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The fact that two different expressions for the isothermal susceptibility xz can be obtained within the
framework of the Weiss molecular-Geld theory of ferromagnetism (WMFT) is discussed. We conclude
that it is inconsistent within the WMFT to assume no spin correlation in treating two-spin correlation
functions. The requirement that the two methods for computing pz give identical expressions provides a
measure of the spin correlations. A second consistency condition is also imposed. These, together with the
Weiss theory for single-spin averages, do not completely determine a modified theory, except at high tem-
perature, where the resulting expressions for short-range order and specific heat are asymptotically correct.
No further conditions or constraints have been uncovered, so that an ad hoc assumption is required to
complete the theory for all temperatures and magnetic fields. Several simple assumptions give respectable
short-range order and specific-heat curves. The theory is essentially a Weiss theory, modified so as to be
consistent when forming two-spin averages.

l. INTRODUCTION AND DISCUSSION

~r ~F all the effective-field theories of magnetism, the
Weiss molecular-field theory (WMFT) is the

most widely applied because of its great simplicity.
Smart, in his recent book, gives a careful exposition of
many of its uses. It is discussed briefly in most texts on
solid-state physics. Brout' and Mattis' have given clear
discussions of it. Ter Haar4 considers it in the language
of the related Bragg-Williams order-disorder theory.

The WMFT assumes that the interactions of a given
spin with its neighbors may be replaced by an effective
magnetic field —the Weiss molecular 6eld—and that
there are no correlations between the spins. For de-
scribing quantities which are expressed by single-
particle operators, such as the magnetization, the
KMFT is qualitatively correct: It predicts spontaneous
magnetization, and it gives the famous Curie-Weiss law,
which is quantitatively accurate at suKciently high
temperatures. However, for describing quantities ex-
pressed by two-particle operators, such as the exchange
energy, heat capacity, or short-range order, it is
completely incorrect in the paramagnetic region at zero
applied field. It also has other gross defects which will

be discussed in this paper. These are a direct consequence
of the assumption of no correlation between the spins.

We show here that two different expressions for the
isothermal susceptibility &z can be obtained within the
framework of the WMFT. In the one method it is
necessary to evaluate two-spin correlation functions and
the result is clearly incorrect. Two-spin correlation
functions do not arise in the other method, whose
result is the Curie-Weiss law. We interpret this dis-

crepancy to mean that the use of the assumption of no

' J. S. Smart, Egect&'e Field Theories of Magnetism (W. B.
Saunders Co. , Philadelphia, 1966).

2 R. Brout, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1965), Vol. IIA.

'D. C. Mattis, The Theory of Magnetism (Harper and Row,
New York, 1965), p. 227.

4 D. Ter Haar, cerements of Statistical Mechanics (Rinehart and
Co., New York, 1954), Chap. 12.

spin correlation is inconsistent when evaluating two-
spin correlation functions in the WMFT. A two-
particle distribution function is necessary for such.

The cluster-expansion theories" "provide just such
two-particle, and higher, distribution functions. Not
only correlation functions, but also the magnetization,
a one-spin quantity, may be evaluated with these
multiparticle distribution functions; the result for the
magnetization is more accurate than the WMFT result
in most respects, at the expense of additional labor, of
course.

Our purpose in this paper is to discuss the mentioned
inconsistent feature of the WMFT, and to show that the
Weiss theory can be modified in a natural way, so as to
allow a consistent treatment of two-spin correlation
functions. The modified theory is required to be identical
to the Weiss theory in its description of the magnetiza-
tion. It is not meant to compete with the cluster-
expansion theories in accuracy; rather, it is offered as a
simple and consistent method by which the WMFT
should be used.

The demonstration that the KMFT can give two
difIerent results for p& can be developed very simply in
a special case, and we shall do this now. With a canonical
distribution, the total average magnetic moment of a
system of identical spins is given by

~ Tr/M, ' exp( —PX) $3I, =
TrLexp( —PX)j

where p= (kT) ', and K is the Hamiltonian, which

'T. Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 {1955).' R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).
P. R. Weiss, Phys. Rev. 74, 1493 (1948).

'P. W. Kasteleijn and j. Van Kranendonk, Physica 22, 317
(1956).

9 R. Kikuchi, Ann. Phys. (N.Y.) 4, 1 (1958)."B.Strieb, H. B.Callen, and G. Horwitz, Phys. Rev. 130, 1798
(1963).

"H. B. Callen and K. Callen, Phys. Rev. 130, A1675 (1964)."T.Fujishiro, F. Takano, and T. Oguchi, J. Phys. Soc. Japan
19, 1666 (1964)."T. Morita and T. Tanaka, Phys. Rev. 145, 288 (1966).
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where C and 0 are the Curie constant and paramagnetic
Curie temperature, respectively, defined in Sec. 2.
Alternatively, by taking the derivative of Eq. (1) erst,
one obtains (Q is the volume)

x.=(~/fl) E(M:)—(M ) 3

= (P/0) $N((M ') ')+ Q (M 'M &')—N'(M ')'$.

(3)

(If M, did not commute with the Hamiltonian, a more
complicated expression would result. ") Equation (3)
is exact and is a standard statistical. -mechanical formula.
According to the WMFT, the different spins are un-
correlated:

(M;M, )= (M.') (M,') (i')
Consider again only the zero-field case in the para-
magnetic region. Then the second and third terms on
the right in Eq. (3) vanish. Further, for spin s, ((S,') ') =
sr (in any theory) . The result is

xr C/T, —— (4)

which is clearly incorrect, containing no information
whatever about interparticle interactions. Note that
this result is obtained without use of the molecular
field, and results from any theory which uses an assump-
tion of no correlation and which correctly gives (M, ') =0
at Ho ——0 in the paramagnetic region. Thus our com-
plaint, that the common use of the WMFT is incon-
sistent in this respect, applies as well to any theory of
magnetism which assumes no correlation. The argu-
ment can be extended to the truncation of correlation
at higher orders also."

'4 R. L. Peterson, Rev. Mod. Phys. 39, 69 (&967).
"For example, in the Oguchi two-spin theory (Ref. 5) with

exchange connecting only nearest neighbors, the expression for
xz based upon Eq. (3), assuming that only nearest neighbors are
correlated, does not agree with the conventional Oguchi result.
In this case, the disparity between the two results is not so drastic
as in the WMFT, since the result based upon Eq. (3) contains the
exchange interaction, and in fact is not grossly incorrect.

contains a Zeeman term for an applied field H& in the
s direction and an isotropic exchange interaction. The
differential isothermal susceptibility x~ is defined as the
derivative of (M, ) with respect to Hs at constant T.
One may calculate this in either of two ways —by
evaluating (M, ) first, then taking the derivative; or by
taking the derivative of Eq. (1) first. , formally and
exactly, then evaluating the result. In the WMFT, both
methods can be carried out exactly, that is, without
using any approximations in addition to those which
form the basis of the theory.

By evaluating (M, ) first, in the WMFT, then finding

xz, one readily obtains at Hp=0 and T)0 the well-
known Curie-Weiss law

yz =C/(T 0), —

This inconsistency in the computation of pz, which
does not seem to have been discussed previously in the
literature, is of course not the only gross inadequacy of
the WMFT, and one must seek to understand its
relation to the others. In particular, it is well known
that one cannot obtain the WMFT expression for the
magnetization by minimizing the free energy when it is
written in the form

NkT—ln Tr exp( —PK,),
where X; is the Weiss Hamiltonian for spin i." The
difhculty here involves the correct use of the self-energy
term in a theory without correlation. By using the form
F= (X)—TS', where the entropy S' is written as

Nk Tr—(p, lnp, ), and p, is the canonical density matrix
with the Weiss Hamiltonian for a single spin, Callen
and Callen' have shown that the usual Weiss expression
for the magnetization is obtained. Brout' discusses the
free-energy method whereby one writes the entropy
simply as kin@' and enumerates the degeneracy of
states 8' corresponding to a given magnetization. This
also gives the Weiss expression. Hence the free-energy
minimization principle can successfully obtain the
Weiss theory without correlation.

The susceptibility disparity does not seem closely
related to the free-energy problem. It does not contain
a self-energy term. In fact, the application of the
WMFT rules to the exact Eq. (3) is so elementary that
no manipulative ambiguities can arise, as can happen in
the taking of derivatives in the WMFT. If it were not
for this fact, we would be tempted to dismiss this
problem on the grounds that it represents just another
quirk in the WMFT, and that there are better theories
anyway.

However, we can see no way of avoiding or modifying
the results of Eq. (3) within the WMFT. We believe
that a real inconsistency is involved, which must be
considered. Specifically, because various quantities (for
example, isothermal susceptibility and heat capacity)
can be expressed in alternative ways which involve
correlation functions of different orders, certain con-
sistency conditions are imposed. A set of rules regarding
the use of a one-particle distribution function will
provide through these conditions certain information
about two-particle and higher-order distribution func-
tions.

The usual method of classifying and applying the
effective-field theories is as follows: The first level of
approximation consists in performing all averages with
a one-particle distribution function (the WMFT); in
the next level all averages are performed with a two-
particle distribution function, and so on. Such usage

"This difhculty is not unique to the WMFT(cf. Ref. 15). If
one assumes the spin-pair of the Oguchi theory to be in a molecular
field and uncorrelated with its neighbors, a similar argument
requires that (S.') =0."E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310
(1960), Appendix E.
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may be characterized as being uniform, although not
necessarily consistent, as we have just discussed.

We shall here make a nonuniform use of the distri-
bution function. Wanting to retain an essentially Weiss
theory for reasons of simplicity, we adopt the %eiss
one-particle distribution function for treating one-
particle quantities (i.e., the magnetization). For
treating two-spin correlations, we adopt a two-particle
distribution function, whose form is only implied,
having the property that the two mentioned methods
for evaluating x~ give identical results. An outcome of
this is that the short-range order and heat capacity do
not vanish in the paramagnetic region at zero field, and
explicit expressions can be obtained for them.

This procedure may be compared with the two-
particle distribution theories, such as that of Kasteleijn
and van Kranendonk. ' There, an explicit two-particle
distribution function is used, and the magnetization
computed with it is made to be consistent with a one-
particle distribution calculation. We mention also the
work of Elliott and Marshall, " who extended the
Bethe-Peierls-gneiss theory' ~ to critical scattering, and
invoke Eq. (3) as a consistency condition.

In Sec. 2 we review some of the defects of KMFT,
emphasizing the role played by the assumption of no
spin correlation. The consistency conditions are intro-
duced and discussed in Sec. 3. Together with the Weiss
one-particle distribution function, they still do not com-
pletely determine the theory except at high temperature,
where the theory becomes exact. We have not un-
covered any further conditions or constraints on the
two-spin distribution function, and so have considered
various ad hoc assumptions to complete the theory for
all temperatures and magnetic fields. Several give
respectable short-range order and specific-heat curves.

This paper is given in the language of ferromagnetism
but applies to antiferromagnetic and ferrimagnetic
substances as well. The arguments do not depend
essentially upon the number of sublattices or upon the
signs of the exchange interactions.

2. WMFT AND SOME OF ITS DEFECTS

In this section, we develop brieQy those parts of the
WMFT relevant to our discussion, and discuss several
of its gross defects.

The Hamiltonian of the system consists of the Zeeman
interaction in an applied field Ho directed along the
positive s axis, plus an isotropic exchange interaction.
There are S spins, where E is sufficiently large that
surface eGects can be neglected. Thus

between spins i and j, and 8' is the spin operator for
particle i. The second summation in Eq. (5) is over all
pairs. In the WMFT, one constructs a Harniltonian for
spin i which is uncoupled from the Hamiltonian of the
remaining system:

K,=gljsHsS, ' 28' —Q J,, (S')=hTh—S.'. (6)

=—SB,(h) . (7)

In Eq. (7), the trace is over the states of spin i, and
B,(h) is the Brillouin function:

B,(h) = (2S+1)/2S coth —,'h(25+ 1)—(25) i
coth ash.

The quantity h defined in Eq. (6) may be written

h=pgl;&. +(O/T) Lsj(5+1)jB,(h), (9)

where the paramagnetic Curie temperature 0 is defined
by

O=2S(5+1) Q (J,,/3h). (10)

For Hs ——0 and T)O, the only solution to Eq. (9) is
h =0, giving (S,') =0, the correct zero-field result in the
paramagnetic region.

The short-range order parameter is commonly defined
by

r= (S' 8')/Ss —(i,j nearest neighbors). (11)

Hence the assumption of no spin correlation gives the
well-known incorrect result that r =0 for HO=0 in the
paramagnetic region. This result is clearly independent
of the use of a molecular field. Similarly, for HO=0 and
T&0]

(X)=(5L,)=—2 g J;;(8' S)=0,
and, consequently, the heat capacity

C,=—hP (a/OP) (X)l ~ (12)

also incorrectly vanishes for Ho ——0 and T&0.
The diRerential isothermal susceptibility is

The second part of Eq. (6) defines the quantity h. The
angular brackets represent the thermal average, and
P=(hT) '. (5,') is independent of j in the ferro-
magnetic case. With the Hamiltonian of Eq. (6), one
obtains

—(M, )/EgIiii (S.')——
=Tr/5, ' exp( —hS, ') )/Trt exp( —hS,*)$

X=gpriPs Q 5,*—2 Q J;;S' 8&,

where g is the g factor, its is the Bohr magneton (used
here as positive), J,~ is the exchange coupling constant

's R. J.Elliott and W. Marshall, Rev. Mod. Phys. 30, 75 (1958).

and

Oh/OH& ~~
=gyle/h (T OF,)—

Oh/Op ilr, =hT'h/(T —OF,),

»=n-i(agz, )/aa, ) ~,.
From Eq. (9), one has

(13)

(15) .
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xz =CF,/T, (20)

where F, is given by Eq. (16). Equation (20) agrees
neither with Eq. (17) nor with experiment, and demon-
strates the inconsistency in the WMFT discussed
earlier.

3. WEISS THEORY WITH CORRELATION

We turn now to the prescription, mentioned in Sec. 1,
for obtaining a measure of the two-particle correlations
in a modified Weiss theory. A consistent theory should
give the same result for xr via Eq. (3) as via the use of
the more conventional approach described in Eqs.
(13)—(17). Thus we set the right-hand sides of Eqs. (3)

where

F,=3/(S+1) (d/dh)B. (h) . (16)

The quantity F, is unity at H0 ——0 and T)8, and
approaches zero more rapidly than T for T(8.Kith the
use of Eqs. (7) and (13)—(16), the differential iso-
thermal susceptibility becomes

xr CF,/——( T OF.)—, (17)

where C is the Curie constant equal to

Ng'pgjs(S+1) /3kQ.

Equation (17) holds for all T and Ho and is the accepted
result of the WMFT.

A defect of the WMFT which is not widely known is
the fact that the isentropic susceptibility X& vanishes
for all Ho and T, as we now show. According to a
thermodynamic identity,

x =x —(T/QC, ) (O(M, &/OT)', . (18)

In the WMFT, one obtains

O(M, &/OT ~~, Ngpgs——(s—+1)hF, /3(T OF,). —
Also, from Eqs. (5) and (12),

Cpg, NkTS (S+——» F,h'/3 (T OF, ) . —
Hence

T/QC~, (O (M, &/OT) 'II, CF,/(T OF——,) =xr. —

By Eq. (18), one obtains xs=0. That this is incorrect
may be seen immediately from Eq. (18) at HO=0 and
T)8. Since (M,)=0 for this case, one should obtain
X8 =X&

Next we turn to the alternate evaluation of Xg,
mentioned in Sec. 1 and based on the exact expression
(3). The 6rst term on the right in Eq. (3) is a single-
particle operator and is evaluated with the use of the
molecular-held assumption alone. One Gnds

((M ')') =g'ps'SLSB. '(h)+-', (S+1)F,j. (19)

Using the assumption of no spin correlation for the
second term on the right in Eq. (3), and using Eq. (7),
one then obtains

and (17) equal to each other, obtaining, with the use of
Eqs. (7) and (19),

Z' (S.'S. )+as(s+» jF.-(N-1)». (»

(s.'s. )= (s.'&2yc, ,-, (22)

where 0. signiies a Ca,rtesian component, we obtain
from Eq. (21)

Q' Cg'=S(S+1)8F '/3(T 8F ) . —(23)

That the correlation sum as given by Eq. (23) is of
order unity in terms of E is not a peculiarity of the
gneiss theory. This may be observed by substituting
Eq. (22) into the exact Eq. (3).

The consistency condition LEq. (23')) does not
determine the individual two-spin correlations C;, and
it is natural to search for additional conditions. The
equiIibrium-fluctuation formula for the heat capacity,
analogous to Eq. (3), contains three- and four-spin
correlations as well as two-spin correlations, and the
desired information cannot be obtained from it. The
equilibrium-fluctuation expressions for O(X. &/OHO and
O(M, &/OP each contain two- and three-spin correlations.
However, in the proper linear combination of these
quantities, the three-spin correlations vanish, and a
second consistency condition on the two-spin correlations
obtains. Thus

8«.*&/». I.+~(O(M.&/e) I .=H.~[&M. &- &M.& g

=&oQXr (24)

Here Eq. ('3) has been used, but no approximations are
involved. Using Eq. (22) and the Weiss result for the
magnetization, one obtains from Eq. (24)

Z &;;(8/oHo) Ec,;+c,,'+ c,, ~ =o.

If Eq. (25) is to be true for exchange couplings of
arbitrary size, the second consistency condition is

(o/oH, ) (c,, +c,;+c,,*) =o. (26)

Until now, the discussion has been the same for both
Ising and isotropic Heisenberg interactions, since the
KMFT ignores the transverse components of the
Heisenberg interaction. For the Ising interaction, C;,
and C;p are absent in Eq. (26), and so C,,* is in-
dependent of held for all temperature. In the Heisen-
berg model, no such dehnite statement can be made.

=-',S(s+1)[F,T/(T OF, )—i. (21)

Equation (21), in which only the Weiss one-particle
distribution function has been used, determines the sum
of the s-component two-spin correlation functions.
Writing each correlation function as the sum of its
uncorrelated and correlated pa, rts, i.e.,
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However, it is known" that the transverse and longi-
tudinal correlations are not greatly different at zero
field in the ordered state, and of course they are
identical at zero field in the paramagnetic region, To
the extent that one can take the components to be
equal, one can sa,y, by Eq. (26), that they a,re also
6eld-independent.

However, the principal theoretical interest lies in the
zero-field case, and for this the consistency condition

(26) is of no use. We have not discovered any further
conditions. In lieu of further developments along this

line, one is forced to introduce an ad hoc assumption
about the correlations, in order that the modified %eiss
theory be complete. However, one can still obtain
explicit high-temperature formulas from the preceding
analysis in the following way.

Let s„,J„,and C„'be, respectively, the number of eth
neighbors of a given spin, the exchange coupling between
g,th neighbors, and the s-component pair correlation
between eth neighbors. Write

Q' C; —=A (T, H()) Ci'

=2PS'(S+ 1)'J /9+0 (P') (29)

Substitution of Eq. (29) into (27) gives

A„=si+s&2/A+ ~ ~ ~ +s.J /Ji+ ~ ~ ~ . (30)

The second part of Eq. (27) also leads to Eq. (30) with

the aid of the high-temperature expansion, and con-

firms the general correctness of the modified Weiss

theory at high temperature. The high-temperature

=S(S+1)OF'/3(T OF.). —(27)

Equation (27) defines the function. A(T, Ho), whic»s
a measure of the correlation range, and may be written

A (T, &a) =si+s2C2'/Ci'+ ~ ~ ~ +s„C„'/Ci'+ ~ ~ ~ .

(28)

The asymptotic value A of A(T, Ho) as T~~ at
Ho =0 can be determined without recourse to the

present theory. That is, using the high-temperature
expansion method, one has at HO=0 and high tem-

perature,

C '= (S,'S,')

Tr(S,*S,&)„Tr(S,'S,') BC,

T11 Tl'1

expressions for the short-range order and heat capacity
obtained with the use of Eq. (27) agree with the exact
high-temperature expressions.

Since C~' is bounded, the singular character of Kq.
(27) must occur in A(T, H0). If we set

Ci'=S(S+1)OF,'/3A Ta(T, Hp). (32)

The introduction of an ad hoc assumption to complete
the modified Weiss theory now amounts to making a
statement about a(T, Ho). In the Ising model, since
Ci' is there independent of Ha, the quantity F,2/u must
be field-independent, and we expect that this would be
approximately so in the Heisenberg model also.

It is not difficult to write functions a(T, 0), approach-
ing unity for both T—+~ and T—+0, which give qualita-
tively satisfactory short-range order and heat-capacity
curves. For example, functions of the type

1+~F./(T/O+I), 1+~F,2/(T/O+m),

where the zero-field form of F, is used, and e and m are
suitably chosen small numbers, give respectable results.
For T(0, the specific-heat curves lie just below the
WMFT curve and are s„-dependent (the WMFT
curves are not). At T)O, a specific-heat tail occurs,
going as T ' at large T.

Finally, we remark that the isentropic susceptibility
difficulty mentioned in Sec. 2 does not occur in the
modified theory. That is, at IIO ——0 and T)8, x, =x&
as it should.

To sum up, a modified Weiss theory with correlation
can be constructed in a natural way. Unfortunately, the
consistency conditions used are not sufficient to deter-
mine the theory completely except at high temperature,
and unless other conditions can be found or constructed,
an ad hoc assumption about the correlations is necessary.
Several such simple assumptions give "respectable"
results, but there is little reason to select one of these
over another.

A (T, Ho) = fA T/(T OF,—) )a(T, Ho), (31)

then a(T, Hp) goes to unity as T—+oo at Hp=0. The
work of Elhott and Marshall" suggests that C„*/C,*

vanishes as T~O at Ho=0, so that a(T, Hp) probably
becomes unity in this limit also. The expression for C&'

in terms of a(T, Ho) is


