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type effects (i.e., an additional electron interacting
with the electron line of the particle-hole ladder forming
the dominant vertex). Although the characteristic
"f—st" effect is well known to occur in the numerators
of such interaction terms, e the summations over states
seem to smooth out the associated logarithmic singu-
larity. Thus, at this stage, we see no obvious way of

' For example, in the considerations leading to the theory of
superconductivity.

generating an s-d coupling with sharply singular
properties of the Kondo type.
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Recently, Kawasaki proved that the biperiodicity of the dispersion relation obtained by des Cloizeaux
and Pearson for the lowest triplet excitations of the Heisenberg antiferromagnetic ring is required by
symmetry. This degeneracy is shown not to be a consequence of any symmetry of the Hamiltonian which
has been noticed; it therefore appears to be accidental.

"N recent years, great interest has been attached„.to the properties of antiferromagnetic rings of
Heinsenberg-Ising coupled doublet sites. Such rings are
described quantum mechanically by the Hamiltonian

X= QIqS„*S„+,*+(S„*S.+,*+S.eS„+,o) f,
n=1

Stv+t—=St (1)

Exact results have been obtained for the eigenstates, "
ground-state energy, ' ' short-range order, 4 the ordering
of energy levels, '~ and the dispersion curve for low-

lying collective excitation' for p= 1, which are triplets,
using the arguments of Lieb and Mattis. GriKths' has
obtained the magnetic susceptibility at absolute zero
by considering the lowest eigenstates for given 8'
values in the pure Heinsenberg case. This has been
extended with greater rigor by Yang and Yang' to
other values of p; these authors considered the equation
of state at absolute zero.

The dispersion curve obtained by des Cloizeaux and
Pearson' is of the form

E(q,rtt) =sr
~

sinq
~ /2, e"~=+1, rN=O, &1 (2).

This result was obtained in the limit E~~; it is

~ H. Bethe, Z. Physik Vl, 205 (1931).' C. ¹ Yang and C. P. Yang, Phys. Rev. 14'7, 303 (1966).
3 L. Hulthen, Arkiv Mat. Astron. Fysik 26A, No. 11 (1938).
R. L. Orbach, Phys. Rev. 112, 309 (1958).' C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 (1966);150,

327 (1966).
E. H. Lieb and D. C. Mattis, J. Math. Phys. 3, 749 (1962).

~ J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131
(196').

8 R. B. GriKths, Phys. Rev. 133, A768 (1964).' C. N. Yang and C. P. Yang, Phys. Rev. 151, 258 (1966).

curiously biperiodic; that is,

E(q) =E(q+sr) = E(q+2sr) .

A full statistical-mechanical analysis of the system
has proved elusive, because an adequate general method
of handling and classifying the eigenstates given by
Bethe has not yet been found. Neither has the long-
range order been evaluated in closed form, although
Walker" has given a perturbation expansion, and
Mermin and Wagner" have proved that for the pure
Heisenberg case there can be no long-range order.
Bonner and Fisher" obtained exact results for 6nite
rings using machine calculations.

For this reason, approximate methods'~" have been
developed using the Jordan-Wigner transformation of
spin raising and lowering operators for doublets to
Fermi site excitation creation and annihilation oper-
ators. These methods use further transformations which
both exploit the inherent symmetry of (1) and which
are canonical; the statistical mechanics is then, in
principle, tractable.

Recently, Kawasaki' claimed to have analyzed the
symmetry properties of the Fermi representation for
regular magnetic rings, and thereby to have proved the

L. R. Walker, Phys. Rev. 116, 1089 (1959).
"N. D. Mermin and H. Wagner, Phys. Rev. Letters 1'7, 1133

(1966).
1' J. C. Bonner and M. K. Fisher, Phys. Rev. 135, A640 (1964)."L.N. Bulaevskii, Zh. Eksperim. i Teor. Fiz. 16, 685 (1962)

[English transl. : Soviet Phys. —JETP 43, 968 (1962)j.
~4 T. W. Ruijgrok and S.Rodriguez, Phys. Rev. 119,596 (1960).
'~ Z. G. Soos, J. Chem. Phys. 43, 1121 (1965)."D. B. Abraham and A. D. McLachlan, Mol. Phys. 12, 319

(1967).
rr S. Inavrashiro and S. Katsura, Phys. Rev. 140, A892 (1965)."K.Kawasaki, Phys. Rev. 142& 164 (1966).
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double periodicity in the triplet excitation spectrum
to be required by symmetry.

In this paper, we shall disprove Kawasaki's theorem,
thus demonstrating that the biperiodicity is an acci-
dental degeneracy, in so far as it is not required by any
symmetry noticed as yet; furthermore, this degeneracy
appears asymptotically as E~~ in the alternant
spin-wave theory. "

KAWASAKI'S THEOREM

An analysis of the symmetry properties of (1) has
been given by Abraham and McLachlan, "whose ideas
and notation we shall use. R is invariant under the
operations T" of the one-dimensional translation group
v~, and the operations of the double group of rotations
about the s axis {E,R(e, s.), R(z, 2s.), R(s, 3n.) }, or
equivalently, the parity group {F., ( —1) },where

The wave function Ao(k& ~ k~im) may be related. to
the Bethe ground state: qo= (0, s) for —,'N (even, odd) .
There is another state

~ q&, 0) with wave function
A~(k&. ~ k~i2) and a&

——(s, 0) for -', X (even, odd) whose
energy is asymptotically the same as that of

~ qo, 0).
An excited state

~ qo+q, m) with excitation energy
E(q, m) may be obtained from the ground state by
setting

~ qo+q, m)=W(q, m) ( q0, 0),
where the operator W(q, m) may be written

W(q, m) = g g QA„(k& ~ k„)h(8~+ ~ +8„„)
n {k} {8}

Xh(kibe+ ~ ~ +k 8 ) Fi, " ~ ~ Fi, '" (8)

where

and

Xh(kg+ ~ +k„q)F»t ~—Fi,„t
i 0), (4)

eikiN —( 1)n—1

h(x) =1,
=0,

x= 2rx r= 0 +I

otherwise.

The Ii~~ are Fermi creation operators, de6ned by"

Fi,t=X M' hei™exp| is+(S '+-') $S„t.

The apparently bizarre restriction in Eq. (4) on
the single-Fermion wave numbers is necessary for
F»t ~ F&„"

~
0) itself to be a symmetry state; Kawasaki

did not realize this. Under these conditions,
~ q, m)

has the properties

T
( q, m )= e*&

j q, m ),
S*

i q, m)=m
i q, m),

ei &N +1-
m=0, +1, ~ ~ ~, +-,'S. (5)

Now suppose S is even; the ground state" will

have m=0 and will be of the form

~ qo, 0) Q b, (kg+ +kleig —q)
&X" &+ning

XAO(ki ~ k~(2) F»t Fi,„„ti 0), (6)
with

n=l

Further, K commutes with S', a stronger requirement
than that above. Consequently, the eigenstates have
the form

~ q, m )= Ph (-', lV+m —e) P A (k& ~ k )

Now Kawasaki's theorem states that

E(q, m) = F( q+n. , —m) —=E(q+m, —m),

Z(q, m) = Z(-q, —m) = F(q, -m),
m odd

m even. (9)

The theorem for m odd is false; that for nz even is true,
but incorrectly proven. To see why this is so, we must
investigate (8) .

It is certainly true that
~ qo+q, m) may be written as

in (7), but each operator F»~' ~ Fi,„i"does not neces-
sarily span an irreducible representation of v&, which is
contrary to Kawasaki's assumption. In this analysis,
Abraham and MaI.achlan" showed that operators may
be classy'6ed according to the irreducible representation
of {E, ( —1) '} which they span. Even symmetry oper-
ators Ii j„~& ~ P~,„'2 will appear as

F " ~ F ""Q(a)+Fe" ~ .Fe ""Q(P) (10)

where e'~~=1, e'e~= —1. Q(n) and Q(P) are the
projection operators for the even and odd irreducible
representations of {8,(—1)'}.Notice that R is an
even operator:

&=3'( )Q( )+~(P)Q(P) (11)

No simple Fermi representation is possible for odd
symmetry operators; in particular, Ii»'1 ~ P»„„&+&

can never be a symmetry operator, no matter how the
k is chosen.

In order to appreciate the consequences of this, we
consider the transformation of W (q, m) by time reversal
u and rotation by x about the y axis, i.e., R(y, ~) .It is
clear that W(q, m)~W(q', m), in w—hich F»'~ ~ ~ Fi,„'~
is replaced by F~»+ '". ~ F~&+,'", the +(—) sign
obtains for N(R). Thus

e+P'= ( —1) t(&I2)+&1

' D. 3. Abraham and A. D. McLachlan, M01. Phys. 12, 301
(1967).

W(q, m)-+W(wq+~, —m),

W(q, m)-+W(&q, —m),

m odd

m even. (12)
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When m is odd, W(q, m) can never be a sum of termsin
the Fermi representation, each of which is a symmetry
operatoron

~ q0, 0), andsoneithercanbeXW(q, m)X ',
where X= U or E. Consequently Kawasaki's assertion
that E(q, m) = E(+q+sr, —m) for m odd is incorrect,
because

~ qo, 0) is nondegenerate, ' and is therefore
transformed into itself by U and R. When ns is even,
W(q, m) should take the form

W(q, m) = Q(n) W (q, m) +Q(P) Ws(q, m),

where

W (q m) = g Q gh(ntbg+ ~ ~ +n „il „—q)
n {aJ {8}

(13)

with a similar form for Ws. Only in this form is W(q, m)
a sum of operators Ft„" ~ Ft,„'"each of which spans the
irreducible representation D«& (T")=e'&" of rts. It is

then easy to show that Kawasaki's theorem for m even
is correct, but the proof is false.

We now consider the effect of rotations E(y, m.), time
reversal U, and reflections R(S) on the state (q, m),
which has the properties of Eq. (5). These operations
commute with X and connect the states

~ q, m),
~ q, —m),

~

—q, —m), and
~

—q, m), which are con-
sequently required to be degenerate. This is just what
one would have expected; it proves that the states
~ +q, &m) and

~

&q+sr, &m) are not connected by
any symmetry of X which has been considered, and
consequently any degeneracy between them must be
accidental. Nevertheless, such degeneracy can arise
in a systematic way in the alternant spin-wave ap-
proximate theory of an antiferromagnetic ring" for
which E~~.
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The magnetic structures and transformations in the ordered phases of the Mn-Pt system have been
investigated in a wide concentration range by magnetic, x-ray, and neutron diGraction methods. The
properties of the Mn~Pti IRh„and Mn&, Fe,Pt systems have also been studied. The triangular and the
collinear antiferromagnetic structures, both found in the Mn3Pt phase, undergo a first-order transformation
into each other at a critical value of the lattice parameter where the next-nearest-neighbor interaction
changes sign. In the MnPt phase a simple antiferromagnetic structure occurs with the directions of the
magnetic moments dependent on concentration and temperature. There is no direct connection between
the anisotropy energy and the lattice dimensions. The MnPt3 phase has simple ferromagnetic structure.
The measured transition temperatures are summarized in magnetic phase diagrams. The magnetic
structures and transformations of the Mn —Pt system are explained by assuming nearest- and next-nearest-
neighbor interactions dependent on the interatomic distances. The magnetic phase diagram of the Mn3Pt
phase calculated in the molecular-field approximation is in agreement with the experimental observations.

I. INTRODUCTION

t lHK metals of the 3d transition series form with..platinum intermetallic compounds of ordered Cu3Au
and CuAu —I lattice type. These alloys show both
antiferromagnetic and ferromagnetic behavior and
their common feature is the existence of ordered
magnetic moment on the Pt atoms in the ferromag-
netic state.

In the Mn —Pt system, the ordered intermetallic
compounds occupy a considerable part of the phase
diagram obtained by Raub and Mahler' from x-ray
diGraction and microscopic studies. At room temper-

' E. Raub and W. Mahler, Z. Metallk. 46, 282 (1955).

ature the ordered Mn3Pt, MnPt, and MnPt3 phases
are stable in the 16—29-at. % Pt, 33—60-at. % Pt, and
63—83-at.% Pt concentration ranges, respectively.
According to the neutron diffraction measurements
reported by Sidhu et al. ,

' in Mn3Pt two antiferromag-
netic structures, not specified in detail but having
different Neel temperatures, coexist. The comparable
compound Mn~Rh has a noncollinear, triangular anti-
ferromagnetic structure. ' The magnetic properties of

2 S. S. Sidhu, K. D. Anderson, and D. D. Zauberis, Bull. Am.
Phys. Soc. 10, 352 (1965).' J. S. Kouvel and J. S. Kasper, in Proceedings of the Inter-
national Conference on Magnetism, Eottingham, 1964 (Institute of
Physics and Physical Society, London, 1965), p. 169.


