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The object is to provide a simple scheme for calculating the dependence of the d-band structure on the
position of the atoms in the crystal. The Korringa-Kohn-Rostoker method in the narrow-band approximation
has been used to calculate the nonhybridizing d bands for different crystal structures and for various values
of volume/atom, in terms of the position and width of the d-scattering resonance. These bands have been
fitted by near-neighbor linear combination of atomic orbitals (LCAO) parameters, as in the interpolation
schemes of Hodges, Khrenreich, and Lang, and of Mueller. It is shown that the dependence of the LCAO
parameters on structure and volume can be described to a good approximation by simple structure-
independent functions. The accuracy of the description for the fg bands of the fcc and bcc phases of Fe is
about 0.01 Ry. The results are discussed in relation to recent developments in transition-metal band theory.

1. INTRODUCTION
' 'T has recently been demonstrated'2 that the band
~ - structures of fcc transition metals can be accurately
parametrized in terms of a nearly-free-electron (NFE)
band, described by pseudopotential theory, interacting
with a set of d bands, described by near-neighbor linear
combination of atomic orbitals (I.CAO) parameters.
In symmetry directions of the Brillouin zone some d
bands do not hybridize with the NFE band; these
"nonhybridizing" bands depend only on the LCAO
parameters, and can be used to study the d bands
independently.

Here we parametrize the d bands of a transition
metal in terms of the position Eg and the width 5' of
the d scattering resonance. These two parameters de-
pend only on the potential and are independent of the
particular lattice arrangement (insofar as the potential
in each cell is independent of the structure). It is shown
that the near-neighbor LCAO parameters which
describe the bands can then be determined as a function
of the structure in a simple way.

Heine's' resonance form of the Korringa-Kohn-
Rostoker (KKR) secular equation in the narrow band
approximation is first summarized, and its useful
features are discussed. This secular equation is used,
with the tabulated KKR structure constants, 4 to
determine the nonhybridizing d bands in the principal
symmetry directions, in terms of E& and 8', for various
values of lattice constant, for the fcc and bcc structures.
First and second-neighbor LCAO parameters to fit these
bands are then determined by minimizing the rms
deviation, as in Mueller's' interpolation scheme, giving
the parameters as a function of volume and structure.
It is then shown empirically that these LCAO param-
eters can be expressed to a good approximation as
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simple functions of volume and nearest-neighbor
distance, where the functions are structure-independent.
The accuracy of this description is demonstrated by
choosing Eg and 0' to fit the d bands of fcc Fe, and then
predicting the LCAO parameters which describe the
d bands of both the fcc and bcc phases of Fe. Finally,
the scheme is discussed in relation to recent develop-
ments in transition-metal band theory by Heine, ' by
Hubbard, s and, by Jacobse; it is shown that the tight-
binding integrals of the resonance orbitals' in the
narrow-band KKR theory should not be identified with
the near-neighbor LCAO parameters.

2. NARROW-BAND APPROXIMATION

det

where u is the lattice constant. For several bands in
symmetry directions only one diagonal element of (2.3)
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In KKR theory, r the energies E(k) of the non-
hybridizing d bands are contained in the solutions of
the l'= 2 block of the KKR secular equation. In terms
of the structure constants B&,~. ~ defined by Segall and
Harn" with respect to real angular wave functions,
the 1=2 block. is (for a structure with one atom per
unit cell)

detlllBss'(k &),+ Kb ~ cotrtsll =0. (2.1)

Here E=E'~', g2 is the 1=2 phase shift, and m designates
the five d-real angular wavefunctions. The d-scattering
resonance leads to the following form for g2 in the energy
range of the d bands'.

tanrt, = —,'W/(Ee —8), (2.2)

where Ee and W are the position (relative to the
muAin-tin constant) and width, respectively, of the d

resonance. Heine's narrow-band approximation is to
substitute (2.2) into (2.1) and evaluate the structure
constants at E:=Re=Re't', giving LEq. (40) of Ref. 3)

a8„, „. (E E)—
b . =0, (2.3)

2Epa lV



660 R. A. DEEGAN

need be considered. Equation (2.3) is particularly
convenient because, for a given structure, 082,2

depends on K~ and a only through the product E~a, so
the bands, in units of 8', depend on the single variable
Eeo,. (Segall and Ham4 have tabulated the structure
constants as a function of Eqo, for k values in the
principal symmetry directions of the fcc and bcc
structures. )

This narrow-band limit (evaluating the structure
constants at E=Ee) can be considered correct to first
order in 8".' Heine' has shown that if 8" is estimated
from the potential for Cu the solutions of (2.3) for the
nonhybridizing bands agree well with the calculated
Cu bands, demonstrating the accuracy of the narrow-
band approximation. In particular, the bands have the
correct shape to a very good approximation. It will be
shown that if we choose Eq and 5" as parameters to
fit the position and width of the d bands of a transition
metal, then Eq. (2.3) will describe the bands accurately;
the results of Sec. 4 indicate tha, t the rms error involved
in doing this for bcc or fcc Fe is about 0.01 Ry.

3. STRUCTURE DEPENDENCE OF d BANDS

A. LCAO Parametrization

Equation (2.3) provides a convenient tool to study
the dependence of the d bands on the crystal structure
and volume of the metal. 1A'e have calculated" the
nonhybridizing d bands of (2.3) in the principal sym-
metry directions, at the values of k for which the KKR
structure constants have been tabulated, 4 for &=0.37,
0.47, 0.57, and 0.67 for the fcc structure and ~=0.25
and 0.35 for the bcc structure, where e=ISe'us/4s'.
t To decide which bands are nonhybridizing it is neces-
sary to know the value of k beyond which the hybridiza-
tion function vanishes. For bcc this has been assumed
to be approximately the same as for Mueller'ss g(k).
The choice is not critical. ) This covers the range of
va, lues of E~u for most transition and noble metals. In
each case the energies have been calculated at more
than 20 d-band points. The bands have then been 6tted
by the erst- and second-neighbor LCAO parameters of
Slater and Koster's" two-center approximation dp,

ddo (s), ddt. (s), and ddb(s), for the first- and second-
neighbor distances s by minimizing the rms deviation
between the calculated bands and the LCAO hands, as
in Mueller's' scheme. (We have omitted the three-center
parameter 7 having found that it has only a small
effect on the accuracy of the fit.') The values of the
parameters and the corresponding rms deviations are
listed in Table I.

As shown in Sec. 4, these rms deviations are of the
order of 0.01 Ry for a transition metal. We have found,
as Mueller did, that the second-neighbor parameters for
the fcc structure are negligibly small. However, the

' I am indebted to Roy Jacobs for his table of the appropriate
Clebsch-Gordan coefBcients of Eq. (5.4)."J.C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

TABLE I. LCAO parametrization of the nonhybridizing d bands
of the KKR secular equation in the narrow-band approximation.

LCAO
param-

eters
(units
of 8') &=0.37

fcc bcc
0.47 0.57 0.67 e =0.25 0.35

do —Eg 0.930
ddo (1) —1.520
dds (1) 0.704
dds (1) —0.008
ddo (2) —0.038
ddt. (2) 0,005
ddb(2) 0.113
rms error 0.33

0.615
—0.950

0.456
—0.007
—0.031

0.006
0.073
0.21

0.421
—0.666

0.334
—0.007
—0.028

0.005
0.053
0.16

0.283
—0.510

0.265
—0.006
—0.027

0.006
0.042
0.13

0.940
—1.420

0.842
—0.114
—0.734

0.314
—0.048

0.04

0.515
—0.738

0.610
—0.137
—0.533

0.203
—0.098

0.16

second-neighbor bcc parameters are sizeable, and cannot
be ignored. (Fitting the bcc bands with first-neighbor
parameters only was found to increase the rms deviation
by a factor of 4.)

B. Analysis of LCAO Parameters

If the values ddt(s) (where X=o, vr, ii) of the LCAO
secular equation were determined by calculating
overlap integrals of the potential between localized
orbitals centered on different lattice sites, ddt would

depend solely on the interatomic distance s and would
not depend on the structure. It is of interest to deter-
mine whether the near-neighbor LCAO parameters
which have been varied arbitrarily to Gt calculated d
bands are also simply functions of s. For a fixed d
resonance, i.e., for fixed values of E~ and 8', Table I
gives ddt for 12 values of s. As an example, ddt is
plotted versus s in Fig. 1.It is clear that the parameters
cannot be expressed as functions of s to any useful

accuracy. The reason is clear from Fig. 1; the d band-
width does not decrease so rapidly with increasing
lattice constant that it would be of negligible width if,
for example, the fcc crystal were expanded so that the
new 6rst-neighbor distance were equal to the former
second-neighbor distance.

It is now shown that the results of Table I are, to a
good approximation, consistent with a. relation of the
form

dd) =a(n)P, (s/r. ), (3.1)

where Q=volume/atom, rs is the Wigner-Seitz sphere
radius, and the functions 6 and Fi, are ildependeet of
structure. Equation (3.1) requires that the d bands
remain the same shape, changing only in width, as the
volume is changed for a fixed structure. )The shape of
the fcc bands, for example, is determined by the ratio
ddo (1):dde-(1): ddt(1).] It also requires that the
dependence of the d bandwidth on volume be the same
for each structure. Equation (2.3) has been used to
determine the volume dependence of the bandwidth.
For the fcc structure, the difference E(Xs)—E(Xs) has
been taken as a measure of the bandwidth, and is
shown as a function of 0 in Fig. 2. %e have also plotted
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FIG. &. The parameter dA-, determined by 6tting bands of the
KKR narrow-band approximation, is plotted against interatomic
distance s to demonstrate that the LCAO parameters cannot be
considered as functions solely of s to useful accuracy.
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~2LE (Hss )—E (His) j for the bcc structure and csLE(I,-)—&(I's+)j for hcp s where cs and cs are chosen to
normalize the bandwidths to the fcc case (cs——0.748,
cs——4.44). Figure 2 shows that the volume dependence
of the bandwidth is approximately the same for each
structure. The mean (solid line) curve of Fig. 2 is taken
as the definition of the function 6(Q) of (3.1), w»ch
can be considered as a canonical bandwidth. The
values in Table I are used to plot ddt/6 versus s/rs in
Fig. 3.The mean curves can be considered as definitions
of the functions Fq of (3.1). The errors correspond. ing
to the scatter of the points from the mean curves are

dds
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X'

K

I I i.'s I n
bcc(I) fcc(l) bcc(Q)

hcp(l) 5 fo

I

hcp 2

FIG. 3. It is shown that the results of Table I can be described
by Eq. (3.1). Each rectangle indicates the spread of four values
for the fcc structure. The solid-line curves can be considered as
de6nitions of the functions Fg.
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reasonably small for actual transition metals (see
Sec. 4).

Now consider the dependence of d0 on structure and
volume. Define

~0 =~0—~V (3.2)

8 0-"

5.0—
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0.5
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n(K, l l*
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Fzo. 2. The bcc and hcp d bandwidths have been normalized to
that of the fcc structure. It is seen that the dependence of the d
bandwidth on volume can be described accurately by a single
structure-independent function 6, defined by the solid line curve.
The dashed curve is the prediction of the simple cellular model of
Sec. 5 A.

'~ I am indebted to H. L. Davis and J. S. Faulkner for making
available some KKR constants for the hcp structure.

In Fig. 4, the values do' of Table I are plotted versus
first-neighbor distance s(1); they are consistent with a
structure-independent description of do' as a function
solely of s(1).

If the bands have a 6xed shape for each structure
LEq. (3.1)], the position of ds relative to the top and
bottom of the band must also be fixed; this is demon-
strated for the fcc structure in Table II.

Because of the accuracy of the narrow-band approx-
imation, Figs. 2—4 should provide a good description of
the d bands for the fcc and bcc structures, in terms of
the two resonance parameters. It is now veri6ed that
the bands in the hcp structure are also consistent with
this description, giving evidence that these functions
describe properties of the bands that are approximately
independent of structure.

C. Validity for hcp Structures

The first- and second-neighbor interatomic distances
in the hcp structure are the same as in an fcc structure
of the same volume/atom. If the above description is
correct then the LCAO parameters should also be
approximately the same in the two cases.

Figures 2—4 are used to predict the LCAO parameters
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1.0 TABLE II. Constant position of d0 relative to the top and bottom
of the band for the fcc structure.

0.7--
0.37
0,47
0.57
0.67

Z(Xp) —d p

E (Xe) —E (Xe)

0.349
0.349
0.349
0.34g

do
N

O. l

0.8 1.1

Kg S(l)I'tT'

1p4

Frc. 4. The values of Table I are seen to be consistent with a
description of dp' (=dp Ep) as—a fu—nction solely of first neighbor
distance s(1), given by the solid line curve. The dashed curve is
the prediction of the simple cellular model of Sec. 5 A.

dp, ddo (1), ddpr(1), and ddb(1), in units of W, to corre-
spond to the narrow-band approximation for the hcp
structure, for the ideal c/a ratio, for Eea= pr (where a
is the usual hcp lattice constant). The matrix elements
of the LCAO secular equation for the hcp structure"
have been used with these values of the parameters
to calculate the energies at two d-band points, F~- and
F6+; the values are given in Table III. For comparison,
the equivalent of Eq. (2.3) for the hcp structure" has
been used with the KKR structure constants for hcp"
to calculate the energies at I's- and I' s+ in the narrow-
band approximation for this Ka value. The deviations
of the predicted values are given in Table III. For a d
bandwidth equal to that of Cu, these deviations are
0.01 Ry.

4. ACCURACY OF DESCRIPTION

An example is now presented to estimate the magni-
tude of the errors involved when the description of
Figs. 2—4 is applied to actual transition metals.

Wood" has calculated the band structures of the
bcc and fcc phases of Fe by the augmented-plane-wave
(APW) method. The same cellular potential was used
for both calculations. (This potential was terminated at
half the nearest-neighbor distance, which is a slightly
diferent radius for the two phases, to form the muffin-
tin potentials of Wood's calculations. ) We choose E~
and 5" to 6t the fcc Fe d bands, and then use Figs. 2—4
to predict the values of the LCAO parameters for both
the fcc and bcc phases; these values will then be used

"M. Miasek, Phys. Rev. 107, 92 (1957).

TABLE III. Comparison of predicted and
calculated energies for hcp.

hcp
energies

&(Pe )—&p
Z(r6+) —E&

Prediction
(units
of W)

2.34
0.76

KKR
(units
of W)

2.70
1.08

Deviation
(units
of W)

—0.36—0.32

Deviation
(Rv,

for Cu)

—0.01—0.01

'e J.Treusch and R.Sandrock, Phys. Status Solidi 16,487 (1966)."J.H. Wood, Phys. Rev. 126, 517 (1962).

in the LCAO secular equation to calculate the non-
hybridizing bands for both phases, to compare with the
APW calculations.

Since the d bands for the fcc structure are considered
to have a 6xed shape, determined by Fig. 3, the only
variables are the position and width of the bands (given
by Es and W). Any two energy values on the non-
hybridizing bands are sufhcient to determine these
two parameters. For convenience we choose E(X,) and
E(Xs) for Wood's fcc Fe bands. Then,

6=E(Xs)—E(Xs)

and dp is determined by (Table II):
LE(Xs)—dp] j)E(Xs)—E(Xs)]=0.349.

From dp, 6, and Eq. (3.2), the values of Ee and W for
Fe are determined from Figs. 2 and 4 by trial and error
or iteration (Es——0.641 Ry, W= 0.105 Ry). The
corresponding LCAO parameters for both phases of
Fe (taking into account the different volume of the
bcc phase) follow from Figs. 2—4, and are listed in
Table IV as the "predicted" values. (In each case dp

is tabulated relative to Wood's muon-tin constant,
which is 0.040 Ry lower for the bcc calculation. ) More
than 20 energies on the nonhybridizing d bands for
each phase have then been calculated from these
parameters and the LCAO secular equation, and
compared with Wood's APW bands to calculate the
rms errors of Table IV. The APW d bands have also
been fitted directly by varying the LCAO parameters
arbitrarily to minimize the rms error, as in Mueller s
scheme, and these "htted" parameters are listed in
Table IV for comparison. Finally, the error in the shape
of the predicted bcc bands has been estimated by
choosing do as the value determined by htting the APW
bands, but using the predicted values of the ddt,

parameters.
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TABLE IV. Comparison of predicted values of the LCAO
parameters for fcc and bcc Fe, with the optimum values obtained
by 6tting Wood's APW bands.

LCAO
param-
eters
(Ry)

dp

ddt(1)
dds (&)

ddh(t)
ddt(2)
dd~(2)
dds (2)
rms error

fcc
(pre-

dicted)

0.662
—0.0463

0.0228
—0.0036

0
0
0

0.015

fcc
(6tted)

0.659
—0.0485

0.0198
—0.0008

0
0
0

0.010

bcc
(pre-

dicted)

0.707
—0.0538

0.0377
—0.0044
—0.0305

0.0138
—0.0025

0.020

bcc
(Gtted)

0.696
—0.0530

0.0348
—0.0052
—0.0307

0.0127
—0.0038

0.007

bcc
(shape)

0.696
—0.0538

0.0377
—G.G044
—0.0305

0.0138
—0.0025

0.012

On the basis of a simple cellular model (see Sec. 5 A)
the mean position of the d bands, do, is expected to be
higher for a bcc structure than for an fcc structure of
the same volume/atom if the same cellular potential is
used, in agreement with Fig. 4. Table IV shows that do

for bcc Fe, as determined by 6tting the APW bands, is
0.003 Ry lower than fcc (when compared relative to
the same zero of energy); this is probably the result of
terminating the cellular potential at a smaller muffin-tin
sphere radius for the bcc calculation. The fcc (predicted)
and bcc (shape) cases of Table IV show that the
description of Figs. 2—4 predicts the fcc and bcc bands
of Fe to within an rms error which is only 0.005 Ry
greater than that of the optimum LCAO fits.

A. Volume Dependence of A and do

Heine has considered the dependence on volume of
the d bandwidth in terms of a simple cellular model. In
this model the wave functions satisfying the antibond-
ing and bonding conditions at half the nearest-neighbor
distance E. have energies E,„and E;„,respectively,
given by LEq. (52) of Ref. 3j;

E .„—Ep ———-,'WLN(sK& R) /j, ( K& R)$,
(5.1)E; Ed = ——s'Was'(KpR—)/ js'(KpR) ),

where j2 and e2 are the spherical Bessel and Neumann
functions, and the primes denote differentiation with
respect to K The difference

E,„—E; = ', W/ns(K—g—R)/js(KdR)

Ns'(KsR)/j s'—(KgR)$ (5.2)

is taken as the d bandwidth. Heine has evaluated the
Bessel functions by retaining only the leading term in
the limit of small E~R, and has shown that this gives
the bandwidth proportional to R '.

5. RELATION TO RECENT d-BAND THEORY

This description of d bands is now discussed in
relation to recent theoretical work in this 6eld by
Heine, s by Hubbard, ' and by Jacobs. '

It can readily be shown that this approximation to
the Bessel functions introduces large errors (30—60%)
into the difference (E, E—;„) for the range of
values of EE. which are of interest. If the Bessel func-
tions are evaluated exactly, Eq. (5.2) gives the volume
dependence of the bandwidth shown by the dashed. -line
curve of Fig. 2. LWe have plotted c4 (E —E;„),
where c4 has been chosen to normalize the curve to the
function 6(Q) (c4——0.659), versus the volume/atom Q

of an fcc crystal having half the nearest-neighbor
distance R.j

This cellular model can be used to explain also the
dependence of do' on lattice constant. For a given
structure, the relative position of do within the d band
is independent of volume (as in Table II), so that

(E, dp)//5= c—,
where c is a constant. Using (3.2),

dp'/W = (E, —Eg)//W —cD/W . (5.3)

(E, —Ez)//W is given as a function of R by (5.1),
and 6/W can be determined as a function of R for the
fcc structure from Fig. 2. If c is chosen to fit one point
on the solid-line curve of Fig. 4 (c=0.568 fixes the
relative position of dp within the fcc bands), then (5.3)
gives the dashed-line curve of Fig. 4.

Hence, qualitatively, the shape of the functions A(Q)
and dp'(s) of Figs. 2 and 4 follow from the volume
dependence of the top and bottom of the d band in this
simple cellular model.

B. Resonance Orbitals

Heine has shown that if the LCAO method is used
with tightbinding combinations of resonance orbitals
in place of the atomic orbitals, the LCAO secular
equation reduces to (2.3) in the two-center approxima-
tion. fA resonance orbital is defined as the d function
resulting from the integration of Schrodinger's equation
outwards from the origin for E=E~, for the spherical
potential V(r) on a single lattice site; V(r) is taken to
be zero beyond the muon-tin sphere. Since Ed&0,
the resonance orbital has a long-range oscillatory tail
outside the sphere radius. $ The implication of Heine's
derivation is that the corresponding energy integrals
(the matrix elements of the potential between resonance
orbitals centered on different sites) are to be identified
with the LCAO parameters of the interpolation schemes,
and that therefore resonance orbitals on near neighbors
only must contribute significantly; also, it would follow
that the LCAO parameters depend only on interatomic
distance, independent of the structure. We now derive
expressions for these integrals and show that the near-
neighbor contributions are not dominant, but rather
the integrals decrease slowly with distance. This
demonstrates that the energy integrals of resonance
orbitals are not to be identi6ed with the LCAO param-
eters of a near-neighbor interpolation scheme; rather,
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732m, sm' 4ir p DIllfC2m, sm'
LM

(5 4)

the resonance orbitals on distant sites contribute to an
effective-near neighbor representation.

By Eq. (2.19) of Ref. 8,

approximating such a band by a near-neighbor LCAO
parametrization, and comparing with (5.7), it can be
seen explicitly that the distant-neighbor integrals of
the resonance orbital description contribute to the
near-neighbor LCAO parameters.

where the C's are Clebsch-Gordan coefhcients. DL~ can
be expressed as a summation over the direct lattice
vectors of the crystal, as shown for the Kohn-Rostoker
deanition of the structure constants in Eq. (A2.22) of
Ref. 7. For the Ham-Sega114 definition of the structure
constants, the corresponding expansion can be derived
is a similar way, giving

z

Dzsr Kb——rpbsrp+Ki zp ex—p(ik s)
(4s)'I' Sp@

XLnz, (Ks)—ijr, (Ks)]'tJ&sr(s), (5.5)

where s denotes the direct lattice vectors of the crystal
and 'JJzsr denotes the real angular wave functions, as
defined by Eqs. (2.9) of Ref. 16. For simplicity, consider
the special case for which (1) I is even Lin (5.4) C
vanishes unless 1.=0,2, or 4g, (2) E)0, and (3) the
crystal has a center of inversion. By using the fact
that Dzsr is then real, s (5.5) becomes, for this case,

Drsr K( 1) "——P ex—p(ik s)nr, (Ks)&zsr(s). (5.6)
s+0

From (5.4) and (5.6),

Bs„,s„.=4sK g exp(ik s)
s&0

XLP(—1) i'Cs~, s„. ez(Ks) Qrsr(s) j. (5.7)
Lllf

But, from Eqs. (A6) and (A10) of Ref. 3,

2K
Bs„,s„.(k,Ks) = P exp(ik s)

g sW

x(c.(0) I
v(o) IC- (s)), (5.8)

where C (s) denotes the resonance orbital centered on
site s. By the uniqueness of the Fourier expansion, (5.7)
and (5.8) give, for sWO,

(c -(0)I v(o)I c'- (s))

=2sW Q (—1) "Cs~,s~. nz(Kss)gzsi(s). (5.9)

It can readily be veriled for a specific case that terms
other than those of near neighbors contribute signif-
icantly for values of ECz corresponding to transition
metals, because of the slow decrease of nz(K ds) as a'
function of s for I=0, 2, and 4.

The energies of some bands in symmetry directions
are given by a single diagonal element of (2.3). By

"R.A. Deegan and W. D. Twose, Phys. Rev. 164, 993 (196/).

C. Relation to Hubbard's and Jacobs's
Hybrid Schemes

Hubbard' and Jacobs' have independently trans-
formed the KKR secular equation into forms similar to
the hybrid secular equation of the interpolation
schemes, by splitting the l= 2 structure constants into
a sum in direct space plus a sum in reciprocal space;
the former enters the d-d block of the hybrid secular
equation, while the latter is transformed into the c-c
and c-d blocks. Each method has an optimization
parameter which is chosen to achieve rapid covergence
of both summations, and the optimum value of the
parameter depends on the lattice constant. ' Our
empirical description suggests that (1) the optimum
value of the parameter is such that the summation in
direct space converges as a function of s/rs in the
distance indicated by Fig. 3; (2) the volume dependence
of the optimization parameter enters the d-d block in a
way which affects the bandwidth as in Fig. 2. It should
be possible to derive the description of Figs. 2—4 as an
approximation to these hybrid schemes.

6. SUMMARY AND DISCUSSION

The d bands of a transition metal depend on the
potential through two parameters, the position and
width of the d scattering resonance. For a fixed res-
onance, the d-band structure is determined by geomet-
rical considerations, and this information is contained
in the KKR structure constants. We have shown that,
to a useful approximation, this dependence of the bands
on the lattice arrangement can be described in a simple
way. This should be of use, for example, in calculating
compressibility and shear strength, and for interpreting
experimental measurements of the optical properties
and Fermi surfaces of transition metals as a function of
hydrostatic pressure and uniaxial strain. It has been
usecP~ in discussing the observed crystal structures of the
transition elements. It can be employed directly in
Mueller's' interpolation scheme, reducing the number
of parameters in the d-d block to two (compared with
seven LCAO parameters for the bcc structure), with
only a small decrease in the accuracy of the scheme.
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