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Low-temperature nuclear-magnetic-resonance measurements together with antiferromagnetic-resonance
observations in FeF2 furnish a reliable set of values of 6rst- and second-neighbor exchange integrals as well
as a uniaxial anisotropy energy. It is the purpose of this paper to see to what extent one can understand the
high-temperature properties, such as the Neel temperature and the anisotropic susceptibilities, in terms of
the known parameters obtained at low temperatures. To achieve this, the cluster-variation method is used,
taking into account spin correlations between the nearest and next-nearest neighbors. The anisotropy
energy in FeF2 is larger than the exchange integrals, and consequently cannot be treated as a small perturba-
tion. After explicit diagonalization of effective two-spin Hamiltonians, we calculate the Neel temperature
and the anisotropic susceptibilities for spin S=2. The effect of the anisotropy energy on the Neel tem-
perature is shown to be much less pronounced in the cluster approximation than in the Weiss molecular-field
approximation. In the neighborhood of the critical temperature, we find that the anisotropic susceptibilities
are considerably improved in the cluster approach as compared to the Weiss-theory predictions.

I. INTRODUCTION

EXPERIMENTAL investigation of the magnetic
& properties of FeFs has been rather extensively

carried out over the last ten years. In fact, FeF2 is
rapidly becoming one of the most thoroughly re-
searched antiferromagnetic substances. A significant
part of the widespread interest in this particular
material is the result of two of its characteristics. First,
FeF2 possesses a rather simple magnetic structure. It
basically is a two-sublattice, uniaxial antiferromagnet.
Second, it possesses a quite large anisotropy energy
which is predominantly crysta11ine field and uniaxial in
nature.

The physical properties of FeF2, such as the crystal
structure, ' anisotropic susceptibilities, ' specific heat, '
magnetic structure, ' antiferromagnetic resonance
(AFMR), s and sublattice magnetizations, ' have been
measured by a number of investigators. Those ex-
perimental observations furnish a reliable set of
values for the exchange integrals and the anisotropy
constant which characterize the spin Hamiltonian of
the magnetic system under investigation. Some of these
constants can be determined unambiguously by the
observations performed at very low temperatures
where there are asymptotically correct theories avail-
able. In such a case, therefore, it is very interesting to

*Work supported in part by National Aeronautics and Space
Administration Research Grant No. SC-09-005(054).' J. W. Stout and S. A. Reed, J. Am. Chem. Soc. 76, 5279
(1954).' J. %. Stout and L. M. Matarrese, Rev. Mod. Phys. 25, 338
(1953);S. Foner, in Proceedings of the International Conference on
Magnetism, Xottingham, 1964 (The Institute of Physics and The
Physical Society, London, 2965},p. 438.' J.W. Stout and E. Catalano, J. Chem. Phys. 23, 1803 (1955).' R. A. Krikson, Phys. Rev. 90, 779 (2953).

s R. C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961).' V. Jaccarino, in M agnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1965), Vol. 2A.

see to what extent one can predict theoretically the
high-temperature properties, entirely in terms of the
information obtained at low temperatures. Sometimes,
however, one does not necessarily have all the in-
formation at low temperatures which is needed for the
determination of those constants and one has to resort
to use of finite-temperature properties such as the Neel
temperature, sublattice magnetizations, and aniso-
tropic susceptibilities. At finite temperatures, however,
there is no rigorous theory available and consequently
the determination of these constants is not free from
uncertainties. Therefore, development of increasingly
more accurate theories at finite temperatures is very
much desired in order to attain a better understanding
of the magnetic properties of a given substance. The
status of experimental investigation of FeF2 seems to be
one such situation. Here more complete experimental
information is needed at low temperatures.

Recently, many theoretical papers have been pub-
lished attempting to explain the properties of FeF2
observed so far. For investigation of low-temperature
properties the spin. -wave approximation or the Green's-
function method is suitable, although there are well-
known mathematical diTiculties which are char-
acteristic of antiferromagnets if one tries to formulate
a more improved spin-wave theory. There are several
papers dealing with FeF2 by the method of the Green's
function. 7 ' It has been pointed out by Lines, ' how-
ever, that the crystal-field anisotropy presents a new
difEculty in the Green's-function treatment, namely,
how to decouple higher-order Green's functions which
appear in connection with the anisotropy. As the
crystal-field anisotropy increases, the decoupling ap-

r A. Narath, Phys. Rev. 140, A854 (1965).
8 F. B. Anderson and H. B. Callen, Phys. Rev. 130, A2068

(1964).
v M. E. Lines, Phys. Rev. 156, 534 (1967).
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proximations introduced by various authors ' seem
to become worse, although Lines's decoupling gave
among them the best of all the similar Green's-function
treatments. At present there is no theoretical treatment
known which is satisfactory at high as well as low
temperatures. In this paper we will confine our treat-
ment to the high-temperature properties of FeF2 and
sacrifice the low-temperature region. We shall take the
following facts more carefully into account: (a) the
actual magnitude of the spin angular momentum
(S=2), (b) the large crystal-field anisotropy, and (c)
the two-spin correlation effects. These are very much
the same motivations which led to the development of
Cooper's theory. " Cooper calculated the sublattice
magnetization and the frequency of zero-field AFMR
below the Neel temperature for a two-sublattice anti-
ferromagnet with a large uniaxial crystal-field anisot-
ropy in an approximation in which the two-spin
correlation is taken into account. The results showed
a significant improvement in both these quantities
over the Weiss approximation. The actual calculation,
however, was performed for a simplified model system
with the spin magnitude S=1, and therefore a direct
comparison with observed values was not possible.

At the present time, the only theoretical method
which enables us to accomplish our objectives is the
cluster-variation method. In a recent paper" the cluster-
variation method has been applied to the Heisenberg
ferromagnet with arbitrary spin and an extended range
of exchange coupling. In that paper, the dependence of
the Curie temperature on the ratio of the second-
neighbor exchange to the nearest-neighbor exchange,
and the temperature dependence of the spontaneous
magnetization have been investigated. We shall use a
similar method in this paper. It turns out, however,
that the application of the method to the present case
is not as straightforward as to the ferromagnetic case
because of the nonequivalence of the two sublattices,
and also because of the presence of a crystal-field
anisotropy. Hence, one obtains more complicated
eRective two-spin Hamiltonians than in the ferro-
magnetic case. Nevertheless, it will be shown that the
eRective Hamiltonians can be diagonalized rigorously
with reasonable manipulations.

We find that the eRect of crystal-field anisotropy on
the Neel temperature is much less pronounced in the
present two-spin approximation, which is in better
agreement with the experimental observation than
both the Weiss approximation and that of Lines. There
is no limitation on the magnitude of the crystal-field
anisotropy in our theory.

II. SPIN HAMILTONIAN, EXCHANGE INTEGRALS)
AND CRYSTAL-FIELD ANISOTROPY

measurements yielded quite reliable information con-
cerning the single-crystal spin ordering, the strengths
of the exchange coupling, and also the crystal-field
anisotropy.

Stout and Reed' and Erickson' carried out the earliest
work to establish the crystal structure and spin order-
ing of FeF2. The crystal structure is known to be of the
rutile type in which the Fe++ ions form a body-centered
tetragonal structure and are surrounded by a distorted
octahedron of six F ions. The symmetry axes at a
cation site are the L110$, $110j, and L001 J directions.
The axes of the body-centered ion are rotated 90'
about the c axis to obtain the equivalent axes at a
corner ion, thus causing the macroscopic anisotropy to
be uniaxial. The anisotropy, which is relatively large,
is due to the effect of the crystalline field upon the
spins through the spin-orbit coupling. Below the Neel
temperature of 78.35'K, ' long-range antiferromagnetic
order is present and ions may be grouped into two
sublattices according to their average spin directions
as shown in Fig. 1.

For orthorhombic symmetry, the effect of a spin-
orbit coupling may be represented by the spin Hamil™
tonian as

—Dg s+g( ti s—g s) (2.1)
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ohlmann and Tinkham' suggested E&&D, based on
Tinkham s previous analysis" for an Fe++ impurity in
ZnF2. Lines" has shown that the rhombic anisotropy E
contributes to bulk magnetic properties at low temper-
atures as (E/D)' and suggested that E may be ne-
glected compared with D. In this approximation a
spin Hamiltonian for the entire lattice of Fe++ ions
can be written in the form

X=—2Js Q S„Sp—2JiL Z S;i ) Si( )
&n,P& &7(~),1 (~)&

+ Q S;ip) Ssipl) —2JsL Q S,( l Ssi i
&i(P),&(P)& &j(c )»(cr)&

+ g S, p& S, p,j—DQS.,' DQS.s, (2.2)—
&&(P),~(P)& cr P

where J~, J2, J3 are exchange integrals along the c axis,
the body-diagonal direction, and the a-b axes, re-

Low-temperature investigations of the spin structure
by neutron-diRraction techniques together with AFMR
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Je—0. (2.3)

He suggests that the exchange J~ is small compared
with J2 but the question of its sign must remain open.
In view of the fact that in MnF2, which has the same
crystallographic and magnetic structures as FeF2, the
exchange J~ has been found'4 to be ferromagnetic, we
included in our calculation the possibilities of both
positive and negative signs of J~. In this paper we shall
use the spin Hamiltonian (2.2) with a set of values
(2.3) for the constants.

III. EFFECTIVE HAMILTONIAN

The cluster-variation methocV' will be outlined

briefly in the following in order to make this article
self-contained.

The Helmholtz free energy Ii of a system of which the
Hamiltonian is K is calculated by the variational
principle.

spectively. Lines" made an analysis of experimental
data rather carefully and gave a set of values of these
constants. He used AFMR frequency at zero temper-
ature, ' the low-temperature sublattice magnetization
by means of NMR for the Quorine anions in FeF2,' and
the high-temperature magnetic susceptibilities. ' His
values are

a=6.5&0.3 cm '

2J2= —3.85&0.2 cm ',

Jr/Js =0.1&0.25,

t»p~")( j)—1=o (3.6)

"'( '
k) — "'( ') =o (3.7)

Since the reducibility condition (3.7) is a matrix
equation, it is equivalent to a set of (2S+1)s scalar
equations. One can introduce a complete set of (2S+1)'
matrices, 1 a,nd M„(j) [&s=i, 2, ~ ~ ~, (2S+1)'—1$
such that any matrix A of order 2S+1 can be ex-
panded in terms of the elements of this set:

A=a&)+ Q a.M„(j). (3.8)
n

Then the reducibility conditions (3.7) for the variation
are replaced by

where g&,p&is the summation over all n-P pairs,
P, & & ps& ) (or g;&p& gs&p&) is the summation over
nearest-neighbor n-n (or P-P) pairs in the c-axis direc-
tion. J» Js, and D are given by Eq. (2.3). Now the
entropy term in Eq. (3.2) is calculated in such an
approximate way that the two-spin correlation is
retained but the three-spin and higher correlations are
ignored. In this approximation the entropy term is
written as"

trp, lnp, = g tr;p, &') ( j) lnp, &') ( j)

+ g Ptr;,p, »&(j k) inp, &»( j k)(j,k)
—tr, p, &'&( j) lnp &'&( j)—trsp~&'&(k) lnp "&(k)]. (3.5)

The reducibility conditions for p&(') and p&&2) are

F=min%, (3.1) tr;M„( j) t tr&pt(»( j, k) —p, &"( j))=0,
f= trp, t 3C+kT inp~f, (3 2)

where the minimum is taken with respect to the trial
density matrix p~ under the normalization condition

and
I=1, 2, ~ ~ ~, (2S+1)'—1 (3.9)

tr, sp, »( j, k) =1. (3.10)

trp, = i. (3.3)

The Hamiltonian X is given by

K= —2Js Q S. Sp —Jr( Q Q S;(.) Ss(.)
(n,P) i(c ) ~(~)

+ g g S~&p) 'Ss(p&)+D( g S~I + g SpN )
i (P) I(:(P) n P

—H„( Q S,+ Q Sp, ) H, ( Q S,+ Q Sp,)—, (3.4)

tr;S;,$trsp«' ( j, k) —p~"'( j))=0. (3.11)

As a result of the variational calculation with respect to
p

&'& ( j) and p, & &(j k) one obtains

Instead of requiring all the reducibility conditions
(3.9), we shall be satisfied only with the consistency
condition for the 6rst moment of the magnetization.
In order to obtain a definite result we shall consider the
case in which the external field is in the direction of
anisotropy 6eld, i.e., in the 2 direction; then

p('& (n) =expo) f(n)+ (H,+»5 +sshp, )S,+DS,'), (3.12)

p&'&(P) =expoL f(P)+(H.+s)Xpp+ss)( p) S +pDS ')p, (3.13)

p&»(j(n), k(n))=expgLf(n, n)+(H, +(»—1)l +ss) p )(S;& &,+Ss& &,)

+D(S~( )'+Ss( )')+2~tSZ( &'Ss( )i, (3 14)

p&» (j(P), k(P) )=expel f(P, P)+ (H,+ (»—1))(pp+ss),.p)(S;(p),+Ss(p).)
+D(S~(p)*'+Ss&p&*')+2~A'(p&'Ss&p& j (3 15)

p '(n P) =exp(&Pf(n P)+(H +sr'..+(ss—1))(p.)S,+(H,+»Xpp+(ss —1)X p)Sp.+D(S,'+Sp,')+2JsS. Sp],

(3.16)
"G. G. Low, A. Okazaki, R. W. H. Stevenson, and K. C. Turberaeld, J. Appl. Phys. 35, 998 (1964).
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where 8=1/kT, f(a), f(P), f(a, n), f(P, P), and f(a, P)
are the normalization constants and &, Xpa, ) p, and
Xp are the self-consistent local field parameters which
should be determined by the consistency conditions for
the first moment of the magnetization, i.e., by the
following four equations:

tr S,p"&(n) =tr, is, i ),p"'( j(n), k(a.) )
= tr.tis, p"& (n, P), (3.17)

p (P) =tr 5 p'''( j(P), &(P) )
=«-ps'. p"'( P) (3.18)

zi, z2 in Eqs. (3.12)—(3.16) are the number of neighbors
in the c-axis direction and the number of p(a) sites
around an n(P) site, respectively. For FeF2, z1=2 and
F2=8.

IV. MOLECULAR-FIELD APPROXIMATION

Before analyzing the high-temperature properties by
the cluster-variation method we shall first find the
values for various quantities in the molecular-field
approximation for the purpose of a later comparison.
In this approximation one has

poi(n) =expO{ f(n)+IIH, +sic«+z2Ap jS,+DS 2},

(41)
p&'&(P) =expO{ f(P)+ttH, +ziXpg+z2X z)Sz,+Dsp,2},

(42)

The (5,) and (Sz,) must be determined consistently by

(5-)=«-5-p'"(~), (Sz.)=trzs'~. p"'(P) (44)

Now the sublattice magnetizations can be expressed as

(s.,)=(s.,),+xII( )H., (4.5)

(Sp,)= (Sp.)o+xII (P)H„(4.6)

where (S,)o and (Sz, )~ are the spontaneous sublattice
rnagnetizations below the N eel temperature and

XII (n), xI I(p) are sublattice susceptibilities. I.et us first
calculate the susceptibilities above the Neel temper-
ature. For T& T~, the spontaneous magnetizations
(5 )p and (Sz, )o vanish. In this case, up to the first-
order terms in the external field, one has

XII(i2) OC1+ ziJ1XII(~)+2z2J2XII (P)HPII(8) (4 7)

xII(p) =8} 1+2ziJ»II(p)+2z+2x«(~) 3v II(8), (4 8)

where

yII (8) = {tr5, 2 expODS, 2}X {tr expOD5, 2} '. (4.9)

Solving these equations for xII(a), xII(P) one finds

OV II(8)
x)I =xII(~) =xII(p) = (4 1o)

Zl 1 Z2 2

%hen the external field JJ. is applied along the x
direction one obtains, again above the Weel temper-
ature,

po& = expO{ f+H,$1+2(ziJ1+z2J2) x2js,+DS,'j (4.11)
where

)..=2J,(5.,),
Xzp =2J1(sp, ),

Xz
——2J2(sz, ),

X.ti ——2J2(S,). (4 3)

for both the n and P sites, where xi.} =xi(n) =xi(P) $
is the perpendicular susceptibility per lattice site.
yi is calculated consistently by the formula

(5,)=XJH, =[trs, expO{ H.L1+2 (ziJi+z2J2) Xi)5,+D5,2}j[tr expO{ H,[ 1+2(ziJi+z2J2) Xi)5,+D52}j '. (4.12)

In order to calculate xj. up to the first order in B, one
uses the usual perturbation expansion for the ex-
ponential operator and finds

(x ) '=f1/89 (8)j—2( J+ &) (4 13)
where

8(pz(8) = d81{trLS, exp(8 —81)D5,2)5,

X}exp81DS ')}{trexpODS '} ' (4 14)

Since S,= 2 (S++5 ) and S+, 5 satisfy the commuta-
tion relations

Dropping the terms of S+S+ and 5 S which do not
contribute to the trace, and integrating over 0j, one
finds

Oq 2. (8) {trexpOD5, 2} =4tr{5 5+LexpOD(5, +1)2
—expODS 'j{D(25 +1)j '+5+5 {expODS '

—expOD(5, —1)2jLD(25,—1)$
—'}. (4.17)

One may use the identities

S+S =S(S+1)—5,(S,—1),
S S+=S(5+1)—S,(S,+1), (4.18)

5,5+=5+(5,+1),
one finds

F(5,) 5+= 5+F(5,+1), (4.15) and find that the second term goes over into the first
term by the transformation S,—+—S,. One finally has

Opi(8) {trexpODS 2} =-', tr{ (S—5,) (S+1+S,)S*Lexp(8—81)DS*'35*}exp81DS,') =4 (S++5 )

X {S+ expl(8 —81)D(S,+1)'+O,DS 2$ X LexpOD( 5,+1)'—expOD5*2j} D(25,+1)2'}. (4.19)

+S expL(8 —81)D(5,—1)2+81D5,2jj. (4.16) The magnetic anisotropy, above the Neel temperature,
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where
&$.)a = Bing (*o, 8D),

xp
——28fsgJg —sojp](S,)p.

(4.25)

(4.26)

In order to solve Eq. (4.25) for (S.)p consistently, one
proceeds as follows: From Eq. (4.24) plot ($.)o as a
function of xp (a straight line) for the same temper-
ature. From the intersection of the two curves, one
finds the spontaneous sublattice magnetization for the
given temperature.

is then given by

xll » {f1/8'Ill (8)3 2(s&J&+soJ&) j

f1/8&p~(8) j—2(s&J~+soJ&) }
—'. (4.20)

Second, we shall calculate the spontaneous sub-
lattice magnetizations below the Neel temperature.
The consistency equations are

($ )o=Bii(x, gD) (Ss*)o=Bii(x' 8D), (4.21)

where

B))(x,8D)

= {trS,expfxS, +8DS,ojj/trexpfxS, +8DSoj, (4.22)

x = 28f ski($~, )o+

sofa�

(Sp, )aj, (4.23)

x' =28fsA(Spa)a+so Jo($+*)o]. (4.24)

One can easily see that the B~ ~ (x, 8D) is an odd function
of x, and hence (S,)p ———(Sa,)o satisfies Eqs. (4.21)
consistently. The magnetization ($,)p = (S .)p

———
(Sp )p is then found as the solution of

fbi(8) =dBii(xp, gD)/dxp

= (S.o).—($.).o (4.29)

($.').
= {trS,o exp fxpS, +8DS.o) }/{tr expfxpS, +8DS,o]}.

(4.30)

One sees again quite easily that P~ (xp, 8D,) is an even
function of xo and hence

XI I Xl I (~) XI I (dg)

=1/{f1/84 ill —2(siJx+soJo) j. (4.31)

When the external field is applied along the x direction,
one obtains again by the perturbation expansion

»=x~(~) =»(P) =1/{f1/+i)—2(s,J,+sgo) j,
(4.32)

where

Finally, the susceptibility below the Neel temper-
ature will be calculated. For this purpose one sets

($-)=($-*)o+ ( ) &*,

($ *)=($*)+xi(P)&* (427)
Then one finds, up to the linear terms in the external
field,

~ii(~) =gf1+2siJixii(~)+2«axis(P) jAi(8),

xi I (~) =gf 1+2s&Jlxll (P) +2soJox( [ (&) ]4'[( (8), (4.28)

where

fz(8) = (1/28) {tr(S—S,) (S+1+S,)(expfxo(S,+1)+8D(S,+1)'j
—expfxpS, +8DS,'g)f(xp/8)+D('2$. +1)) '}{trexpfxpS, +8DS,of}-&. (4.33)

Now the Neel temperature will be calculated from
Eqs. (4.25) and (4.26). At a temperature slightly
below the Neel temperature, the sublattice magnetiza-
tion is vanishingly small. The B~ ~ (xp, 8D) is therefore
expanded into powers of ~ and only the lowest-order
term is retained. One finds as the condition for the
Neel temperature

(4 35)

Substituting the values (2.3) and $=2, one obtains

TN ——91.2'K, Ji&0

TN =86.7'K, Ji(0, D=0. (4.36)

of the anisotropy this reduces to the usual equation

T~= ,'(sag soJo) S(S+1)-. —

1=2'(slJ1 soJ2)o)[(8N) t 8&=1/&T& (4 4) Since D/kT& 0.1, rpt~(8) is approx—imated by
This is a transcendental equation for Tz. In the absence

(g) 1$($+] )f1+(1/15) (4$o+4$3)8D

TABLE I. Theoretical and experimental values of the Neel
temperature of PeF2. + (1l630) (16$'+32$'—56$o—72S+45) (8D)&j.

Mol.
Geld

2-spcn
cluster Expt. Lines

Substituting this value into Eq. (4.34) one finds the
corrected Neel temperature

D=O

D=9.O'K

JI)0 91.2'K 78.5'K
JI&0 86.7'K 73.8'K

Jg )0 102.9'K 79.2'K
9' 88.5'K

TN =99.1'K,

TN =95.0'K,

Jg) 0

Jg(0, D=9.4 K. (4.37)

At this point it is instructive to show that x~ reduces to
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a constant in the limit as D-+0. In Eq. (4.33) one sets D=O,

2g A(8) (siJ1—s:J2) (S,)p

= ~1tr{I S(S+1)—S,(S,+1)JI exp'(S, +1)—expxpS, (+I S(S+1)—S,(S,—1))I expxp(S, —1)
—expxpS, )}{expxpS, }

=Aitr{S (exPxpS, ) S+—S+(exPxpS, ) S +2S, exPxpS, }{exPxpS.} '

= (S,)p.

Hence
8/A(8) = (2siJ1—2s2J2) '.

Substituting this into (4.32) one obtains

x.= 1/4s, I J, I.

V. NEEL TEMPERATURE IN THE TWO-SPIN
CLUSTER APPROXIMATION

The reducibility conditions (3.11) state that the
magnetiza, tions (S,) as calculated from each of the
three diferent density matrices pu) (a), p~2) (j (n),
k(n) ), pf2) (n, P) must be equal to each other. Let us
now find explicit forms for the magnetization (S„).
Near and below the Neel temperature, the sublattice
magnetizations are vanishingly small and all the local
field parameters are very small. Therefore, the terms
proportional to these parameters can be treated as
infinitesimal perturbations. In this limit Eq. (3.17)
reduced to

(S.,),=tr S,pf')(a) (5 1)

=8(si) -+s2&s-) Pll(8), (5.2)

where Pl l(8) is the same function as was defined by Eq.
(4.9). In the same limit the two-spin magnetizations
reduce, respectively, to

(Saz)0 2trj(a), k(a)I Sj(a)z+Sk(a)zfp (J (a) p ~(~) )
=8I (si—1)X +s2Xp )PAA(8), (5.3)

(Sa*)0 =L») ..+ (S2—1)XS.lp»(8), (5.4)

where q~~, p~~ are given by

PAA = 2 {tr12(S1,+S2,) ' exp8LD(S1,'+ S2,') +2J181 S2j}
&({tr12exp8I D(S1,'+S2,')+2J18]~ 82)} ', (5.5)

P» —2 g 2 UM I
S„

I
~'M) &~'M

I
S„—S„

I jM)
j P 3/I

&&I exp(NjM) exp(Bj—'M) 5{)(jfM) —, 'A(j 'M) $, '

)& { P P exp8'A (j, M) } '. (5.6)

In order to obtain Eqs. (5.5) and (5.6) the fact has
been used that the two subla, ttices n and P are equiv-
alent in the absence of the external field except for the

spin orientation. This means that

Xpp= —A,, ) (5.7)

Novr the consistency conditions are

L(S1 1))faa+S2)1jfa)'PAA(8) (Sl~aa+S2~Pa)'Pll (8) y

I siX y(s —1)X)2 jPA))(8) =(six ys Xa )Pll(8). (5.8)

One can eliminate the Vs from Eq. (5.8) and find

s1/PAA (8) +s2/PAB(8) (sl+s2 1)/PI I (8) ' (5'9)

This is a transcendental equation for the Neel ternper-
ature. The separate sides of this equation are plotted
as a function of 8 and from the intersection the Neel
temperature is found. Using the values in Eq. (2.3)
one calculates the values summarized in Table I.

VI. SUSCEPTIBILITIES ABOVE THE HEEL
TEMPERATURE

Above the Neel temperature, and in the presence of
an infinitesimal external field, the various local fields
also become very small, and hence all terms containing
the local fields are justifiably treated as infinitesimal
perturbations. Since there is no spontaneous sub-
lattice magnetization above the Neel temperature, the
two sublattices become equivalent. In this case one can
set

=Xpa=X 'B„
)p ——) p

——) g'B,. (6 1)

Various magnetizations, up to the linear terms in the
H„are

(S,)&') =8H, I 1+st. '+s2)10.'jPII(8), (6.2)

(S.,)...&» =8a,L1+(s,—1)z..'ys2),.'jPAA(8, J,),
(6.3)

(Saz)a,P
' ——8IIzL1+S)Xaa'+(S2—1)XI)a'jPAA(8) J2),

(6.4)

where PAA(8, Ji) and PAA(8, J'2) are the same function
as given by Eq. (5.5) except that Ji is replaced by J2
in PAA(8, J2). The self-consistency conditions for the
magnetization yield equations for the ) 's, Solving these
equations, one obtains

PAA (8 Jl) s2} PAA (8 Jl)

Pll PAA(8) J2) (s2 1)PAA(8& J2) s2PII

(sl 1)PAA(8) J1) slPI I s2PI f (8) PAA(8p J1)

(6.5)

(6.6)
»LPAA(8 J2) —Pll(8) j P I I PA A (8z J2)
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where
(si 1)p»(8y Jl) slg(( s2[Ã»(8& Ji) p(I]

(6 7)
si[v'»(8~ J2) (s -1) (8, J ) —sip

The parallel susceptibility is given by

X(( (8) =8[1+si~ +s2~8 ]Pl I (8) ~

The perpendicular susceptibility will be calculated in a very similar way:

(S..&"i =trS„,p&'&(n) =II,[1+sip..'+spy. 'Jyi(8),

(S „)„"i=trS,p@&(n, n) =H,[1+(si—1)p '+s2pp„']C'»(8, Ji),
(S .&,p&'i = trS,p&'i (n, P) =II,[1+sip „'+(s2—1)pp ']4'»(8, J2),

(6.8)

(6 9)

(6.10)

(6.11)

(S+m) (S—m+1) exp[D(m —1)'8] iS

(2m —1) m=8

c'»(8 I'(=2 Z" 2 1(jM lsM&(sMls. ls'M'&(s'M'l j'M'& I'
(j,M, P,3fI,$,$~)

X {[exp($, ( j', M') )—exp(8X( j, M) )]P ( j', M') —X( j, M') ] 'l { g expN ( j, M) } ', (6 13)

[4D g exp(Dm'8)], (6.12)

j,M

where II, is the external field in the x direction, p„', ps„' are the pertinent local fields, and Pi(8), C»(8, Jm), and
C'»(8, Ji) are given by

yi(8) = 2[m'+S(S+1)] exp(Dm 8) (S—m) (5+m+1) exp[D(m+1)'8]
—s (2m+ 1) (2m —1) 2m+1

In order to calculate the weel temperature or the
susceptibility above the Neel temperature it is neces-
sary to first diagonalize the effective two-spin Hamil-
tonian of the following form:

9 —1

, (6.14)

2 9 —1

yi(8) = + —— . (6.15)
c'»(8, Ji) c'»(8, J2)

The temperature dependence of X~ and Xlt are cal-

where (jM l
sM)'s are elements of the unitary trans- culated from these equations and the results plotted in

formation matrix calculated in Sec. VII, )jM s are the I'ig. 2.
eigenvalues of the

effective

two-spin Hamiltonian
[Eq (71)]. VII. DIAGONALIZATION OF EFFECTIVE

Elimination of the local fields gives the following HAMILTONIAHS
expressions for the susceptibilities:

2 8
x(((8) =8 +

pAA(8y Ji) O'AA(8& J2)

250-

E
~s 200

—CLUSTER THEORY

~~150

Q 100

I

100
I

150
l l

200 250

TEMPERATURE ('K)

l

300

FIG. 2. The paramagnetic susceptibilities for FeF& as predicted by
molecular-Geld theory and the two-spin-cluster model.

D(SiP+SuP)+2JSi S2, (7 1)

s2
l s, M) =s(s+1)

l s, M &,

0&S&2S,

s. ls, M&=Mls, M&,

-s&M&s. (7.3)

where D and J are arbitrary constants.
As was pointed out in Sec. I, the anisotropy constant

D has been treated as a small perturbation, in the
literature, compared with the exchange integrals. But
as the recent experimental data" and Lines's analysis"
show, D is not necessarily small. As a matter of fact, D
is even 1arger than the exchange J2, and therefore one is
not justi6ed in treating D as a small perturbation. In
this section it will be shown that it is possible to
diagonalize the Hamiltonian (7.1) by solving only up
to third-order equations ( for S=2) . This means that
the diagonalization can be done analytically.

One now introduces, as usual, the operators

s =Si+82, S,=Si,+S2., (7.2)

and then uses the representation in which S' and S,
are diagonal simultaneously:
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Equation (7.1) is now written as ments of Sj,S2, in this representation are calculated
by the standard method. These are

(s M I si sg
I
8 i M)=(s I (1, 2) I s+2(0))~, (7.5)

(4 I (1, 2)
I 4)4 8J——+8D, (7.6)

5D 0 3

Dsp+ JLs' —2S(S+1)j—2DSi.S2,. (7.4)

(sl(1, 2) Is') = (7 7)
0 8J+SD 4

In Eq. (7.4) only the last term is not diagonal in the
new representation (7.3). In our case of re++ the
spin 5=2, and hence Si,S2, is a 25)&25 matrix. It is
known however that both Si, and S2, are diagonal and
hence S~,S2, is block-wise diagonal with respect to M.
Those diagonal subspaces are classified according to M

I
m

I
&s&2s, m=o, ~1, ",~4. 6J+—22D 7

Therefore, even the largest matrix is only a 5&(5
matrix. Furthermore, the S~„S2, have elements be-
tween S and S'=S&1(0) and hence the matrix Si,S2, is
separated into odd and even spaces. The matrix ele-

4v3D/7 8J+20D/7 4, (7.8)

(s I (1, 2) Is')i=

6Jj31D/7— 4+6D/7

4/6D/7 8J+11D/7

—10J+13D/5 4+6D/5 1
(7.9)

4+6D/5 17D/5 3

(sl(1, 2) ls').

(s I (1, 2) I
s');

(s I (1, 2) I
s') . (7.10a)

diagonalized by the transformation

c
(7 11)

(s I ( 1, 2)
I
s')o.-

12D/5
(7.10b)

16D/5 3

(s I ( 1, 2) I
s').,
—12J+4D 2+70D/5 0

—10J+34D/5 12D/5 1

where

and

Xi2=2 I (a+b) +$(a—b)'+4c'O'I'},

—c/R2(Xi) (a—Xi) /R2(Xi)

—c/Rm(xi) (a—Xi) /R2()l2)

R (X) =I (a—Xl'+c'j'I'.

(7.12)

(7.13)

(7.14)

2+70D/5 —6J+34D/7 24+SD/35 2.
Similarly, a symmetric 3&3 matrix is diagonalized:

a f 0

0 24+SD/35 8J+8D/7 4

Now 6ve 2X2 and one 3)&3 matrices must be di-
agonalized. This is achieved analytically by the usual
method. A symmetric 2)(2 matrix of general form is where

U3 f b g U3'=

0 g c

(7.15)

i—f(c—Xi) /Rg (Xi) (a—Xi) (c—) i) /R3(hi) —g(a —Ai) /R3(Xi)

UI —f(c—'A2)/R3(X2) ——(a—X2) (c—'A2)/R-. (X2) —g(a —)2)/Rg(Ã2)

—f(c—Xg) /R3(hg) (a—Xa) (c—) 8) /Rg(ha) —g(a —Xg) /Rg(ha)

(7.16)



171 APPLICATION OF CLUSTER-VARIATION METHOD 539

(s i (1, 1—2) is' ),=0,
1 3 32 2

&s I (1, 1—2) Is')3=
2 2

(7.20)

(si (1, 1—2) is' ),
2 4/g7 2%3/Q7 3

4/g7 8/7 4v3/7 2, ( 7.21)

243/Q7 4''/7 6/'I

&s I (1, 1-»
I

s'&i

(s I (1 1—2)
I
s'&i. &s I (» 1—2) I s'&.-

&sl (1, 1-2) ls'), - &sl (1, 1-» ls')-
55/14

(s I (1, 1—2) Is')i, =
Q6/+7 15/14 4

21/10 4+6/5 1
&s I (»1—2) Is')-=

4+6/5 29/10 3

&s I (1, 1—2) I
s'&"

+21/2+5

442/+35 +15/2+7
&s I (1, 1-2) ls').

&s I (1, 1-2)
I
s'&.,

&s I (1, 1-»
I
s'&~

34/5 12/5 1

(s [(1,1—2) [s'),„=
12/5 16/5 3

&s I (1, 1-2) ls').,

, (7.22)

(7.22')

, (7.23)

(7.23')

2+14/5 0 0

2+14/+5 34/7 24/7+5 2. (7.23")

24/7+5 8/7 4

s (li) —
L (ii P) 2 (p P )2+P (p ) )2+g

2 (p li)2
$

1f2

(7.17)

Once eigenvalues of the effective two-spin Hamiltonian
are known, &p~~(8) of Eq. (5.5) can be calculated. In
order to calculate +zan(0) of Eq. (5.6), however, one
more step is necessary. This is to find diagonal elements
of the operator Si,(Si,—S2,) in the representation in
which the effective two-spin Hamiltonian is diagonal.
The matrix elements of this operator in the (S, M)
representation are given in the following:

&s, ~ I s,.(s,.—s„)
I
s', ~ ) = &s I (1, 1—2) I

s')~,
('7.18)

(7.19)

Using the above matrix representation, one can now
calculate the diagonal elements of

USi.(Si,—S2,) U ' (7.24)

within a given 3f subspace. All these can be done
independently of the temperature, hence only once.

VIII. RESULTS AND CONCLUSION

"T.Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 (1955).
E.R. Callen, J.Appl. Phys. 32, 221S (1961);Phys. Rev. 124,

1373 (1961).

One of the principal results of the numerical cal-
culations is that the e8ect of the crystal-field anisotropy
on the Xeel temperature is very much less pronounced
in the two-spin cluster approximation than in the
Weiss approximation. The shift of the Xeel temper-
ature due to the anisotropy is 0.9% (Ji)0), 0.95%
(Ji(0) in the two-spin cluster approximation, while in
the Weiss approximation it is 12.8% (Ji)0), 9.6%
(Ji(0) . This insensitivity of the Neel temperature to
the anisotropy is, at 6rst, quite surprising, but this is
in general accord with the experimental data for
MnF2 and FeFg.

The two systems compared have the same crystal
structure. The origin of anisotropy in MnF2 is mainly
a dipole-dipole interaction, and hence the anisotropy is
not expressible as a uniaxial-energy term except at very
low temperatures. Xevertheless, MnF~ may be re-
garded as a system which has a relatively small anisot-
ropy, while FeF2 has a huge anisotropy. A comparison
of their Xeel temperatures would, therefore, furnish a
test of whether the Neel temperature is sensitive to the
anisotropy. Table II indicates that the difference in
the Xeel temperatures is almost accounted for by the
difference in the major exchange integrals J2 and the
spin values.

The effect of the crystal-field anisotropy on the Neel
temperature was 6rst investigated by Cooper. ' The
analysis is done in both the Weiss approximation
and the two-spin cluster approximation, for $=1 and
with only one exchange constant. The two-spin cluster
approximation which Cooper uses is, however, the
Oguchi method" and therefore the effective field ap-
pearing in the effective two-spin Hamiltonian is re-
placed by (s2—1)/z2 times the Weiss field. Cooper
Ands about the same strong sensitivity in the two ap-
proximations adopted.

A similar sensitivity analysis for ferromagnetic
systems was performed by Callen. "He uses the Weiss
molecular-6eld approximation, with only one exchange
constant, and for 5= 1 he found a strong sensitivity of
the Curie temperature to the uniaxial anisotropy.
In more recent papers, Lines' " found the same sen-
sitivity for a more realistic model, i.e., with $=2, by
the method of the two-time Green's function, although
the intrasublattice exchange Jj was ignored in the
treatment.
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TABLE II. Comparison of the anisotropy, exchange integral, and
Neel temperature.

pep2
(S=2)

D/ J2

r~ (exp)

3T~P~,J,S(S+j)

0. j.2 ~

67.3'K 79'K

0.91

~ Reference 14.

D=3.4J„ J1=~0.1J2.

We found a similar strong sensitivity when we worked
within the Weiss approximation. The insensitivity we
found by the two-spin cluster approximation is in con-
tradiction with the Green s-function approximation
which is supposed to be better than the Weiss ap-
proximation. At this moment it is not possible to re-
solve the discrepancy. One possible interpretation of
this discrepancy would be the following. The decoupling
scheme proposed by Lines is derived for a system which
has a vanishingly small anisotropy, nevertheless, as
Lines states, the decoupling is used for FeF2 which has
a large anisotropy. In the present formulation the
two-spin cluster-variation method is used with both
the intersublattice and intrasublattice exchanges,
and for S=2. There is no limitation on the magnitude
of the anisotropy field, because the effective two-spin
Hamiltonian is rigorously diagonalized.

The second observation we can make from the
present theory concerns the sensitivity of the Xeel
temperature to the intrasublattice exchange J1. If one
changes the value of Jq by 20% of J2, i.e., from Jq ——

0.1 J2 to J1=—0.1 J2, one finds a change in T~of about
5% (see Table I) . This sensitivity is aga, in quite
surprising at first, because of the fact that D is very
large and yet has almost no eGect on T~ while J~ is
very small but has a large effect on T&. We have

This is accounted for however by a simple molecular-
field-type consideration

~T&/T& ~
I s~J&/s2J2

I

=5X10-' (s,=2, s, =g).
The susceptibilities gt~ and x~ are shown in Fig. 2.

These quantities have been calculated for both signs of
J&, but the difference due to this change is negligibly
small.

The close agreement of our calculations with ex-
perimental data may be partly accidental. It never-
theless suggests the following method of determining
the values of the pertinent constants: The anisotropy
field constant D may be determined by the suscepti-
bilities yt~ and yi above the Keel temperature (where
the susceptibilities are insensitive to Jq). J2 can be
determined rather accurately by AFMR frequency at
very low temperature when the resonance frequency
is a known function of only J2 and D. With these values
of J2 and D, and experimental Neel temperature the
value of J& may be fixed.

Our results provide at least one step of improvement
over the Weiss approximation in that (a) the Neel
temperature is more accurately evaluated in the pres-
ence of a large crystaMeld anisotropy and (b) the
two-spin correlation including up to second neighbors is
taken into account. Extension of the calculations to
temperatures below the Neel temperature is underway.
lt is also of consideraMe interest to see how much
improvement would result if three-spin correlation is
included. This is a subject of a future investigation.
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