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Theory of Localized Vibrations of Interstitial Atoms in bcc Lattices
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A new method is used for the determination of the frequencies of the localized modes in the harmonic
approximation which avoids the solution of a secular determinant. Explicit formulas are given for the case
of an interstitial atom in a bcc lattice.

INTRODUCTION

'HE problem of the vibrations of an impurity atom
harmonically coupled to a crystal lattice has been

solved in principle by the method of Green's functions
due to Lifshitz' and Montroll and Potts. 2 Since the
publication of these papers numerous applications of the
method have been made to simple systems and more
realistic ones. A detailed list of references to this work
are given in recent review articles by Maradudin, '
Lifshitz and Kosevich, 4 and Ludwig, ' to which we refer
the reader. One notable problem which has not received
so much attention is the case of an interstitial impurity
(Wagner). e To this problem we devote the present work.
We consider specihcally the case of an impurity, located
in a tetrahedral interstitial site of the bcc lattice. We
assume for the host lattice a model with central har-
monic forces between erst and second neighbors. Such
a model reproduces fairly well the frequency spectrum
obtained experimentally by inelastic neutron scattering
(INS) on pure vanadium. ' Experimental results have
been obtained' on the hydrogen-vanadium system which
could be compared with our theoretical calculations.
%e restrict ourselves to the harmonic approximation.
Thus we are not concerned with the linewidth of the
localized levels (Klemens, ' Visscher, "and Krivoglaz").

Our theoretical approach will be based on the for-
malism of the method of double-time Green's functions
(Zubarev") which was already used for the treatment
of a substitutional (isotopic) impurity in a simple cubic
lattice by Elliot and Taylor. "We shall, however, in-

s I. M. Lifshitz, Nuovo Cimento 3, 716 (1956).' E. W. Montroll and R. B. Potts, Phys. Rev. 100 525 (1955).
'A. A. Maradudin, Rept. Progr. Phys. 28., 331 1965); Solid

State Phys. 18, 279 (1966).
4I. M. Iifshitz and A. M. Kosevich, Rept. Progr. Phys. 29,

21/ (1966).
s W. Ludwig, Recent Developments in Lattice Theory (Springer-

Verlag, Berlin, 1967); Ergeb. Exakt. Naturw. 35, 1(1964).' M. Wagner, Phys. Rev. 131, 2520 (1963); 133, A750 (1964).
s P. C. Fine, Phys. Rev. 56, 355 (1939);J.De Launay, J. Chem.

Phys. 21, 1974 (1953); K. Krebs, Report No. EUR 336.e (un-
published).

8 W. Kley, J.Peretti, R. Rubin, and G.Verdan, Proceedingsof the
Brookhaven National laboratory, 1965, Report No. BNI 940
(unpublished); J. Phys. (Paris) 28, 1 (1967).

P P. G. Klemens, Phys. Rev. 122, 543 (1961).' W. M. Visscher, Phys. Rev. 134, A965 (1964)."M. A. Krivoglaz, Zh. Eksperim. i Teor. Fiz. 40, 567 (1961)
(English transl. : Soviet Phys. —JETP 13, 39"/ (1961))."D. N. Zubarev, Usp. Fiz. Nauk 72, 71 (1960)][English transl. :
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troduce our Green's functions in such a way that we
can avoid the resolution of a secular equation which is
necessary for interstitial systems in the approach of
Wagner. '

In Sec. I we have developed the general formalism
for the case of an harmonic oscillator coupled to a
system of harmonic oscillators. These results can be
used for a calculation of the position correlation function
(X (t)Xp(0)) of the impurity atom, which allows a direct
comparison with incoherent neutron scattering data,
using well-known techniques. ""We arrive at a rather
simple equation for the frequencies of the local oscil-
lations of the interstitial.

In Sec. II we obtain explicit expressions for the case
of interstitial atoms in bcc lattices and compare the
theoretical values of the localized mode frequencies with
the experimental data on vanadium hydride.

In Appendix A we rederive some results of Sec. I by a
special matrix partition technique. In Appendix 8 we
show that our partition method can be conveniently
used also in the case of substitution impurities.

I. THEORY OF VIBRATION OF INTERSTITIAL
ATOMS IN A REGULAR LATTICE

A. Hamiltonian of the System

The Hamiltonian of the system can be written as the
sum of three terms

H=Hp+Hr+H; s, (1)
where Ho is the Hamiltonian of the host lattice, Hz the
Hamiltonian of the oscillations of the interstitial atom
in a "frozen" host lattice, and H; ~ the term which
describes the coupling between the lattice modes and
the oscillations of the interstitial atom. Using the nota-
tions of Maradudin, ' Ho has the form

P '(ltc)
Hp ——Q + ', Q C (tz-; lY)tt (ttt)N„(t'K'), (2)

where M is the mass of the lattice atoms.
We write the Hamiltonian Hz in terms of the normal

modes of oscillation (s=1,2,3) of the interstitial in the

"L.Van Hove, Phys. Rev. 95, 249 (1954)."A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 1 18 (1956).
'6 V. Ambegaokar, J. M. Conway, and G. Baym, in Proceedings

of the International Symposium on Lattice Dynamics, Copenhagen,
Z963 edited by R. F. Wallis (Pergamon Press, Inc. , New York,
1965 .

"A. B. Callen and T. A. Welton, Phys. Rev, 83, 35 (1951).
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H; «has the general form, for a harmonic (bilinear)
interaction between the interstitial and the atoms of
the host lattice,

H;„,= g q,e, M; (gr, lK)u (lK)
s, a, a', ltd

(4)

e, is the vector of polarization of the normal modes.
The interaction matrix M (gr, lK) is defined in such a
way that —M ~ (gi, lK)u (lK) gives the n' component of
the force at the interstitial (position gr) if the atom l
is displaced by u in the n direction. This matrix ob-
viously depends only on the geometry of the host lattice,
the equilibrium position of the interstitial with respect
to the host lattice, and the interaction constantsbetween
the interstitial and the lattice atoms. For a particular
problem the equilibrium position of the interstitial
within the host lattice is a constant, and we can drop
it as an argument of the matrix. Carrying out the sum-
mation over n' we write the interaction term in the form

with

H; «= Q q,M..(lK)u. (lK),
e, a, l, c

M, (lK)=Q e„M ~ (gi, lK).
a'

(4/)

B. Calculation of the Green'8 Function

Our problem is now the calculation of the Green's
function for a system I'& of three oscillators coupled
by a bilinear term to a second system I"2 of a large
number of harmonic oscillators. This problem can be
solved exactly, for instance by the calculation of Kubo's
relaxation operator" or by using the equations-of-
motion method for Green's functions.

In this way we determine the Green's functions
G(q„q, ; p&) of the normal coordinate q, with respect to
the normal coordinate q, . As the displacements q of
the interstitial in terms of its normal modes are given by

qa=Q egaqs «

we have also the relation

G(q,q;o&)=Q e, e: G(q„q;;p&) (6).
s, e'

Thus it is sufhcient for the solution of our problem to
determine G(q„q, ; o&). The Green's function G(q„q, ; o&)

is the Fourier transform of G&"&(q„q, ; t) which is given
by

G'"'(q q t) = —(/&)e(t)&Lc' (t)q.(t),q" (o)j), (7)

where ( )i denotes an average computed with a time-

' R. Kubo J. Math. Phys. 4, 174 (1963);J. Phys. Sop. J@p@«i
17, 1100 (1962).

frozen lattice. Then it takes a particularly simple form

3 .2
H.= Z, +p(~.'q.') .

e~l -2m

independent density matrix corresponding to the system
Vi, 8(t) represents the Heaviside step function and q, (t)
is given by

q, (t) = exp(iHzt/h) q, exp( —iHrt/It) . (8)

The relaxation operator C~ is given by a time-ordered
exponential (exp' r& means that the time ordering is
such that larger times are written to the right)

V

4sI(t) = exp& r& Ct' dt" (Q&(t")QIi(t'))s. (9)
0 0

( )s denotes the average over the system Ys and the
operator Qzz(t) is defined by

with
Q~(t) = (i/t)LH -«(t), (10)

where

H;.,(t) = Q q, (t)M,.(l.)u.(l.,t),
e, a, la

u~(lK t) = exp(iHpt/lt)u (lK)exp( iHpt/Ii) . (12)

In writing Eq. (9) we made use of the fact that
(QIi(t))s vanishes since (u (lK,t))s vanishes for all ulK and
t. The expression (9) for the relaxation operator is exact
in our case: In fact, a system of oscillators with some
bilinear coupling terms leads to a Gaussian relaxation
operator, "i.e., to Eq. (9).

Since we want to apply Cir on q, (t) we have to calcu-
late the effect of operating with (Qir(t")QII(t'))p on q, (t).

Since higher commutators of the type

Lq"'(t ) Lq"(t)~q (t)jj
vanish (because the commutator (q, (t'),q, (t)) is a c
number) we obtain

(Qlr(t") Qyg(t')) q, (t) = (i/l't) g M. (lK)

where

XM;. .(l'K')Gp«'&(u (lK), u .(l'K'); t' —t")

&&tq.(t),q"(t')iq" (t"), (»)

Gpi"&(u (lK),u (lK'); t)
= —(i/h) e(t)(Lu (lK,t),u„(l'K',0)i) (14)

is the retarded Green's function of the perfect lattice of
u (lK) with respect to u (l K'). Henceforth we shall write
it simply

2PrG (lK,lK', t)=Gpi"&(u (lK),u (l'K'); t). (15)

The factor 2m has been introduced in such a way that
the Fourier transform of G (lK, l'K', t) is identical with
the "Green's function" as de6ned by Montroll and
Potts. '

Writing out explicitly the expression that defines
the exponential in 4 ir(t) q, (t) while noting that
Lq, (t),q. (t')j vanishes for sos' and that —(i/b)e(t)
)&fq, (t),q, (0)) is simply the retarded Green's function
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Gp'"'(q„q, ; t) of the normal coordinate q, for the isolated
system P'& (since [q,(t),q, (0)$ is a c number, it is equal
to ([q,(t),q, (0)j)i), we get a series which is the Neumann
series corresponding to the integral equation (which is
essentially the same as Dyson's equation in field theory)

G'"'(q. ,q"; t) = ~- Go'"'(q q" t)

where the matrix Q
' is the reciprocal of

Q„(p))=Q ( [m(p)' —pp, ')8„"—ReF„-(p))j
X[m(p~' —p), ')8, , —ReF;'(pi)]

+ImF „"(p~)ImF;;(pi) ) . (26)

with the kernel

Ct'1', .-(t—t')Gi" i(q.",q, ; t') (16)

The real and imaginary parts of I „are determined by
the corresponding parts of G (l», l »'; p)).

Since the imaginary part of G (1»,l'»'; pi) is equal to
its spectral function A„(l»,l »'; p&), where

G(q„q. ; p)) =b„Gp(q„q„p))

+P E..-(p))G(q.",q, ; p)) (18)

with

E„ (pp) =2ir Q M, (l»)M , (l'»')G, (l»,l'»'; (p)
a,lKa l K

XGp(q„q. ; ~) . (19)

These equations yield

G(q„q, ; pp) =R„(p)),
where R„(pi) is the reciprocal matrix of

U„(p))= 5„.Gp(q„q, ; p))
—'

(20)

—2ir Q M,»(l»)M, )» (l'»')G»» (l»)l'» ) p)). (21)
a, lK,'a', l'K'

The pair of equations (20) and (21) is also derived by
another method in Appendix A. Gp(q„q, ;cp) has the
simple form

Gp(q„q, ; cv) = (1/2irm)/(ppP —pr P) (22)

while the function G (l», l»', p)) has to be found from
the analysis of the vibrations of the perfect crystal. If
it is known the function (which we shall call the "inter-
action function")

F„(ip)= g M.,(l»)M;» (l »')G»» (l»)l'»') p)) (23)
alK;a'l Y

can be calculated in a straightforward manner and we
obtain, for the spectral density function A„.(p)) defined
by

A „(p))= i[G(q„q. ; p)+i p) G(q„q,", p—ip)], —
the expression

A., (p)) = —Q (1&ir) ImF„"(p))Q,". '(p))

(24)

+Q (1/2m)~) h(ip —p) ) (25)

E„(t—t') = P 2ir dt"Gp&"&(q„q, ; t t")M—. (1»)
a,k,a', l'K'

XM: (l'»')G, (l», l'»'; t"—t'). (17)

From Eq. (16) we obtain the corresponding equations
for the Fourier transform:

A (1»,l »'; pp)

=i[G»» (l») l »') pi+ip) —G»»)(1») 1 »') pi —tp) j) (27)

it vanishes outside the frequency region of oscillations
of the perfect lattice (the region of band modes). Out-
side that region A „(pp) will only be different from zero
at the points p); for which the determinant of Q, , (p))
vanishes. This implies the vanishing of the determinant

&(p)) =
~

m&- (p)' —~.') —ReF- (p))
~

(28)

as a necessary condition for the existence of (localized)
oscillation modes of the interstitial outside of the region
of band modes. These modes can be thought of as cor-
responding to the proper oscillations of the interstitial
which are shifted in frequency by the term ReF„(p))
by the interaction with the lattice.

As an example of this method we shall calculate in the
following the localized modes of a light impurity in a
bcc lattice.

An explicit knowledge of the spectral density function
is sufhcient for the determination of the position auto-
correlation function by means of the "fluctuation-
dissipation theorem"'~:

(q, (t)q, .(0))=A dp)A„(p))

Xexp( ip)t)/[—exp(Php)) 1j. —(29)

Here, p= 1/kiiT. Since the results of neutron-scattering
experiments are essentially related to this function, the
results of our analysis can be used directly to predict
scattering cross sections. However, for the interpretation
of the shape of the measured cross sections the influence
of nonharmonic terms appears to be not negligible since
the lines observed in such experiments are rather broad. '
We hope, however, that the position of the center of
the line will still be close to the value given by the har-
monic approximation. We therefore limit our discussion
to the calculation of the roots of the determinant (28).

II. DETERMINATION OF THE LOCALIZED
MODES OF AN INTERSTITIAL
IMPURITY IN A bcc LATTICE

A. The Function 6 (lx, l'v. ', pp) for a bcc Lattice

We shall use the following notations and conventions:
The origin of our Cartesian system of coordinates we put
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TABLE I. The function G, (Oz,0c', e).

(111) (111) (000) (002)

(rrr)
(111)
(000)
(002)

8~(~)
82(~)
Bs(~)
84(~)

82(~)
81(~)
84( )
s()

84(~)
84(~)
8~(~)
82'(~)

84(~)
84(~)
82'(~)
8~(&)

in the center of the elementary cube. The atom in this
site will be labelled (000). The directions of the co-
ordinate axes are along the edges of the cube. Ke shall
measure all coordinates in units of -,'a, where a is the
lattice constant. The interstitial —as in the case for
hydrogen in vanadium' —is supposed to occupy one of
the so-called tetrahedral positions, say gr= (0,—,',1). We
consider a coupling between the interstitial and its
nearest neighbors of the lattice only. These are the
atoms (000), (002), (111),and (111).We therefore have
to know the function G (i', t'14'; to) for values le, l'K'

corresponding to these atoms.
The calculation is straightforward and is simplified

considerably if one takes into account the symmetry of
the crystal. The resulting function is given in Table I.

The g, (40) in Table I are matrices in (n,n'). One finds

G2 0 0
Lg, (co)] =G1(4o) 8 ~, gs(4o) = 0 Gs 0

0 0 G3

G3 0 0
bs'(o1) = 0 Gs 0 . (30)

0 0 Gg

G4 G5 G5

gs((lo) Gs G4 Gs

Gg G5 G4

G4 G5

G5 G4
-G5 -G5

G4 —G5

gs(40) = —Gs
-G5 G5

G4 -G5
Bs(4o) = —Gs G4

G5 —G5

—Gg
—Gg

G4

—G5

G5

G4

G5
—G5

G4

(31)

The functions G,(a&), i= 1, 2, 3, 4, 5 are given by (using
Fine's model' of harmonic interaction between nearest
and next-nearest neighbors)

G;(u&) = (E/srs) dent d02 d&3T;, (32)

where

with

2 1 (II11+II22+II33)/3D y

Ts ——II11(2C32—1)/D,
Ts ——II33(2C3'—1)/D,
74= &l.clc2C3,

Ts ———5152C3II12/D

C;= cos9;, 5;=sing, , E= —3/8n1

(32')

The other matrices involve also nondiagonal elements.
They are

II"= (1—C1C,C3—02)2+ (sp) ( Q 532—5') (1—C1C2C3-02)1L(sp) 2—C']512522532/5 ' i = 1, 2, 3

II12 515253 $C1C2 (2P)Cs]—Cs5152(1—CLC2Cs ~ ) &

3

D= (1—C1C2C3 II ) + (1 C1C2C3 0')'(2'P) Q 53'+(1—C1C2C3—0')C (-'P)'(51'52 +Ss S3 +53'51')
k~1

—(Cs'52'53'+51'Cs'53'+»'52'Cs')]+51'52'S 'L2C1C2Cs —(2P)(C12+C '+C ')+(-'P)']

(33)

These expressions involve the dimensionless constants

02= 33602/Snt, p =ns/n1,
f1= —3yr 4g1—2u1(111)—2u1(111)us—(111)+us(111)],
f2= —

3yL4qs —2u1(111)+2u1(111)—us(111)—us(111)
—u2(000) —us(002) —2us(000)+2us(002)], (35)

where O.l is the force constant for the interaction between
nearest neighbors in the lattice, and n2 is the corre-
sponding constant for the next-nearest neighbor
interaction. fs —

sent

4gs —us(000)——+us (002)—2us(000) —2u, (002)].

force acting on the interstitial atom. The equations for
these forces are

34

B. Couyling Matrix M, (l24)

For the calculation of the coupling matrix M (l14)

we remember that it is the negative of the coeKcient
of u (lE) in the expression for the component n' of the

Here, 7 denotes the force constant for the interaction
between the lattice atoms and the interstitial.

From these equations we can draw the following
conclusions: (i) The free oscillations of the interstitial
in a "frozen" bcc lattice $i.e., for u (le) =0 identically)
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have the following frequencies and polarizations:

a&22= Sy/Sm, et ——(1,0,0),
t022= 4y/Sm, e2 ——(0,1,0),
(002= Sy/Sm, es= (0,0,1) .

(36)
I

(ii) The coupling matrices M, (l~) are the same as
M (k) because, as noted in (i), the polarization direc-
tions of the interstitial modes are along the coordinate
axes. The matrices M, (k)=M (l~) can be read o8
Eq. (35) as follows:

In the case of a light impurity (p((1) one can take
as zeroth approximation

~» ~»0 ) ~2 ~20

and solve the Eqs. (39) by iteration, the (22+1)th
approximation being

Q t„y &2=3p/Sp —(9/200)(p /pE)gt(Qt„),
Q (-+ )'=3p/10' —(9/40o)(p'/p&)g2(Q2-') (4o)

e= O, i,2,

4 2
M, (111)=—sy 2 1

0 0

4 —2
M, (111)= ——,'7 —2 1

0 0

0
0
0

0
0
0

The values of the Green's functions relevant for this
problem have been calculated on the IBM 360/65 of
Cetis/CCR Ispra and are tabulated for arguments
Q2= 10(10)100 in Table II.

TABLE II. Numerical values of the functions GI, , G5
in units of 10 ' (It =3/8u~).

0
M, (000)= ——,'y 0

0

0
M, (002)= —sty 0

0

0 0
2

2 4

0 0
2 ~

—2 4

(3'l)

C. Interaction Function F„.(02) for the Interstitial
Atom in the bcc Lattice

10
20
30
40
50
60
70
80
90

100

—120.7—54.57—35.29—26.08—20.68—17.14
-14.63—12.76—11.32—10.17

G2/X

1.536
0.3159
0.1325
0.0725
0.0457
0.0313
0.0229
0.0174
0.0136
0.0111

G3/K

1.598
0.3221
0.1342
0.0732
0.0460
0.0315
0.0230
0.0175
0.0137
0.0111

1.682
0.3593
0.1522
0.0836
0.0528
0.0363
0.0265
0.0202
0.0159
0.0128

—1.960—0.3852—0.1592—0.0864—0.0542—0.0371—0.0270—0.0205—0.0161—0.0130

G4/E G0/Z

Now we can use Eq. (23) to determine F„(t0).Again,
the calculations simplify considerably because of the
symmetries involved. F„(t0) turns out to be diagonal.

Explicitly,

with

2g» 0 0
F„((0)= (Sys/50) 0 gs 0

0 0 2g»

gt = SGt—G2+4G0,

gs= SGt+ 3G2—4G0+ 2G4+ 16G0.

(38)

Since in our case F„(c0) is a diagonal matrix, we obtain
immediately instead of the determinant Eq. (28) the
following equations for the doubly degenerate mode and
the single mode:

Q,2= Q '—(9/200)(p'/pK)g (Q,'), Qto'=3p/Sp
(39)

Q2 Q20' —(9/400) (p'/pE)g2(Q2 ) y Q20 =3p/10'

where we used the dimensionless frequency definition
Eq. (42) and the abbreviations

I2= m/M, p= y/nt, X=—3/Snt.

A superftcial look at Eq. (39) would lead one to think
that the 6rst term would decrease in importance with
increasing M because of the factor p=m/M. This is
misleading, since the terms in the brackets go asymptoti-
cally with 1/Q' (i.e., with 1/Mc02) while the first term
goes as ~'m. So it is really the second term which is
smaller than the first by a ratio m/M.

D. Localized Mode Frequencies in Vanadium Hydride

Experimental data on the localized vibration fre-
quencies of vanadium-hydrogen and vanadium-deuter-
iurn systems have been obtained by INS at the Ispra-I
reactor by Kley et al. and are published in Ref. 8.
The evaluation of these experiments is not quite
straightforward. %e summarize here the essential points
discussed in these reports: Because of the lower scatter-
ing cross section of deuterium it was necessary to do the
VD measurements at rather high deuterium concentra-
tions (about 20 at.%) while the VH samples contained
only 4% H. At 20% admixture the n phase is not pure
below 130'C. In order to assure a pure n phase the VD
experiment was performed at j.50'C and the VH experi-
ment at 50'C. For a comparison of the two experiments
it was therefore necessary to correct for the diQerent
phonon occupation factors, thereby reducing the direct
time-of-fhght results de/dEdQ to so-called "generalized
spectral distributions" G(E) deftned by

G(E)= (d21/dEdQ) 82rkELexp(E/kgT) —1]/k'x2

k, k' being the wave numbers of incident and scattered
neutrons and x'= (k—k')' while dQ denotes the element
of solid angle.

The resulting curves for G(E) are rather broad and it
is difficult to determine the location of the localized
modes with precision. Also, the results (for polycrystal-
line hydrides) show only one peak. It seems therefore
that the interaction between the modes (due to an-
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harmonic effects) results in such a broadening that the
two localized peaks Gii and G12 coalesce. The first (doubly
degenerate) mode should have twice the intensity of
the second. Therefore we base the following comparison
with theory on the assumption that the experimental
peak corresponds to co~. The position of these peaks is
given in Ref. 8 as 80 meV and 100 meV for VD and VH,
respectively (with an uncertainty of the order of 15%%uq).

12

For a comparison of our theory with these results we
still have to fit the parameter p, i.e., the ratio of the VH
force constant to the VV next-neighbor force constant.
Assuming a value p=1.427 for a best fit of both data,
we obtain So=77 meV for the VD system and Ace=108
meV for the VH system. These values are not inconsis-
tent with the experimental results. However, the non-
harmonic eRects which are responsible for the broaden-
ing of the experimental peaks could have shifted also
the location of the "quasimodes. " Thus the value of p
obtained as the best ht for the harmonic model can be
interpreted as an "eRective" or "quasiharmonic" force
constant which could be used only as an order-of-magni-
tude estimate of the true relative VH force constant.
In the light of this interpretation it is even a nontrivial
fact that the same eRective force constant can be used
for the VD and the VH system since the anharmonic
eRects could well be mass-dependent.

One point worth mentioning is that the frequency
calculated for the H atom moving in a rigid vanadium
lattice —as given by the first terms of Eq. (47)—is

0122=43 62 kuio=107. 4 meV.

The coupling of this oscillator to the host lattice
shifts the frequency upwards by a very small amount
((1.5%). This is due to the large mass difference be-
tween the interstitial and the host lattice @ed the close-
ness of the force constants of the vanadium-hydrogen
and vanadium-vanadium interaction. Experiments of
the type analyzed here are therefore essentially measure-
ments of the VH interaction and are rather independent
of the oscillation properties of the host lattice.

(Gi~ Gi,) L,i L„)L'=
~621 622~ L21 L22

(A1)

where the index 1 refers to the space 83 and the index 2
to the space h2,~. Since 6'= L' ' we have

L11G11+L12G21——I,
L21611+L22621

(A2)

where I is the unit 3X3 matrix and 0 the null 3&&3rN
matrix. Combining the two Eqs. (A2) we obtain

But, since
Gii—' ——Lii—L„L„—'L21. (A3)

y= Lii-',

we can write

6= L22
—', L21 Li,', ——

Though analogous to the method of Wagner our
partition is diRerent, leading to specific advantages. In
his method one has to find the eigenvalues of a 3s )& 3s
matrix bL+AyA', where s is the number of atoms
touched by the introduction of the impurity atom. This
is done in decomposing the representation of dimension
3s into the irreducible representations of the point
group of the impurity by the well-known group-theo-
retical methods. In our method one has to 6nd the
eigenvalues of a 3)(3matrix, irrespective to the number
s, and which in most cases is already diagonal.

We denote by I (le) the displacements of the crystal
atoms and by q those of the interstitial. We decompose
the total vector space 8 of the displacements of all the
atoms into the direct sum of the three-dimensional
space 83 of the displacement q and 3'—dimensional
space 82„~of the displacements N„(k). Any matrix oper-
ating in b is partitioned accordingly.

We denote by 6 and L the matrices pertaining to
the unperturbed crystal, by y the "molecular" Green's
matrix corresponding to the interstitial atom vibrating
in a 6xed host lattice, and by 6' and L' the matrices
pertaining to the total system. We write the latter as

y'-'= 611—' ——y
—'—L,26L12'. (A5)

APPENDIX A

Equations (20) and (21) can also be derived on the
basis of the identification of the Green's function
G Ii(k, /Y;G~) with the Montroll-Potts Green's func-
tion. " For this we use a matrix partition technique
analogous to the one used by Lehman and De Wames"
and Wagner. ' That the interstitial case can be treated
in this way has been remarked also by Maradudin' in
two comprehensive articles. We refer the reader to these
articles for the earlier references on the subject. We
follow as closely as possible the notations of these
articles.

'~ R. Rubin {private communication)."J.Peretti and C. Jouanin, Nuovo Cimento 34, 293 (19)."G. Lehman and R. E. De Names, Phys. Rev. 131, 1008
(&W3).

Equation (A5) gives the perturbed molecular Green's
function y'=611 of the interstitial as a function of
the unperturbed one y and of the perturbation L12GL12'
due to the crystal, through the interaction L» between
the interstitial and the rest of the lattice. Since the ele-
ments of the 3')&3 matrix II2 are the expressions
M p(le) of the text, we see that Eq. (A5) can be ex-
plicitly written as

(y'—') p=(y ') p
— Q M, (le)G p (le, tV;Gi)

a'Llc ',P'L'a'

&&Mppi(t ii ) & (A6)

which is precisely equivalent to the pair of equations
(20) and (21) of the text.

The perturbed frequencies are the poles of y', thus
the zeros of y' '.



VI B RATIONS OF INTERSTITIAL ATOMS

I.et us suppose that the axes along which the inter-
stitial displacements q are measured have been choosen
so that y is diagonal by symmetry. For example, in the
case treated in Sec. II of the text, the symmetry of the
interstitial site is D2~ ——42m, and when the axes are
choosen parallel to the edges of the cube, y is diagonal
and has only two independent components:

~.„=~„.=~.,=O, ~..=~..W~„„. (A7)

The conditions (A7) are imposed by the symmetry D2&.

Since the interaction L» preserves the symmetry of the
problem, the perturbed matrix y' should be diagonal in
these axes. In this case the equations for the perturbed
frequencies are the three scalar equations

y. '-'(a)') =y .-'((u')- Q M p(lK)
pk; p'l'Ic'

XGpp (lK, l K'; cu')M p (l'K') =0. (AS)

Thus there is no need to use advanced group-theoretical

arguments to reduce the problem to scalar equations as
in Refs. 6 and 3.

These arguments have been applied in Sec. II of the
text. Equations (3S) and (39) of the text exhibit the
fact that y' is diagonal and has two independent corn-

ponents, one for (xxj and Lzz] (double degeneracy), and
the other for Qy].

The above method does apply for substitutional im-

purities as well, with the same simpli6cations. This is
shown in an example in Appendix B.

TABLE IlI. Coordinates of the cube vertices in units of —,u.

A 8 C D E Ii G H

1 —1 —1 1 1 —1 —1 1
1 —1 —1 1 1 —1 —1

1 1 1 1 —1 —1 —1 —1

where the points P {lK} and Q={lK'} are different
from 0:

I
~

Tii T&2)

&T2i T22&
(83)

11»
kL i L22i 0 L22)

where the 0's are the appropriate null matrices. From

// //

we obtain the equations

L2iGii+ L22G2i ——0,
L2iGi2+L22G22= &,

// //

With these notations we first establish a relation be-
tween the Green's function G// of the crystal with a
vacancy at the point 0 and the Green's function G of the
unperturbed crystal. The L matrices for these cases can
be written as

APPENDIX B

In this Appendix we show how to treat the classical
problem of a substitutional impurity in a bcc lattice
by the method devised in Appendix A. It is recalled
that the usual treatment of this problem involves the
determination of the eigenvalues of a 27)&27 matrix if
the impurity "interacts" only with its 6rst neighbors.
In our method we have to handle a 3 &( 3 diagonal
matrix whatever the number of neighbors interacting
with the defect.

We suppose that the impurity is located at the origin

0, center of the cube ABCDEFGH. The coordinates
of the eight points from A to H are given in Table
III. We assume that the atom at 0 interacts with its
eight neighbors through a central force with force con-
stant y. Let P, with coordinates —',a(ei, e2, e3), e;= &1, be
one of the eight points A to H. The interaction matrix
M(P) has the following elements:

i 6y62 6163

M(P)= —-', y e2ei 1 e2ea . (81)
6362 1

We consider now the following partition of an ar-
bitrary matrix T with components T p(lK, l'K'):

T„(n;P) = T~p(0~0) ~ Tin(n; P~lK) = T~p(0)lK) ~

Tmi= Tin', T2p(n)lK; p, l K') = T~p(lK, l'K') ) (82)

In the last equation we have taken into account that
G", involving only 1V—1 points of the crystal, is a
3(1V—1)X3(X—1) matrix, while I"is the corresponding
unit matrix. We can solve the 6rst two of Eqs. (85)
for L» and L» and obtain finally

G"=L„—'= G22 G2iGii
—'Giz.

We can write Eq. (86) in equivalent ways:

G p"(lK,l'K ) =G p(lK, l'K') QG, (lK,O—)G» '(n'O, p'0)

XGpp (0l',K'), (87)

G (PQ)=G(PQ) G(P0)Gii 'G(OQ).

Equations (86) and (87) could be used to evaluate
the frequencies of a crystal with a vacancy, but we

shall not pause here to do this.
We consider the case when the vacancy is occupied

by a diR'erent atom of mass m interacting with the rest
of the crystal with the matrix (81).The problem is then
identical with that of an interstitial impurity except
that everywhere G should be replaced by G".

We note that the 3 X 3 matrix Gii is diagonal for
cubic symmetry and is given by

Gg 0 0
Gii= G(0,0) = G(A, A) = 0 Gi 0, (BS).0 0 Gy.
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where Gx is the function defined in Eq. (32). Thus Eq. They have the explicit form
(87) becomes

and

F= P M(P)G(P, Q)M(Q)
P,Q

(811)

J= Q M(P)G(O, P)G{O,Q)M(Q) /Gx= K'/Gx (812)

with the diagonal matrix

K=Q M(P) G(O,P)=P G(O,Q)M(Q). (813)

To evaluate the interaction function F de6ned in
Eq. (811) we again use symmetry considerations. We
write F as a sum of expressions invariant with respect
to small subgroups of the point group of 0. For each
invariant expression we calculate the 6rst term; then,
by symmetry operations, we obtain all the other terms.
The sum is then diagonal. We write

G"(P,Q) = G(P,Q) —G(O,P)G(O,Q)/Gx. (89)

The interaction function P" is defined by

F"=P M(P)G"(P,Q)M(Q) =F—J, (810)
P, Q

%here

G;= (K/7rg) dgOT, , (2=6, '7, 8, 9, 10)

Tg ——Hxx(2Cx' —1)(2C2' —1)/D,

T7 H12(4CxC2~1~2)/D y

2'2 =H2 2(2C12—1)(2C2' —1)/D,

Tg =H xx(2C12—1){2C'—1)(2C2' —1)/D,

Txp= —Hxg(4CxC25152) (2Cg' —1)/D.

We turn to the evaluation of K and J. For this we
write the expression of the matrix G(O,P):

G4 6].62G5 61&3G5

G(0 P) = pgpxGg G4 4223Gli

-~3~1G5 6362G5 G4-

By direct multiplication we obtain

61&2 &1

M(P)G(O, P) = —-gp pgpl 1 pgpg (G4+2Gg) (819)
6362 1

and

with

F= Fx+ Fxx+ Fxxx+ Fxv (814) &-0= —(Sv/3) &-p(G4+2Gg)

J P
——(64yg/9)h P(G4+2Gg)'Gx.

(820)

where

Fx ——Q M(P)G(P, P)M(P),
P

Fxx —— P M(P) G(P,Q)M(Q),
PQ-(too)

F = g M(P) G(P,Q) M(Q),
PQ= (110)

F„= P M(P)G(P, Q)M(Q),
PQ (311)

PQ~(hkl)

~Cgs
=—{Sr/3)N» ) 42= 1,2,3. (821)

The frequencies co, of oscillations of the impurity
atom in the rigid lattice are triply degenerate and given

by

The n component of the force acting on the impurity,
when displaced by the vector u from its equilibrium
position while all the other atoms in the lattice are held
at their equilibrium positions, has the value

814')

mo&, 2= Sy/3.

(822)

where m is the mass of the impurity atom.
Equation (AS) for the frequencies of the localized

modes (and also of resonances, by taking the appro-
priate real part) yields now three times the same
expression:

F. =P„„=P,= (Syg/9) PGx —Gg+2G2+2Gp

+2G7—Gg+3Gg+6Gxp7 ) (815)

which involve the following terms in addition to the
already known functions G1 G2 G3'. m pp2 = (Sy/3)+ (Syg/9) (3G1—Gg+ 2G2+2Gp+ 2G7 —Gg

+3Gg+ 6Gxp) —(64' /9) (G4+2Gg) 2/Gx (823)Gp=G„(A,C), G7 G g(A, C), Gg=G„(A,C), 816
Gg=G, (A,G), Gxp=G, „(A,G). (triply degenerate root).

means a suxxxmation over all the points P and Q such
that the vector PQ is crystallographically equivalent to The molecular Green's function matrix and inverse are:
the lattice vector (hkl), P and Q being chosen among
the eight points A to H. 'r»p= B~p m4p —8+/3)

The interaction matrix F is diagonal and spherical, h ')-2= &-x(m~' 87/3), —
having three equal diagonal elements, as required by
cubic symmetry. The nonzero elements are
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Equation (823) has been obtained rather easily. It to H which does not change the symmetry of the site
is not too dificult to generalize it to the case when one 0, or when one takes into account the interaction of
takes into account the relaxation of the eight atoms 2 site 0 with its next-nearest neighbors.
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We estimate the size of the error caused by omitting the exchange potential of the conduction electrons
from the crystal potential when calculating the local pseudopotential form factors in the alkali metals. This
error is determined by relating these approximate form factors .to the true energy eigenvalues of the com-
plete Hartree-Fock band-structure Hamiltonian. We then use this relation to deduce the approximate form
factors from the measured anisotropy of the band energy at the Fermi surface. These form factors may be
compared with the true form factors determined from Fermi-surface measurements. This comparison
permits a prediction of the errors expected in present u priori calculations of the form factors due to the
approximate treatment of the conduction-electron exchange potential. A numerical calculation is made
for sodium, based on the formalism of this paper, which predicts that the errors in VIIO for this metal are
of the order of 15'Po. The possibility of extending the calculations to other alkali metals is also discussed.

I. INTRODUCTION

ECENTLY a priori calculations of the pseudo-
potential form factors (PFF) in the alkali metals

(see Sec. IV) have been based on a crystal potential
which includes the self-consistent screening of the ionic
potential by the conduction electrons, but which does
not include a detailed treatment of the exchange poten-
tial of the conduction electrons. The purpose of this
paper is to attempt to estimate the possible errors in
the calculated PFF for the alkali metals when the
spatially Quctuating part of the exchange potential is
ignored in an a priori calculation. '

Psuedopotential theory gives us a prescription for the
replacement of any given crystal potential V(r) with
a pseudopotential V„which is possibly much weaker
than the original potential, and which thus lends itself
to a perturbation treatment. We will consider two
model crystal potentials for the alkali metals. One of
these, denoted by V(r) will be the full Hartree-Fock
potential given by the usual expression. The other,
denoted by V(r), will be the Hartree-Fock potential
excluding the conduction-electron contribution to the
exchange potential t V(r) will be more precisely defined
in Sec. IIj.

*This work was done while the author was supported by the
National Science Foundation as a graduate fellow; presented in
partial fulfillment of the requirements for the Ph.D. degree,
Princeton University; recommended for acceptance by the De-
partment of Physics in May $967.
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'The calculations in this paper are presented in much greater
detail in an expanded version of this paper, which may be ob-
tained from the author, and in W. D. Grobman, Ph.D. thesis,
Princeton University, 1967 (unpublished). Some copies of this
thesis are available from the author, and a copy may also be ob-
tained from University Microfilms, Ann Arbor, Mich.

The pseudopotentials corresponding to V(r) and V(r)
will be denoted by V„and V„, respectively. Similarly,
the Fourier transforms of V„and Vo at wave vector G
(G is a reciprocal lattice vector) will be denoted by
V(G) and V(G). Thus the V(G) are the PFF which
would be obtained by a perfect a priori calculation
starting with the full Hartree-Fock crystal potential,
while the V(G) would be computed from a perfect tt

priori calculation which was based on an approximate
crystal potential —one which ignored the contribution
of conduction-electron exchange.

The prescription for obtaining V„ from V is not
unique. The formal results of this paper are valid inde-
pendent of the prescription chosen as long as it is the
same for V and V.

Let Ek denote the true Hartree-Fock energy of an
electron in state k obtained from the complete Hartree-
Fock Hamiltonian, including conduction-electron ex-
change. E& is given in terms of the V(G) by the usual
expression (see Sec. II). Now, Ex may also be given in
terms of the V(G) as follows. We can obtain the solu-
tions to the Hartree-Fock equations excllding the con-
duction-exchange term in a straightforward way in
terms of the V(G). If we then use the conduction ex-
change potential as a perturbation on the solutions to
this approximate problem, we can 6nd the tree Hartree-
Fock energies in terms of the approximate form factors
V(G). It will be the purpose of Sec. II to determine the
true Hartree-Fock energies Ek in terms of the approxi-
mate form factors V(G)—these being the form factors
relevant to the approximate problem in which the
conduction exchange potential is excluded from the
Hartree-Fock Hamiltonian.

We shall let TVk denote the true Hartree-Fock energy


