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XIII. CONCLUSION

The present paper, like the preceding two, '' em-
phasizes the need for experimenters to measure and
publish additional quantities beyond the positions and
widths of resonances; it also emphasizes the possibility
that a few parameters may represent observed cross
sections more compactly than tables of phase shifts.
Although the universal validity of the particular
parametrization discussed here is by no means estab-
lished, the simplicity with which one can determine the
parameters from cross-section data and the simple
physical interpretation of the parameters suggest that
the parametrization merits further attention. I hope
these papers will stimulate experimental tests of

formula (1.2) for the description of complicated photo-
ionization cross sections and will encourage publication
of profile parameters.
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The use of the optical potential or self-energy of the single-particle Green's function for elastic electron-
atom scattering is discussed. The usual formalism, which assumes an unperturbed state described by a
single determinant, is generalized to include unperturbed states described by a linear combination of
determinants. Calculations are carried out for S-wave, elastic, singlet scattering of electrons by hydrogen
atoms. The results are compared with the accurate variational calculations by Schwartz.

I. INTRODUCTION
" PERTURBATION expansions for the optical poten-

tial for electron-atom scattering have been dis-

cussed by many authors' '; and it has been pointed out
that the optical potential is the self-energy of the single-

particle Green's function. 4 7

Perturbation calculations have been carried out for
electron-atom scattering for helium' and for hydrogen. o

In these calculations the terms in the perturbation
expansion were evaluated by methods developed in

previous applications of many-body techniques to
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bound-state problems. '~' In the usual optical-potential
or Green's-function formalism, one starts with an un-
perturbed many-particle state described by a single
determinant containing the states of the incident elec-
tron and all the atomic electrons. In the case of electron
scattering by atoms with closed subshells such as
helium, the unperturbed state is described by a single
determinant. In the case of electron-hydrogen scatter-
ing, the initial unperturbed state of the incident electron
and the is electron is a single determinant only for the
triplet states (5=1) with cVs=&1. Since the phase
shift is independent of Ms, the choice 3fs +1 was-—
made. ' Calculations for triplet 5-wave elastic scattering
were carried out and compared with the accurate
variational calculations of Schwat'tz. '3 The triplet
S-wave results of Schwartz are also in close agreement
with those of Temkin and Sullivan' calculated by solv-

ing a set of coupled partial differential equations.
It was found that the second-order optical-potential

results, which used Hartree-Pock intermediate states,

"H. P. Kelly, Phys. Rev. 131, 684 (1963).
"H. P. Kelly, Phys. Rev. 136, B896 (1964).
"H. P. Kelly, Phys. Rev. 144, 39 (1966).' C. Schwartz, Phys. Rev. 124, 1468 (1961).
14 A. Temkin and E. Sullivan, Phys. Rev. 129, 1250 (196$).
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gave only approximately 70%%uo of the total correlation
contribution to the phase shift. The second-order results
are, of course, dependent on the choice of potential gsed
to calculate the intermediate states. "The low second-
order results in this case are corrected by considering
the higher-order diagrams for a single pair of particles.
In the scattering problem these are the ladder diagrams
and the hole-particle diagrams including exchange.
These diagrams are analogous to those for bound-state
problems where the second-order energies are too small
in magnitude when the Hartree-Fock potential is used. "
The higher-order diagrams were approximately summed
for k =0.4 atomic units (a.u.), and the resulting correla-
tion contribution to the phase shift was found to be
0.0359 as compared with the variational value 0.0365.

In the present work, the optical-potential method is
applied to the problem of singlet-state elastic scattering
of electrons by hydrogen. Only the 5-wave phase shifts
are calculated in this paper. Section II contains a dis-
cussion of the modifications in the usual unperturbed
single-determinant formalism which must be made in
order to carry out the perturbation expansion for an
unperturbed state represented by a linear combination
of determinants. These considerations apply to any
atom in a spherically symmetric ground state (1-=0).
Section III contains numerical results for the singlet
S-wave phase shifts in second order and with estimates
of higher-order corrections. Section IV contains a
discussion of the results.

FIG. 1. Linear combination
of determinants describing an
unperturbed scattering state
given by Eq. (1).

V. '0&= Z/r+V, — (6)

where V is chosen to be the Hartree-Fock potential VHp.
In the case of triplet scattering from hydrogen, VHF is
given by

VHF vi(r)
v i.*(r') v i.(r')

dr'q g(r)
I
r—r'I

where X,(m, ) is a spin eigenfunction, and R(k, l; r)
satisfies the equation (atomic units are used throughout)

—-'[d'/dr' —l (1+1)/r']rR(k, l; r)+ V,~ i"rR (k, l i r)
= —,'k'rR(k, t; r) . (3)

The potential V„(') is a first approximation to the
optical potential

V.i ——V,„"'+V,i,',
and

R(k, l; r) —+ sin[kr+ (q/k) ln2kr ——',lir+ iii' &)/r (3)

as r ~~, where V,p'0' ~ q/r as r —+ ~. If V,~ is used in
Eq; (3), we obtain the exact phase shift hi rather than
the approximate 8~").

A good choice for V ~( & is

II. PERTURBATION EXPANSION FOR
SINGLET STATES p„*(r')p, (r') Ir —r'I '«'v i.(r) (7)

A. Diagrams

In the singlet-state scattering of electrons by hydro-
gen (or by any alkali atom), the initial unperturbed
state CA, is a linear combination of determinants

When C» is a single determinant, VHp may be defined by
its matrix elements

&al V»lf»= 2(&«Isla~& —&«IINf&), (g)

C „=—[(k+n-) —(k-n+) j
v2

1
=—I-„, +„„-+—&„-+„„+)10), (1)

V2

where (k+e ) is a determinant containing the incident
electron state &pi, with energy ~ik' and m, =+ i~ and also
conta, ining the outer bound electron state IN) with
m, = —

~ and all single-particle states occupied in the
core. The determinant (k e+) is similar except that the
continuum state yi, has m, , = —

~ and
I I& is now a state

with ris, =+—',. The state IO) contains all the single-
particle states of the core. For example, for hydrogen

I I)=
I
1s) and

I 0) is the vacuum. For Li, is= 2s and
I 0)

is the core state (1s)' 'S. The operators gq+, g„+ are the
usual Fermi-Dirac creation operators for states

I k) and
I
I). The state C'i of Eq. (1) is illustrated in Fig. 1.

The state p& is given by

where the sum includes all E occupied single-particle
states of the atom.

For the case of singlet scattering from hydrogen, the
Hartree-Fock equation is'5

Z ~„*(r)~„(r')
I

—-', V' ——
I v»(r)+ «'v»(r)ri

I
r—r'I

~i.*(r')~~(r')
+ dr'q „(r)

+ (ei.—-', k') q i,*(r') yi, (r')dr'yi, (r) =-', k'yi, (r) . (9)

In order to correct the Hartree-Fock results we must
include the contributions to the phase shift from correla-

"B.H. Bransden, A. Dalgarno, T. L. John, and M. J. Seaton,
Proc. Phys. Soc. (London) 71, 877 (1958).pi, (r) =R(k,l; r) Yi„(8,y)X. (ris,), (2)



HUGH P, KELLY

]'1I

2 I I

n+

Ie ww~ + I

+ ]k
II ~ «~HI

te)

n+ k
]4
ll

]i
2 I QM'ww I I

k+ fl

n k+

+ ]&

]E
p+

fl+ +]P- rn+ n"
]I ]4
II k

]I,n+ ]urn" ]in+

tions between the incident and atomic electrons. These
are accounted for by V,~' which includes the second-
order and higher-order terms of the optical potential.
Since we now have more than one determinant in Cq,
wc Inust gcncI'Rllzc tlic diagrammatic dcscI'lptlon ' ' fol
V,~ in the same way as for bound-state problems with
more than one determinant included in the unperturbed
state C 0."

In this calculation, the singlet Hartree-Fock equation
(9) is used for all physical scattering states. In the
diagrams these are the scattering states associated with
the free external lines. Since the singlet Hartree-Fock
potential is used, the first-order diagrams, including the
usual subtracted potential interaction, add to zero. The
first-order diagrams in the singlet case include the direct
and exchange interaction arit y~, in addition to the
subtracted potential interaction. In this case the ex-
cllRIIge 111tel'RctloI1 llas R posltlve slg11 Rs III Eq. (9).
The direct and exchange interactions in 6rst order a.re
the same as those for second order as shown in Figs. 2 (e)
and 2(f) except that in fIrst order there is only one
CouloInb lntcl action Rnd no intermediate stRtcs.

In Fig. 2, diagrams (a), (b), (c), and (d) are the usual
second-order diagrams when Cp is a single determinant.
When Cs is given by Eq. (I), the diagram of Fig. 2 (a) is

replaced by the diagrams of Fig. 2(e). The factor of —',

arises from the 2 '" which multiplies the determinants
of Cs. If we take the terms of Fig. 2(e) (without the
factor s) and now write out explicitly all the If+ and I)

operators for each matrix element, we obtain a contribu-
tion to $ os', which is the operator corresponding to V,v
before integration over the coordinates of the atomic

pro. 2. Second-order diagrams for the optical potential. (a)—(d)
Second-order diagrams when C f, is a single determinant. (e) Dia-
grams corresponding to (a) when @s is given by Eq. (f). (f) Ex-
change diagrams corresponding to (e). (g) Diagram corresponding
to (c). (h) Diagram corresponding to (d). (i) Generalization of
(h) when ns is in an open shell.

electrons. We then evaluate (Cs~ 0',n'~Cs) with C's

given by Kq. (I) and we obtain the contribution to
(k~ V,e'~ k) given by Fig. 2(e) including the factor xs.

Similarly, the diagrams of Fig. 2(f) correspond to the
exchange diagram of Fig. 2(b). When we calculate
(C's

~

$",n ~C's) with the interactions shown in Fig. 2(f),
tile diagrams of Fig. 2(f) with the factor s

which is given. We also hand that the diagrams of Fig.
2(f) have a positive sign when C s is given by Kq. (I),
unlike Fig. 2(b) which is always negative.

In the present case the diagram of Fig. 2 (c) becomes
the diagram given in Fig. 2(g). We actually have two

diagrams corresponding to (k+rI ) and (k
—rs+) and each

multiplied by Is as in Figs. 2 (e) and 2 (f). For hydrogen,
Figs. 2(c), 2(d), 2(g), 2(h), and 2(i) do not exist since
there is only one atomic electron. Figure 2(h) is a
generalization of Fig. 2(d). In Figs. 2(g) and 2(h) it is
assumed that the state q is common to both deter-
minants; that is, y„ included in the core state ~0) of
Eq. (I) and so we may draw hole lines referring to y in

the usual way. ' ""In the most general case, q and

q both are in an open shell and there are diagrams like

»g. 2(i) multiplied by the appropriate squares of
Clebsch-Gordan coefficients which describe the linear

combination of determinants in C y. In the states y and

are both occupied in ~0), the diagrams of Figs.
2(a)-2(d) may be used.

In this paper the optical potential is applied to the
singlet-state elastic scattering of 5-wave electrons from

hydrogen. Since the Hartree-Fock potential. is used, the
only second-order diagrams are those of Figs. 2(e) and

2(f). &oth terms of Fig. 2(e) are equal, and the factor
of 2 is cancelled. The expression for Fig. 2 (e) is

(10)

where the sums include only excited single-particle
states. The expression for Fig. 2(f) is obtained by re-

placing the left matrix element by (rIk~e~k'k") in

Eq. (10).
Third-order diagrams for a single electron pair are

shown in Fig. 3. These interactions occur in all higher
orders and modify all the second-order diagrams of
Figs. 2(e) and 2(f). Figure 3(a) is a ladder diagram.
In Figs. 3(b) and 3(c) are shown the interactions of
excited states with the potential used to calculate them.
There are also corresponding diagrams for the inter-
actions of particles with all the occupied unexcited
states. For the case where C I, is a single determinant, the
net interaction of particles with the potential and with

the passive unexcited states leads to hole-particle
diagrams. '

In calculating diagrams, we require a complete set
of single-particle states which includes the unexcited

'6 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 f957).
~7 H. P. Kelly, Phys. Rev. 166, 47 (1968).
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'U„(r) = —no/2(r'+s')', (14)

"M. L. Goldberger and K. M. Watson, Collision Theory Qohn
Wiley 8z Sons, Inc. , Nevr York, 1964), p. 853.

states ) I). For hydrogen, the familiar states calculated
with only the Coulomb 6eld of thc nucleus satisfy this
criterion. However, the Hartree-Fock triplet states also
have this property. ' In this case, the set consists of

~
is)

and excited states, all of which are triplet scattering
states in the Hartree-Pock approximation. It is amusing
to note that these triplet states may be used as inter™
mediate states in the singlet (or other) scattering
calculations. The fact that the excited particles do not
propagate in the triplet potential is corrected by the
diagrams like Figs. 3(b) and 3(c) and by interactions
with the passive unexcited states. The interactions of
Fig. 3 are repeated in fourth-order and higher-order
diagrams. The Hartree-Fock triplet states from a
previous electron-hydxogen triplet scattering calcula-
tion' are used in the present calculation. The third-order
and higher-order diagrams of Fig. 3 are approximately
included.

3, Phase Shifts

The exact phase shifts 8) may be related to the
Hartree-Fock phase shifts Bg( & and to V,p' by the follow-
ing expression'.

exp($81) s1118l=exp($81(o)) S1118l( )

—(21)s/Ii'k) exp(i8(+181(s))&(Ios,ll V"'I t4.&). (11)

The states q», 1 and ps, l are defined by Kq. (2), and by
Eq. (3) with the potentials V,p&') and Vop, respectively.
The normalization of (Ios, 1 and gs, I is 'given by Eq. (5).
We de6ne

(12)

When V,p' is smaB relative to V,p(@, we may expand in
(8l—81(s)) and approximate its, i by qs, l. The result is

l181 —(2trl/@sk) ((os, 11 V.p'
[ V s, I&, (13)

which was 6rst deriveds from a variational expression
fox' 8~.

Equation (13) has been used to calculate 681 for
electron-helium scattering' and for electron-hydrogen
scattering in the triplet state. 9 In these cases, hb~ was
found to be fairly small and therefore not inconsistent
with the approximations leading to Eq. (13).However,
in the case of singlet elastic scattering of electrons from
hydrogen, the db~ are found to be larger, and it is
desirable to use the exact expression given by Eq. (11).
We now wish to have a good knowledge of

~ fs, i) or at
least a reasonable estimate of )ps, i)—~ ys, i). If we knew
V()p r8ther than 3ust thc slnglc matrix element
(k

~
Vop'

~
k), we could obtain I)4, l by solving Eq. (3) with

V,p&s) replaced by V„&o)+V,p'.
A rough estimate of V,p' may be obtained' by ap-

pl ox1matlng Vop w1th

k iL it fl

iL
I I ~~~ I

i IL i IL

II ~ I I

k'g '~n

ki) i(n
II

k n
]L

k n

where nz is the dipole polarizabihty and s is a length
related to the atomic size. Mittleman and Watson'
estimate

If the correct phase shift 8» is known, then we might use
n, in Eq. (14) as an adjustable parameter to obtain 8l
from the solution of Kq. (3) with V.,"' replaced by
V,p(s)+'Op(r). This would give an approximate gs, l
which we denote by fs, i('p). For simplicity, we use a
fixed value of s from Eq. (15) calculated with the known
dipole polarizability. Since in general we do not know
8l exactly, we can calculate &gas, i

~
V,p'

~ q s, I) and then
obtain a 6rst estimate of 8l from Eq. (13). We then
calculate II4,1('» with 'Up(r) by varying o(o of Eq. (14)
until the resulting solution has the phase shift b~. We
evaluate ((os, l~ V, '~II4, 1'p)& and then substitute into
Eq. (11) to solve for a more exact 8I. If necessary, we
solve again for fs, l(") with the improved value for 8l
and repeat the procedure. We may also approximate the
solution of bg by extrapolation. When we have calculated
&(os, i~ V»'~fs, l('») for a given 8l", we may expand
Eq. (11) in powers of (8l—8l&')) and also make the
approximation (assuming 81& ) is close to 8l)

&(Ioa, l) Vop (ys, l ) ((oiI, l] Vop ] (ok, l&

—((8, 8,(o))/(8, (o) 8,(o)))

XD(I s, l [ V (t4, 1(")&1, s, ( I—&((s, l ) V.,'~ q s. i&j (16)

We then obtain an approximate solution of Kq. (11).
This entire approach, of course, can only give an esti-
mate of the errors incurred in using Eq. (13)rather than
the exact expression of Kq. (11).

In principle, we might calculate

V.,'= Q [k&(k/ V.,')k'&&k'[,

where the sums over k, k' now include the complete
set of single-particle states. Given V,p', we could then
solve exactly for 8&. However, each matrix element
requires a considerable calculational CGort, and there is
an advantage in expressions such as Eqs. (11) or (13)
which only require a single matrix element of V,p',
although we may calcu1ate several matrix elements in
aPPi'oxiillatliig ((Ios;i~ Vop

~
IIt's, l).

tc)

Fxo. 3.Third-order diagrams for the optical potential for a given
pair of electrons (ke). (a) Ladder diagram. (b) and (c) are particle
interactions vqith the potential V. There are also corresponding
interactions vrith all occupied unexcited states.
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TABLE I. 5-wave phase shifts (in radians) for electron-hydrogen
scattering in the singlet state.

k(a.u.)

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

2.39577
1.87012
1.50807
1.23948
1.03147
0.86904
0.74413
0.65126

&varb

2.553 (1)
2.0673 (9)
1.6964(5)
1.4146(4)
1.202 (1)
1.041(1)
0.930(1)
0.886(1)

&var-4Z

0.157(3)
0.1972(7)
0.1883(8)
0.1751(6)
0.170(6)
0.172 (1)
0.186(0)
0.234(8)

a Hartree-Fock phase shifts calculated with Eq. (9).
b Phase shifts calculated by Schwartz using the variational principle. See

Ref. 13. Figures in parentheses indicate the uncertainty in the last digit.

TABLE II. Singlet phase-shift corrections (in radians) due
to second-order terms of the optical potential. a

Direct
Exchange

hbo(l =0)b hbo(l =0)b 65o(l =2)b &Boo (5va, —Bo(o&)d

k =0.20 a.u.
0.01151 0.08754 0.01423 0.21586 0.1972 (7)
0.01062 0.07837 0.01359

k =0.40 a.u.
Direct 0.01201 0.06724 0.01061 0.17042 0.1751(6)
Exchange 0.01146 0.05905 0.01005

Direct
Exchange

k =0.60 a.u.
0.01520 0.05756 0.00873 0.15109 0.172 (1)
0.01493 0.04681 0.00786

k =0.80 a.u.
Direct 0.02261 0.05486 0.00824 0.15606 0.234 (8)
Exchange 0.02245 0.04091 0.00699

a Calculated by Eq. (13).
b The l values in parentheses refer to the l values of the intermediate

states k' and k" used for (k) Vot'(k) as given by Eq. (10).' Sum of the second-order direct and exchange terms with l =0; 1, and 2
intermediate states.

d The exact value for b, bo based nn the accurate variational calculations
of Schwartz listed in Table I. Figures in parentheses indicate uncertainty in
the last digit. The values for bo«& are the Hartree-Fock singlet results and
are listed as hap in Table I.

"T.L. John, Proc. Phys. Soc. (London) 76, 532 (1960).

III. NUMERICAL RESULTS

Electron-hydrogen S-wave, singlet phase shifts were
calculated in the Hartree-Fock approximation by
solving Eq. (9). The results are given in Table I and
are compared with the accurate variational phase shifts
of Schwartz. "The present Hartree-Fock phase shifts
are in good agreement with those calculated previously
by John. "It is seen from Table I that the differences
between the variational and Hartree-Fock results are
rather large. This indicates large contributions to
phase shifts from the correlations between the incident
electron and the 1s electron of hydrogen. In the singlet
case the correlation contributions to V„' are given by
the diagrams of Figs. 2(e) and 2(f), by the interactions
of Fig. 3, and by the interactions of Fig. 3 in higher
orders.

The second-order diagrams of Figs. 2(e) and 2(f)
were calculated with intermediate excited Hartree-Fock
states used in a previous electron-hydrogen scattering
calculation. ' All the intermediate states are in the

XD(k', k") '(k'k" IeIkn) /(k"'k""IvIkn), (18)

where
D(k', k") ,'k'+=e—„'k"—-'k'"—- (19)

The values of k"', k'"' are chosen to be typical excita-
tions of importance in the second-order calculations.
Usually t(k",k"") is insensitive to the exact choice of
k'",k"".The state k"' is chosen to have the same l value
as k' and k"" has the same l value as k". There are
also l-changing ladder diagrams in which the l value of
k"' differs from that of O'. The ratio of the diagram of
Fig. 3(b) (plus interactions with passive unexcited
states) to the second-order diagram is written as aq+bq,
where u~ comes from the part of VHp with a direct inter-
action with n) and bb comes t'rom the exchange inter-
action with n). Both interactions are included in VnF,
and V in this calculation is VHp. The ratio of the
diagram of Fig. 3(c) to the corresponding second-
order diagram is written a,+b, The total of. the third-
order contributions for electron-hydrogen scattering
or for correlations only between Ik) and In) for any
atom is given by l-changing ladder diagrams, plus
the second-order result for (y~, ~I V,~'I y~ ~) (denoted

(q ~, ~ I
V»'I q ~,~)"') times the factor (t+at+b~+a, +b,).

Except for l-changing ladder diagrams, the ratio of
fourth-order to third-order diagrams for the pair (kn)
is given by the same factor, and we may sum this

continuum, ' and the sums are carried out by numerical
double integrations as described previously. ' ' In
Figs. 2(e) and 2(f) the states labeled k were calculated
by Eq. (9), the singlet Hartree-Fock equation. The
state

I
n) is the 1s state of hydrogen. The contributions

of these diagrams to the phase shifts were obtained
from Eq. (13) and are summarized in Table II.

The second-order values are too high for low k and
become too small at k=0.80. We note that the inelastic
threshold for electron-hydrogen scattering occurs at
k=0.866. In the previous triplet calculation' it was
found that the second-order results give only approxi-
mately 70% of the exact values; this discrepancy was
removed by including the higher-order interactions of
the types shown in Fig. 3. For atoms larger than hydro-
gen, there are also interactions with passive unexcited
states corresponding to the interactions with the
potential shown in Figs. 3(b) and 3 (c).The net effect of
these interactions gives the hole-particle diagrams in
the case where Cl, is a single determinant. ' The third-
order terms of Fig. 3 and these interactions to all higher
orders were evaluated by approximations used in
previous calculations. ' "For example, the ratio of the
third-order ladder diagram of Fig. 3(a) to the corre-
sponding second-order diagram is denoted by t. It has
been found that to a good approximation t is equal to

2 to co

t(k"',k"")=
I

— dk' dk"(k"'k""I ~ 1k'k")
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geometric series to obtain

(pk', lI vop I 'pk, i)

=(~~,il V"'I ~~,i)"'(1—'—&~—&~—&.—&.) '

+l-changing ladder diagrams. (20)

We may also use Eq. (20) with (y&, ~I V ~'I q»&) a, nd

(&p&, & V,.' p&, &)"' replaced by (pJc, iIVp Ilgwu, () and

(&p~, ~ V.,' Pq, i)o', respectively. Values for the constants
of Eq. (20) are listed in Table III for 0=0.40 and 3=1.
The value for t was obtained by the approximation of

Kq. (18) with 0'"=k""=1.0. The constants uq, », a„
and b, were obtained by the same type of approxima-
tion, and this approximation is discussed in more detail
in Ref. 9. The l-changing ladder diagrams were esti-
mated as 10% of

(q., iI V.,'I q ~, i)&"X(1—
&
—o~—»—o.—&.) '.

Values for t, ub, bg, a., and b, were found to be similar
for 0=0.2, 0.4, and 0.6. They were approximately 15%
larger for %=0.80. Estimates for the 1-changing dia-
grams were based on a calculation of these terms for Be
correlation energies. "We note that the sum of these
diagrams is negative relative to (q~ I

V„'I rp. ) and re-
duces the magnitude of (yqIV~'I yq). It would, of
course, be more accurate to calculate these terms

explicitly, and it is hoped that this will be done in a
future investigation.

Estimates of contributions from higher-order dia-

grams and from (rpsiI V.,',
I (Pq, ~

—y~, ~)) are listed in

Table IV. The es™tesof (qqiI V,.'I,(fq, i—qq, ~))
were first obtained by the method discussed at the end
of the previous section in which an approximate Pq ~ is
obtained with 'U„(r) approximating V... In using Eqs.
(14) and (15) the fixed value s=1.22 obtained from the
hydrogenic value 4.50 for nz was used; and nz in Eq. (14)
was varied to give the correct b~. For example, o,d in

Eq. (14) was found to be 1.63 for 0=0.40 and 1.90 for
0=0.80. The approximation for V,.' given by Eq. (14)
is expected to be valid, however, only for the non-

exchange diagrams since exchange contributions to Vop'

are not proportional to r 4 as r —+oo. From Table II it
is seen that the exchange terms contribute approxi-
mately one-half of (y&, &l V,v'I ~&,&)"'.

In order to obtain a rough approximation to
i/~, ~

—
q ~, i) from the exchange terms, the Hartree-Fock

singlet equation [Eq. (9)] was solved with a constant
Ao added to (ei,——',k') which multiplies J'&pi, '(r') yq(r')
dr'pi, (r) in the last term on the left side of Eq. (9).
The resulting effective potential is then closer in form
to what is expected for V „'from exchange contributions
than is *U.(r) given by Eq. (14). With this exchange
approximation for V.p', the method of the previous
section was used to estimate (f&,~

—
&p& &) by varying ~0

until the correct B~ was obtained. Since exchange terms
contribute approximately one-half of (~&,&I V„'I &ps, i),
the 6nal estimate for —(2/k)(pa, iI Vo, 'I (g'a, i—q'. , ~)) of
Table IV was obtained by taking an average of the

TABLE III. Ratios of third-order diagrams to second-order dia-
grams for k =0.40 a.u. and intermediate states with /= i.'

t
ab
~b
ac
~C

—0.3131
0.3299—0.0539
0.3458—0.0609

a Calculated with the approximation of Eq. (18).

results obtained with Ao and with 'U. (r) given by Kq.
(14). For 4=0.80, the result listed is that obtained by
using only the approximation of Eq. (14). When the
average is taken as for the other k values, the result is
approximately zero and 68&(calc) becomes 0.200.

IV. DISCUSSION

TABLE IQ. ( orrections to the second-order calculations
for 680 (in radians). '

Higher-
k order

(a.u.) termS& —(2/k) (q a, i
~
Vop'( (Pa, &

—q&a, l) )' b, bO (CalC) d d 8O (eXaCt)

0.20 1.199
0.40 1~ 197
0.60 1.212
0.80 1.276

—0.0595
—0.0167
—0.00543

0.00919

0.2006
0.1884
0.1786
0.2098

O. 1972 (7)
O. 1751(6)
0.172 (1)
0.234 (8)

a Second-order results are given in Table II ~

(&Io, t) Uop ( pk, l)/(pk, l I Uop I ~k, t)(') calculated by Eq. (20). The esti-
mated contributions from l-changing ladder diagrams are included.' Estimated by methods described in Sec. II.

d Calculated by Eq. (11). Dbo =sin 'f —(2/k)(q ) Vop )lP) j. The term—(2/k) (q ) Uop ~f) is obtained for a given k by multiplying the second-order
result for d, bo in Table II by the number listed under "higher-order terms" in
this table and then adding to it —(2/k) (y ( Vop (P —y) ) listed above.

In the previous sections it has been shown how the
optical-potential or Green's-function approach may be
applied to the singlet scattering of electrons by hydro-
gen or by alkali atoms. This extension may be applied
to any atom with spherical symmetry, so that the phase-
shift analysis is valid. In this more general case, 4» is
given by a linear combination of determinants as in
Eq. (1) with the coeff cients given by the appropriate
Clebsch- Gordan coeKcients. Diagrams as listed in
Figs. 2(e) and 2(f) are then weighted by the products
of Clebsch-Gordan coeKcients.

In this paper the S-wave, singlet scattering of elec-
trons by hydrogen has been calculated below the in-
elastic threshold. As shown in Table I, there are large
differences between the Hartree-Fock results and the
accurate variational results of Schwartz. "We note that
in the singlet scattering the exchange contributions add
to the direct terms, unlike the triplet case. The second-
order calculated corrections listed in Table I are in
fairly good agreement with the differences between the
"exact" phase shifts b~ and the Hartree-Fock phase
shifts b~(" except for k=0.80. In the triplet case, ' all
the second-order results calculated with Hartree-Fock
intermediate states were too low. This indicates in the
present calculation that for k =0.20, 0.40, and 0.60 there
may be substantial cancellation between the higher-
order diagrams of Fig. 3 and the correction term
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—(2/k)(qq, ~~ V„'~ (Pq, ~
—q~, ~)) because of the use of

Eq. (13) in calculating second-order results. This is
veriled in Table IV where these sects have been
estimated. The estimates listed under "higher-order
terms" are believed to be accurate to within 5% except
for k=0.80. It is not surprising that there is more un-
certainty at k= 0.80 since the inelastic threshold occurs
at k=0.866. The constant part of the energy de-
nominator of Eq. (18) is quite small at k =0.80 and the
approximation of Eq. (18) is less accurate than it is for
larger values of —,'k'+e„. For example, —',k'+~„=—0.18
at k=0.80 and —0.320 at k=0.60. Near the inelastic
threshold we might expect better results to be obtained
with use of a set of excited states corresponding to
single-particle excitations which could describe inelastic
processes, unlike the present excited states, all of which
are in the continuum. That is, we could use hydrogenic
states including 2s, 2p, etc. , and continuum states. This
set of states could also describe resonances below the
inelastic threshold. "

The estimates of (qq, g~ V„'~ (fq, ~
—

&pI, , ~)) based on
the method of Sec. II are somewhat uncertain, and it
would be desirable to obtain more information concern-
ing the functional form of V p'.

The separate contributions to b~ from excited states
with /=0 and /=1 in Table II and including higher-
order eBects compare satisfactorily with the correspond-
ing values listed by Schwartz. 20

P C. Schwartz, Phys. Rev. 126, 1015 (1962).

One further consideration is the omission of excited
states with /&3. A detailed discussion of the con-
vergence in / for second-order energies and for phase
shifts has been given by Schwartz. "In the present cal-
culations the contributions from second-order terms
with /&3 are estimated to be small but not completely
negligible. However, it is estimated that the second-
order terms with /&3 will be reduced significantly by
the third-order /-changing ladder diagrams containing
one pair of intermediate states with /&3 and another
pair with /=0, 1, or 2.

Rote added in proof. These calculations did not include
the eGect of the nonorthogonality of the scattering
solutions to the 1s state beyond the Hartree-Fock term
in Eq. (9). Inclusion of this correction might account
for the discrepancy for k=0.80 in Table IV.

The numerical results obtained in this calculation
indicate the feasibility of applying this optical potential
approach to other atoms, and calculations are planned
for many S-state atoms.
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The magnetic hyperfine structure of the 1 j, +-+ 1& rotational transition of H2S has been fully resolved in
a millimeter electric-resonance spectrometer. The hyper6ne components have been measured with an
accuracy of 2 parts in 10".The hypernne coupling constants are determined to be

C,.= 16 726+30 Hz (spin-spin),
C&1p

—16 239&10 Hz (spin-rotation constant for 1& rotational state),
CIpy = 15 885+10 Hz (spin rotation constant fol' 1 1 1'otational state)

The center frequency of the rotational transition is determined to be vp= 168, 762, 762, 373+20 Hz. Several
sources of frequency shift and line distortion have been investigated. Seven rotational transitions of hydrogen
sul6de have been observed, four of them in the electric-resonance spectrometer. The electric-resonance tech-
nique has been extended to a wavelength of 813 p, by observation of the 4p+-+ 4& rotational transition of H2S.

INTRODUCTION

'HK 6rst electric-resonance experiment in the
millimeter-wavelength region was performed' in

1963 on the diatomic molecule Li'F". This investiga-

1 L. %barton, W. Klemperer, L. P. Gold, R. Strauch,
J. J. Gallagher, and V. E. Derr, J. Chem. Phys. 38, 1203
(1963}.

tion, performed on a collaborative basis, raised several
interesting questions which could not be answered
during the short time allowed for the experiment. Thus,
it was left unanswered whether sufhcient spectral purity
of the originating source was available to observe
Ramsey patterns in the millimeter region, and, if such

~ N. F. Ramsey, Phys. Rev. 76, 996 (1949).


