, and to a
smaller extent from modi6cation of the jump rate. From
our present standpoint, the crystal-volume change dur-
ing a diffusion jump is zero, for the atomic displacement
is just a phase coincidence among the phonons. We
must examine the change in elastic constants caused by
pressure to 6nd the e6ect on vacancy migration.

The activation "volume" for migration is a useful
parameter with which to measure pressure changes of

ss J.J.Burton and G. Jura, J.Phys. Chem. Solids 28, 705 (1967).
3' J. W. Corbett, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1966), Suppl. 7.]
34 K. H. Benneman, Bull. Am. Phys. Soc. 9, 298 (1964).
ss R. A. Swalin, J. Phys. Chem. Solids 18, 290 (1961).
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migration rates. Thus, if

m=z e ™~~
0

then
(6.1)

a future publication we shall show how a more direct
consideration of the high-frequency mode shifts repro-
duces observed pressure effects in silver halides.

c)Get) kT r)w)

ap), w ap),
(6.2)

provided mo is pressure-independent. V~ ls the required
activation volume. According to the preceding results,

Gse ——Q= cQP. (63)

where

(r)P = (e —n~)4 (0),
Lap,

1 tr etc)
c~=

c(0) (c)pl r

1 an
nr —————

(
.

f) ap)s

(6.4)

(6.5)

(6.6)

To our knowledge, the motion volume has been mea-
sured directly only for the ease of gold at room tempera-
ture, for which the measured motion volume, V = f.5
+0.14 crn'/mole, is about 15% of the molar volume. 'e

There is, however, evidence from diffusion measure-
ments that this volume is reasonab1y typical of motion
volumes in. metals. ' Using c44 and s(crt cts) as shear
moduli, one may obtain an estimate of c~ 3)(].Q-"
cm'/dyn from data listed in Ref. 16.In addition, ter ——0.5
X10 ' cm'/dyn, and E~ is observed to be 0.7 ep. se

We therefore obtain, from Eq. (6.4),

V„~3X10 "cm'/atom~2 cm'/mole,

in quite good agreement with the observed value of 1.5
cm'/mole. Activation volumes for migration in other
metals should, in general, occupy a similar proportion
of the atomic volume.

For sodium, ter ——16X10 " cm'/dyn and c~~40
X10 " cm'/dyn. With E&t 6X10-" erg, Vsr 1
cm'/mole. This is small compared to the atomic volume
of 24 cm'/mole. The formation volume, 0.48 0, obtained

by correcting the measured activation volume of 0.52 0
for self-diffusion in sodium is thus not very diferent
from those observed in fcc metals.

It is interesting to note that V~ is not necessarily
positive. For highly compressible crystals it is possible
that f(:z&c, so that V~&0.

Finally, attention is called to the fact that the
changes of elastic constants with pressure, which repro-
duced the motion volumes, are being used to represent
the frequency shifts of the normal modes. This is, once
more, a sound assumption for low-frequency modes, but
its use for high-frequency modes may be questioned. In

36 R M Kmrjcgy Pals. Rev. 122, 1720 (1961)."L.W. Barr and J. N. Mnndy, in DQittsion in Body Centered
CttMe Metals (American Society for Metals, Cleveland, Ohio,
1965).

VII. ISOTOPE EFFECT

Careful measurements of the relative diffusion coeK-
cients of isotopes having different masses, has revealed
that the migration rate varies with isotopic mass. '8 This
effect obviously depends on the detailed lattice dynamics
of imperfect crystals and, as such, is a complex problem
for which no exact description is as yet available. Model
calculations show that very heavy and very light
"isotopic impurities" give rise respectively to low-
frequency resonances and to localized modes. Both light
and heavy impurities have a reduced vibrational ampli-
tude in high-frequency band modes, but for light iso-
topes this is compensated by the local mode. "

While a precise account of isotope effects is thus not
possible at present, we can arrive at quite satisfactory
predictions from a study of the reaction coordinate de-
fined in Sec. II.

We should expect the quantity g z(x„z'(', which
occurs in the exponent of Eq. (2.7) for the jump rate, to
be independent of atomic mass. To the extent that the
potential energy of a migrating atom is dered by its
displacement towards the saddlepoint, the mean-square
displacement given by the summation measures an
average potential energy. A similar but not identical re-
sult, which has been proved by Dawber and Elliott"
shows that the mean-square amplitude around the equi-
librium position is independent of isotopic mass. The
matter is seen much more clearly on the reaction-rate
model, where the exponent is found to be proportional
to the saddlepoint energy and thus depends only on
chemical properties of an ion. In addition, this conclu-
sion appears to be in accordance with experiment.

The inQuence of isotopic mass on diffusion is then
contained entirely in the term (g„z tos( x zo

(
') 't' of the

pre-exponential factor. On writing ue x= )" and n„9
= P, we may expand the summation as

2 2
+—Z Z to'& ),"& ~'+—g g te'&.~"&.e'. (7.1)

n a)X +2 ngn' olX

Q eo'($„y"('=2kT/Me. (7.2)

'SL. W. Barr and A. D. LeClaire, Proc. British Ceram. Soc.
1, 109 (1964)."P. G. Dawber and R. J. EHiott, Proc. Roy. Soc. (London)
273, 222 (1963).

Now g q to'($ q (' is identical with P q($„z"(' for
harmonic time variations, and the latter summation is
just twice the mean-square velocity of the migrating
atom d, Thus, at high temperatures,



ATOM I C M IGRATION IN MONATOM I C CRYSTALS 69i

Similarly,
24T

Q)2 ) R 2

&2 n
(7.3)

5.0—

The remaining terms in Eq. (7.1) are identically zero,
leaving

(7.4)

We can show that the sums over cross terms in Eq.
(7.1) are zero, by considering the orthonormal eigen-
vectors v z of the dynamical matrix. Modes with these
amplitudes have mean kinetic energies

1e r Q Ms(tt ~m) 2 (7.5)

where the summation extends over all atoms. Modes in
equilibrium at high temperature have e, =kT and there-
fore contain an amplitude-weighting factor (AT/a&')'";
the $„z~ are such thermal-equilibrium modes. Therefore

P & (ra'A krak ~ ~2 Z &rak &~k
coX (AX

(7.6)

But the last summation must vanish because the v„~
are orthonormal. We may show by an identical argu-
ment that the remaining summations in Eq. (7.1) are
also zero and that the diffusion rate is, in the Debye
approximation, therefore proportional to

(Ma '+(XM ) ')'"
from Eq. (7.4).

For light impurities, Ms '))(XM„) '; the jump rate
is then proportional to Mq '", giving a simple isotope
effect as observed. 4' For M~ ——M„+5M with bM/M
small, we may write the jump rate in an obvious nota-
tion as

w(M+8M)
1—

te(M) %+1 2M

8M
=DE2' (7.7)

to show that the isotope effect is reduced to a fraction
K/(%+1) of its value for the simple effect. The change
in diffusion coefficient is then obtained by substituting
D for w and fhE for AIL in Eq. (7.7), with f the corre-
lation factor (see, e.g. , Ref. 4). The factor X/(%+1)
is precisely the fraction of kinetic energy that resides in
the migrating atom for a normal mode obtained by
coupling the K saddlepoint atoms rigidly together and
connecting them by a spring to the jumping atom. To
this extent the present approach may be reconciled with
rate-theory results. An interesting prediction is that
isotopic impurities much heavier than solvent atoms
should exhibit only a small isotope e6ect.

Equation (7.8) indicates that true isotopic impurities
(bM/M small) should have isotope effects 20 and 25%

2.0
O ~

Ol

O ~x
I.O

Fro. 4. [g P~'/~N q ~'asafunction of kpfor itin the (111)plane
of the hcc lattice and the polarization vector in the t 111$ direc-
tion. The ratio is considerably larger than unity, because atoms
definining the saddlepoint move out of phase with the diffusing
atom for large k.

smaller than the M '" value, for fcc and bcc crystals,
respectively. These values appear to lie near the range
of the experimental observations, except for Na in which
a larger, 50% reduction is found. "We examine this
interesting anomaly in what follows.

Vacancy jumps occur in (111)directions in bcc metals.
The I 111$direction contains three f 110)planes in which
the weak shear moduli of Na will give rise to anomal-
ously large amplitudes of shear modes. We therefore
expect an overwhelming contribution to the jump proba-
bility from transverse phonons with 0 near the (111)
plane. Now, Eq. (2.8) is only valid when the x„ze are all
of comparable size. If this condition breaks down we
should expect the value of mo to reQect properties of the
packet of modes which activates most jumps; in the
present case we should pay careful attention to the large-
amplitude shear modes.

From our present viewpoint, neighbors inhuence the
sotope effect only because the saddlepoint is in motion.
For the phonons with k large, and which, through multi-
plicity, dominate the diffusion, the distance between
neighbors approaches one-half a phonon wavelength.
The relative velocity i of diffusing atom and saddlepoint
is therefore increased; consequently, it becomes less sen-
sitive to changes caused by isotopic substitution. The
result (7.7) states essentially that (IxI s)'" is increased
about 25% by this correlated motion in relatively iso-
tropic lattices. However, for shear modes in the (111)
plane polarized in the I 111)direction, the correlation is
very much greater. The neighbors may for convenience
be spread into a uniform ring of radius p=a(s)'" en-
circling the

I 111)axis. Then

(7 8)

where the average is over directions of p. On writing

's See W. Eichenauer, W. Loser, and H. Witte )Z. Metalljr. 56,
287 (1965)g for some collected data.

e'"'&=+ i'e~J~(kp) coslqh, (7.9)
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Fze. 5. The jump rate m as a function of T ' for classical statis-
tics and for a quantum-statistical treatment of the migration
process. (The base of the logarithms is 10.)

Thus the entire temperature range may be spanned by
the equation

( )rlspD

gexp-
6el/clt+4eg /(clt cls)+2e&,/c44

(8 1)

Pro. 6. The effective migration energy as a function of reduced
temperature for the isotropic Debye crystal (quantum-statistical
treatment).

with
~)=2—5)0,

we readily obtain
w= (ss)'Isr g) exp( c08'/e)—,

where c is an average elastic constant and

(8 2)
(I*-xe

I ')/I ~-~'I '=2(1—~o(&p)) (7 11)

This function is shown in Fig. 4. In the important region
k) she, Ix q'I'/IN„qsI' lies between 2 and 3, whereas
the isotropic lattice shows an average value of about 1.6.
This motion of the saddlepoint greatly increases the
relative velocity of the diffusing atom and makes the
jump rate correspondingly less sensitive to isotopic
Inass. We believe that the small observed isotope e6ect
in sodium metal may be a direct consequence of this
feature of shear modes polarized along the L111j axis.
It is possible, however, that the neighborhood of a
vacancy in Na is so relaxed that a normal-mode analysis
in terms of crystal properties becomes meaningless.

(8.3)e= g xsi'rte coth(hco/2kT) .
3/ ~

Figure 5 shows Eq. (8.2) as a function of Oo/T,
where O~& is the crystal Debye temperature. Figures 6
and 7 give the eRective energy of motion &sr'" and the
effective preexponential factor m,«, obtained by assum-

ing c08' remains constant as the temperature is varied,
and by writing

(84)

(the pre-exponential factor exhibits a negligibly small
(" 1P) temperature variation). For the isotropic case, we have

VIII, DIFFUSION AT LOW TEMPERATURES

In the preceding sections, we have restricted the dis-
cussion of particular cases to high-temperature phe-
nomena where c„~kT. However, the equations devel-
oped in Secs. III and IV have the additional merit that
they apply to nontunneling motion at all temperatures. "

4'The author has recently chanced upon a letter by Alefeld
)Ref. 14(a)g which appears to have been dropped from the cur-
rent literature. Alefeld draws attention to the possibility of strik-
ing quantum effects occurring at low temperatures, but, through
an inappropriate choice of reaction coordinate, arrives at an in-
correct result for the variation of 8' with T. In addition, Ref.
14(a) fails to make clear the type of behavior to be expected at
low temperature in solids. To the author, the thermal energy (as
opposed to the total vibrational energy) appears irrelevant to the
theory. It should be noted that the present analysis deals only
with positive-energy excursions, not tunneling, but the use of a,

The di6usion rate achieves a constant value at a
temperature that is small compared to the Debye tem-

perature, because the lattice falls into a sensibly tem-
perature-independent vibrational state. This residual
migration at Iow temperatures occurs because the
zero-point phonons can coincide in phase at suitable sites
to cause diffusion jumps into vacant lattice sites. Note
that this is not a tunneling effect; it is the result of
summed positive energy displacements. The occurence
of this migration is, of course, contingent upon the pres-
ence of vacancies for the case of a vacancy mechanism.
The residual jump rate is

szsrusen (T—~ p) (8 3)

model potential leaves the applicability of these results open to
serious question. A correct analysis would treat explicitly the
~any-body wave function propagating between configurations.
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FiG. 7. The effective pre-exponential factor as a function of re-
duced temperature for the isotropic Debye crystal (quantum-
statisticai treatment). (The base of the logarithms is 10.)

in an isotropic crystal. In real crystals one may expect
a smaller effective 0'n due to the dominant effect of
lower-frequency branches of the spectrum.

No very striking evidence for the existence of this
low-temperature migration has been found by the au-
thor, although according to Eq. (8.2) the influence of
zeropoint motion on migration in crystals such as neon
with On) 2'sr should be very appreciable. Of metallic
crystals, those, such as Al, with 0'z a relatively large
fraction of Tsr( 0.4) appear the most likely source of
such evidence. Indeed, it is necessary to include a cor-
rection to the diffusion coeScient above room tempera-
ture. Thus, the temperature range of interest for anneal-
ing quenched Al samples is between O~n and 0.58~.
Migration has been observed at —80'C, and it is inter-
esting to note that at —50 to —60'C Doyama and
Koehler4' report Esr values decreasing through 0.47 and
0.43 eV for a sample in the later stages of annealing.
According to the present theory, experiments employing
protracted annealing periods below these temperatures
may possibly reveal a persistance of atomic migration at
low temperatures.

IX. DIFFUSION OF VERY LIGH'7
INTERSTITIAL 8

DMusion, at normal temperatures, of interestitial
impurities much lighter than solvent atoms (e.g. , H and
D in metals) is, from a theoretical viewpoint, profoundly
diferent from solvent di8usion, because these atoms
vibrate in localized modes outside the spectrum of lattice
modes. It seems likely (contrary to accepted doctrine)
that the diffusion process cannot be described ade-
quately outside a quantum-mechanical framework.
Three features of the problem may be mentioned speci-
6cally: (a) Impurities vibrate in an Einstein-like fashion
with characteristic temperatures 1000 K, so at nor-
mal temperatures less than ~1000'K there appears
little value in using a classical heat-capacity approxima-

"M. Doyama and J. S. Koehler, Phys. Rev. 127, 21 (1962).

FIG. 8. The model potential for light interstitial diffusion.

tion; (b) a particle with mass 10 s4
g oscillating at

10" cps in its ground state has a classical amplitude of
0.3 A and a wave function that remains appreciable

at distances ~1 A, which represent a typical saddle-
point displacement; (c) the notion of a saddlepoint
"velocity" becomes quite meaningless, because in locat-
ing a saddlepoint to any precision, say bx 10 ' cm,
the resulting momentum uncertainty becomes A/8x

10 "dyn sec, and the velocity uncertainty therefore
10' cm/sec. This uncertainty is greater than the re-

quired quantity, namely, the velocity through the
saddlepoint, which presumably is roughly the rms ve-
locity of the particle in its ground state. The latter has
a magnitude (Ace/M)' ' 3X10' cm/sec, so that the
calculation of jump rates from the saddlepoint velocity
becomes hazardous. In what follows, we give a model
quantum-mechanical treatment of interstitial diffusion,
in the belief that the chosen model has enough in com-
mon with the problem at hand for the results to be at
least of qualitative interest. Some estimated results have
previously been obtained by Belier. 4'

The calculation may be performed in one dimension
for a particle trapped in a classical potential. For sim-
plicity, we assume that only two alternative conhgura-
tions are possible and that the potential near the equi-
librium point in each well is harmonic. The potential is
shown in Fig. 8; the problem is to determine the rate at
which transitions from one equilibrium point to its
neighbor take place. This transition rate should be simi-
lar to the jump rate of the particle from one site to the
next of an infinite linear chain of sites, provided the
particle energy is much less than the barrier energy.

If the particle remains in one well for a time that is
long compared to the vibrational period, then the one
center-wave function, P ($) (say, in potential well n)
becomes well defined. However, in principle, we should
acknowledge two wave functions, P, and f, which
spread out over both wells and which are, respectively,
symmetric and antisymmetric around. the saddlepoint.
Obviously,

4' W. R. Belier, Acta Met. 9, 600 (1961).
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and
0=—(1/v2) 9-—A)e "'"""', (9 2)

with E, and E„being the energies of the states g and N.

If we wish to place the particle in well 0, at tin1e t= 0,
we must tak.e the appropriate combination

0 = (1/~2) 9"+0-) (9.3)

E.-E-= (2A'/~)4-(s)!t -'(s), (9.7)

of these wave functions, and the variation of P with
time then gives the jump rate. f develops in time as

cos(E„Eo)t/—2A+P//

Xsin(E„—E,)t/2A]e '~~+s~&'""; (9.4)

the particle then jumps from one well to the next in a
time r such that

cos(E„—E,)r/2A = 0
or

w= 1/r= (E„E)/7rA—. (9.6)

It is readily shown4' that the difference in energy of
the two states f, and P„ is

The addition theorem45

(1-")-/ -pn"+y -2*y )/«-")]
00

= expL —(x'+y')] P H„(x)H„(y) (9.14)
n=p 2nrt, 1

may be employed, with x=y=n$ and s = exp( —Ao&/kT),

to 6nd

e
—nAa)/kT

—o~2t2 H o(~g) —(1 e 2@&—o//&r) 1/2—

n=p 2nrt t

XexpL —2n'P(1+exp( —Puv/kT)) ']. (9.15)

When this is substituted into Eq. (9.13), together with
n'=/Vo&/A, only a little manipulation is needed to ob-
tain the required result:

1/2 (1 e o&o//&T)—

w=2
~3k j (1 e 2o«//&T)1—/2

t Ao/q
X tanh~ ~e-~~/'- (9.16)

&2kTi
where s denotes the saddlepoint displacement. Thus,

(9.17)e= i-Aoo coth(Ao//2kT)
For the chosen potential (Fig. 8), the states f of in-

terest are just the succession of harmonic-oscillator
states

and the saddlepoint energy

(9.18)Esr 3fo/'s'/2. ——")"' «.( k)
n

2&L/o(r/!)1/2
(9.9) The last factor on the right of this equation is the

in1portant one; it has the same form found for solvent
diffusion, with the average lattice energy per mode re-
placed by the local-mode energy. Eq. (9.16) reduces
correctly to the ground-state tunneling rate, for which

(note that we now use a subscript on P to indicate the
particular quantum state in one well), with n'=Mo//A
and H„ the nth Hermite polynomial. Now, the P„are
real; we may therefore write A(s)A'(s) = (~'s/~'")e "" (9.19)

0-(s)4-'(s) = 2[(did()0'(k)].
1(n' '" 1 d

,

—( "'H-'( ()) . (9.10)
2(7r 2"r/! d$

and ~ may be written

wo= (2An's/m'"M)e ~&o/eo, (9.20)

with Bp= ~h(d.

Only the variation with temperature and atomic mass
of the exponential is worth numerical attention, for at

(9.11) low temperatures the remaining functions of tempera-
ture tend to unity, leaving a preexponential factor
typically 10'4. At high temperature, many additional

(9 12) complications arise through interaction with the lattice,
and we may in addition expect jumping over the barrier
to augment the essentially tunneling motion considered
here. Figure 9 shows exp( —E/a/e) for the same poten-
tial and several di6erent interstitial masses, as a func-
tion of O~/T, Oq being the Einstein temperature of the
lightest mass, and with Esr 5kO'~. The limiting ——form
for in6nite mass, and the classical result for our chosen
potential, are also shown.

The probability of state r/ being occupied is

p e «o«/kr(1 e h«/-/&.T)—
and the mean jump rate

w=g w„p„

ls thus

fu' "' A
w= —

~

— —(1—e ""//'r)

e
—nkco/IIt:T

X —e H„'(n$)
«,=o 2 "gg!

with the mean oscillator energy
w= —2A mMQ stP's. 9.8

44 L. D. Landau and I. M. Lifshitz, QNaetum 3fecharrics (Addi-
son-Wesley Publishing Co., Inc. , Reading, Mass. , 1958).

5 P. M. Morse and H. Feshbach, Methods of Theoretica/ Physics
(McGraw-Hill Book Co., New York, j.953).
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potential is incapable of preventing motion at zero tem-
perature. In the absence of traps, the results of this
section suggest even for the cusped potential a zero-
point diffusion rate of H in metals within a few orders
of magnitude of 10 " cm'/sec, or a jump rate &10'
sec '. Internal friction peaks at 1 sec ', such as those
observed by Heller, can best be ascribed to trapped
interstitials, according to the present theory. Since the
Inixing entropy goes to zero at O'K, such trapping be-
comes quite probable. Estimates of actual diffusion
rates from the theory are, however, made insecure by
the use of a model potential, as errors will occur in the
exPoeeli of Eq. (9.20).

Interstitial diffusion at higher temperatures is likely
to prove much more complex than the simple model, as
the following three considerations show. First, the inter-
stitials exert a very large pressure on neighboring sol-
vent atoms. "The rms acceleration, even in the ground
state, is

f= (~'s')'"~(A&a'/4M)'" (9.21)

I.O 5.0 5.0
19, /T

7.0 9.0

Three features of Fig. 9 may be noted: (a) Large iso-
tope effects occur at low temperatures as the oscillator
falls into its ground state; (b) at T O~q, the diffusion
coeKcient ( 10 "w) is 10 '—10 ' cm'/sec, which is
typical of H diffusion in metals at normal tempera-
tures4'; and (c) the classical jump rate is much smaller
than the tunneling rate. It is unfortunate, however,
that this most interesting comparison between classical
and quantum rates is very sensitive to the chosen po-
tential; but this obviously must always be the case,
since by inserting a 6 function we may inhibit classical
diffusion entirely. By suitable choice of different po-
tentials one could vary the ratio between classical
and tunneling rates, although the low-temperature clas-
sical rate can probably not exceed a correctly calculated
quantum rate including tunneling and zeropoint effects.
At suKciently low temperatures, the classical rate must
become negligible, while the quantum rate tends to a
constant value as the oscillator falls into its ground
state.

While our model is thus not suited to precise calcula-
tion of jump rates, it makes one point strikingly clear:
It is not possible to prevent interstitials moving at low

temperatures other than by trapping processes which

bind the defects to a particular set of sites, thereby in-

hibiting diffusion by eliminating long-range migration.
After all, the model places an unreasonably large po-
tential between the equilibrium sites, and even this

Fxo. 9. The diffusion rate for light interstitials vibrating in
local modes, above the lattice spectrum for various interstitial
masses (see text for details of the model potential used).

so the pressure on neighboring atoms, if reckoned as an
area of several A', is of the order of 10 kbar, and it pre-
sumably causes strain. The strain varies with M '"
and may give rise to isotopic effects. It would be interest-
ing to observe directly isotope effects in the dilatation
caused by interstitials. Second, we have considered an
impurity completely decoupled from the lattice modes.
Now, the e6ect of solvent motion in lattice modes is (a)
to frequency-modulate the interstitial by varying the
solvent-interstitial interaction, and (b) to modulate the
energy barrier. Since the lighter interstitials tend to
have less localized wave functions, an isotopic effect may
result from these modulations. Too little is at present
understood about these processes for their effect on
diffusion to be estimated. Finally, we have assumed in
our model that the interstitial motion is confined to a
narrow localized mode. However, the calculations of
Dawber and Elliot" show that this is only true in the
limit M —+ 0. The impurities also have vibrational am-
plitudes inside the lattice band; these modes will be
excited at temperatures typically well below the im-

purity Einstein temperature and will contribute to the
diffusion jump rate at intermediate temperatures in a
way that is not understood at present. In addition, an-
harmonic forces may be expected to broaden the local
mode.

A, measure of the inhuence of these effects on inter-
stitial diffusion at high temperatures may, perhaps, be
obtained from the observed isotope effect at T~e~,
where our model calculation, though not strictly ap-
plicable, shows an isotope effect several times larger
than the classical value. Experimental results are gen-
erally smaller than the classical value. It is interesting
to note that LeClaire, ' using an approximate quantum-
partition function in classical reaction-rate theory, finds

4' I am indebted to Professor R. O. Simmons for drawing my
attention to this point.
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relatively good agreement with the experimental iso-
tope sects. As we have shown, the use of reaction-rate
theory is, in any event, not obviously justi6able for very
light impurities, but it may be that at elevated tem-
peratures the coupling with lattice modes in real crystals
is strong enough to dominate the jump process. At low
temperatures, as for the U center in ionic crystals, we
expect the localized mode to be well defined, and the
results obtained here to be at least qualitatively correct.

X. IRRADIATED CRYSTALS

Two aspects of the present work are relevant to the
annealing processes observed in crystals irradiated at
low temperatures. They pertain, respectively, to the
observed 6rst and third stages.

Residual resistivity caused by radiation damage is
found to decrease markedly at temperatures typically
~30 K, with certain well-defined structure at lower
temperatures. " In view of our previous discussion, in
which diQusion processes are found to persist at low
temperatures when the lattice falls to its ground state,
this structure at temperatures only a few percent of O~r

is remarkable. According to the present theory, it is
most unlikely that the migration is excited by band
modes, for the inQuence of temperature on Quctuation
probabilities among band phonons is negligible at these
temperatures. Whatever the activation energy may be,
we expect from band modes a jump rate proportional
to exp( —Z~/en), and this varies little with tempera-
ture at T((O~~. Thus, the presence of a low migration
energy does not imply that the defects will suddenly be-
come mobile at a proportionately low temperature For.
this to occur, the migrating atoms must vibrate mainly
in modes decoupled from the lattice modes, and
must have a jurnp rate of the approximate form
exp( —Ejr/Hz), which, for suKciently small Oz, may give
rise to rapid changes in annealing rate even at low
temperatures.

This isolation from the band modes can be arranged
in two ways: The atoms may lie in a sharply curved po-
tential, which gives rise to vibrations above the band;
or, otherwise, the potential well may be very shallow, so
the vibration falls in the low-frequency tail of the
phonon spectrum as a resonance mode coupled only to
a small fraction of the phonons, thereby inhibiting zero-
point Quctuations capable of causing migration. How-
ever, one must also recall that whatever the potential
may be, the atom must be excited at temperatures

e&/20 sufficiently for many migration jumps do occur
in a period 10' sec. The most likely con6guration ap-
pears to be some interstitial con6guration, lying in a
shallow potential well and being essentially decoupled
from the lattice at low temperatures by virtue of its
low frequency. Some calculations'~ have indeed indi-
cated that the interstitial has a small migration energy.

47 H. B. Huntingdon and F. Seitz, Phys. Rev. 61, 315 (1942).

In addition, recent experiments" suggest that long-
range migration occurs in stage I, as if the interstitial
were free to move when isolated. Any lower-temperature
structure then corresponds to excitation of recombina-
tion transitions" between neighboring interstitials and
vacancies, for which con6gurations the resonant-mode
frequency would presumably lie still lower. The present
viewpoint is thus consistent with the model proposed
by Corbett et al."It is possible in light materials con-
taining several isotopic species, that isotopic structure
in the annealing spectrum may occur. Isotopically en-
riched Li metal could be interesting in this respect.

It follows from the present theory that interstitials
with low migration energies should have small pre-
exponential factors for migration. A motion energy of
0.1 eV gives rise to a negligible motion entropy (par-
ticularly at low temperatures), and for an Einstein fre-
quency 3)&10" sec ', the pre-exponential factor is

5X10 ' cm'/sec.
The stage-III annealing process has often been as-

cribed to vacancy migration, but this assignment en-
counters difhculty in that the motion energy has, in
several cases, been measured at a smaller value than
that observed in vacancy diffusion at high tempera-
tures. "This di6iculty may eventually prove more ap-
parent than real, for the motion energy may indeed be
smaller at low temperature than near the melting point.
This will be the case, for example, if the vibrational-
mode frequencies (or the elastic constants) prove to
have a nonlinear variation with temperature, such that
at high temperature the negative temperature deriva-
tive has a larger value than that at low temperatures.
This possibility cannot be assessed at present owing to
the paucity of experimental data. In addition, for those
materials in. which stage III occurs below the Debye
temperature, a further decrease in E~, caused by en-
hanced low-temperature migration effects (Sec. IX), is
to be anticipated.

XI. CONCLUDING REMARKS

A theory of the atomic-migration process has been
developed from the following assumptions: (a) The
jump probability can be calculated from the phonon
structure of the harmonic lattice. (b) Anharmonicity
enters into the jump probability only to the extent that
the migration energy is determined from a con6guration
in which one atom lies far from its equilibrium site. (c)
Simple repulsive forces dominate from the saddlepoint
con6guration so that a simple reaction coordinate may
be postulated. That the elastic approximation to the
theory is so successful in accounting for diverse fea-
tures of the migration process is, in the author' s
opinion, only partially warranted by the soundness of
these assumptions.

'8 R. R. Coltman, Jr., C. E.Klabunde, and J.K. Redman, Phys.
Rev. 159, 521 (1967).

4' J. W. Corbett, R. B. Smith, and R. M. Walker, Phys. Rev.
114, 1452 (1959).
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Use of the Debye approximation with low-tempera-
ture elastic constants gives a surprisingly good measure
of the motion energy. This approximation should cer-
tainly give a reasonable description of the phonons and
so provide a useful estimate of the fluctuation proba-
bility in terms of elastic constants in a way that is inde-
pendent of the particular cohesive forces that prevail
with a solid. All the known motion energies in mon-
atomic solids, with values ranging over two orders of
magnitude, may be explained in terms of a Quctuation
parameter 8' characteristic of the lattice structure,
which takes approximate values of 0.104 (fcc), 0.067
(bcc), and 0.087 (diamond structure). Presumably, this
reQects favorably on the chosen reaction coordinate,
and indicates an unexpected degree of uniformity in
diffusion behavior. The description of isotopic effects at
high temperatures also depends to a great extent on the
reaction coordinate, and the results give substantial
support for the choice made in this paper.

Although the elastic theory gives the most satisfac-
tory available account of the temperature and pressure
dependence of the Gibbs function for motion, the agree-
ment secured in Secs. IV and VI (i.e., the Zener em-
pirical relationship and the numerical values of V~)
cannot serve entirely as a measure of the theory until
the relationship between elastic constants and lattice
frequencies is clari6ed. The elastic constants are, after
all, used only to approximate the lattice-mode fre-
quencies, and it is unlikely that they provide a com-
pletely satisfactory description of the mode shifts with
temperature and pressure. Evidently, the result of fu-
ture investigations of high-temperature anharmonic
effects will have considerable relevance to the theory of
dc8usron.

There is a second interesting viewpoint on the elastic
theory. In the most simpleminded sense, a diffusion

jump does introduce a lattice strain as a migrating atom
moves through the saddlepoint. We may expect this
strain to be mainly a shear, if the saddlepoint lifetime is
sufEcient for the con6guration of atoms to become
established in equilibrium. Now, to estimate the energy
in this shear strain we may use the formula

E~=Sm'8 c 6 (11.1)

where e will provide a measure of the atomic spacing,
c' is a suitable average shear modulus, and e is the
strain caused by the jump. But Eq. (11.1) may obvi-
ously be written

E~ C 08
p (11.2)

with P= e6'u'/r, ', and r, the atomic radius. Both the
elastic constant c we use in Sec. IV, and c' in Eq. (11.2)
are essentially shears, and any agreement we secure in
the elastic theory could be reproduced approximately
by Eq. (11.2), with the dimensionless parameter e suit-
ably chosen to 6t the lattice structure, as we have
previously chosen b. This is the "strain energy" model, '

' R. W. Keyes, in Solids Under Pressure, edited by W. Paul and
D. M. Warschauer (Mcoraw-Hill Book Co., New York, 1963).

which leads to equations similar to those obtained from
the elastic approximation. What, then, is there to
choose between Eq. (11.2) and the theory of Sec. IV?

In a certain sense, the two approaches are identical
for high-temperature processes. The elastic theory de-
veloped in Sec. IV simply parametrizes the energy
change as an atom moves toward the saddlepoint in
terms of a scaling factor and the elastic constants; so
also does Eq. (11.2), although the correct choice of
elastic constant is obscure. The shifts of lattice-mode
frequencies with temperature also have their analog
in the diKculty in selecting c in Eq. (11.2) to give en-

ergy changes for a transient saddlepoint. But while Eq.
(11.2) does not permit elaboration, the present theory is
a starting point for which the elastic approximation
represents a crude first approximation; it is an approach
in which we may hope eventually to incorporate an
accurate phonon spectrum and precise crystal energies.

Equation (11.2) is useful in drawing attention to an
additional complication present when G~ varies with

p and T.While it is reasonable that geometrically similar
systems should have much the same value of 5', it is not
to be expected that the motion Gibbs function changes
with p and T in such a way that 5' remains quite con-
stant. It may be that through the similarity between
Eq. (11.2) and our previous expression for G~, we have
fortuitously taken better account of the change of G~
with temperature and pressure than would be the case
had we left the jump rate written in terms of phonon
frequencies and a presumed constant value of 5. How-
ever, since the theory gives a good account of diffusion
in ionic crystals when applied directly to the mode fre-
quencies, it appears most unlikely that this effect does
give a major contribution to the entropy. That a chang-
ing saddlepoint energy could enter into the jump rate in
this way does not, of course, contradict our assumption
that the phonon amplitudes are of primary importance;
it simply means that 5 is not independent of temperature
and pressure. The inhuence of phonon amplitudes may
be discerned most clearly in the low-temperature effects
discussed in Sec. IX.

Of other results obtained in this article, we may draw
particular attention to these predictions concerning
low-temperature diffusion. Atomic migration between
degenerate sites would appear to persist at 0 K with a
frequency appropriate to classical diffusion processes at
temperatures somewhat less than one-half the charac-
teristic temperature of the vibrational modes that cause
diffusion. This prediction may, however, be quite sensi-
tive to the model employed. Very light impurities have
a diBusion rate augmented by tunneling.
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Fp'= (4/15)ZE (A1)

with E, the Fermi energy; Eq. (A1) provides a sen-
sible estimate for low-valence metals, but is too large
for higher valences because the Born approximation be-
comes inadequate.

Ke may in addition include relaxation effects by in-
serting Z'=ZV/Q in Eq. (A1), with V the vacancy
volume, and adding the elastic energy of lattice distor-
tion to find the total formation energies. The result is

4ZVE, 8
Fp= + era'p(V Q)'— —

150 9
(A2)

or
8V 6V '

F@=Fp'+Fro +agQy
V U

(A3)

APPENDIX: CURVATURE FOR VACANCY
DIFFUSION

%hen the elastic constants change nonlinearly with
temperature it is to be expected that the vacancy-
formation energy also changes with temperature. In this
section, we make an order of magnitude estimate of the
effect on D of the combined changes in motion and va-
cancy activation energies.

Most of the vacancy energy in metals comes from the
plasma interaction with the nonuniform background
charge of the lattice. In the Born approximation, the
free energy needed to form an unrelaxed vacancy in a
metal of valence Z is

This has a minimum when

bU 3Fg'

The formation energy is thus

bV~
Pp —Pg 1

Vi
Now 8V/V is typically ——,', so F&'~43FF. It follows
from (A4) and (A5) that

1 8(gQ)1 /OFT)

Fr ( aT i 3pQ aT'
(A6)

Thus, changes in elastic constants affect the formation
energy only to ~~ the fractional extent to which the
migration energy is changed. The argument is far from
exact, since neither the elastic nor the plasma contribu-
tion to Eq. (A2) bears close scrutiny. It does, however,
provide an estimate in the elastic approximation of the
di6usion coefficient at any chosen temperature T, in
terms of the diffusion coeS.cient at the melting tem-
perature T by means of the following relationship:

D(T) =expl:f(T'-)/&T- —f(T)/&2'j (A7)
D(T~)

with

f(T) =lL~~.+(~.+3~ )~(~)/~(T..)j,
in which Ep and E~ denote quantities appropriate to
the melting point. Equations (A7) and (A8) have been
used with elastic data due to Koster to obtain a satis-
factory fit of the combined diffusion data available for
aluminum at high temperatures. "It will be interesting,
when suitable values of elastic constants become avail-
able, to see whether these equations can account for
anomalous Arrhenius plots in other materials also.


