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The few rigorous results that have been established
concerning the properties of this Hamiltonian have
been listed by Herring, ' and the one pertinent to our
discussion is that Lieb and Mattis~ have shown that
there can be no ferromagnetism for a linear chain of
atoms with T(l—1') nonzero only for nearest neighbors,
but with an interaction energy that can be an arbitrary
function of rrtl+rstl Si.nce the Hamiltonian (24) is
a particular case of our Hamiltonian (3), our con-
clusions, which cover more possibilities than those of
Lieb and Mattis, apply to it. There is thus not only no
ferromagnetism but no antiferromagnetism for both
one and two dimensions; also the range of the hopping
integral T(1—1) is restricted only by the condition
that the expression (19) for a converge. It is a trivial
matter to show that our results also apply if the inter-

6 C. Herring, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. IV.

7 E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).

action is an arbitrary function of n&t+e&l, since

LC, m&t+N&2=0.
Although the above results have some intellectual

interest, they are clearly inapplicable to real three-
dimensional solids. However, as pointed out by Herring
in connection with the Lieb-Mattis theorems, many
approximation schemes that have been applied to
real solids can equally well be applied to one- and two-
dimensional solids. If these approximation schemes
predict the occurrence of spontaneous magnetization
in one and two dimensions as well as in three dimensions
for the Hamiltonian (3), the validity of these pre-
dictions in three dimensions should be clearly investi-
gated more fully.

One of the authors (T.W.R.) would like to express
his gratitude to the Department of Physics at the
University of Toronto, and particularly to Professor
J. Van Kranendonk, for their hospitality during his
visit.
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With the aid of a new Wick theorem for spin--, operators, the properties of a single localized paramagnetic
impurity in a metal are investigated, using diagrammatic techniques which are completely analogous to
those of standard quantum field theory. Attention is directed at the high-temperature magnetic properties
of this system. The present results include a new lnT term in the g shift for the impurity spin and for the
electronic susceptibility. In the high-field limit, the former logarithmic result is replaced by the logarithm
of the Zeeman energy. A high-order equation is also obtained for the resistivity by a selective resummation
of a complete subseries of electron self-energy diagrams. In this approximation, the resistivity exhibits a
maximum for both ferro- and antiferromagnetic coupling (but at different temperatures) as the characteristic
temperature is approached. The "bound-state" behavior appears in this theory as an anomalous correlation
between the two spin systems, and first occurs at the characteristic temperature when the external magnetic
field is zero.

I. INTRODUCTION

r lHE model originally proposed by Kasuya' of a..contact s-d exchange interaction between the con-
duction electrons and localized magnetic impurities
in metals has led to many theoretical papers' ' which

*These results have arisen during the preparation of a Ph.D.
thesis, submitted to the University of London.' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).

~ K. Yosida, Phys. Rev. 10'7, 396 (1957).
3 J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' H. Suhl, Phys. Rev. 138, A515 (1965);Physics 2, 39, (1965).
~ V. Nagaoka, Phys. Rev. 138, A1112 (1965).' Y. Nagaoka, Progr. Theoret. Phys. (Kyoto) 37, 13 (1967).
7 A. A. Abrikosov, Physics 2, 5 (1965).

S Donlacllp Phys Rev 144) 382 (1966)' S. Doniach, in Proceedings of the Tenth International Con-
ference on Low Temperature Physics, Moscow, 1966 {to be
published) .

have gradually exposed several interesting properties
lying behind its superficially simple structure. The
divergent behavior in the resistivity in the case of
isolated impurities was first found by Kondo, ' who used
standard perturbation theory to calculate the effect
of the Pauli principle on the second-order intermediate
states for the scattering probability of the conduction
electrons. The sharpness of the Fermi surface gives
rise to a lnT term in the resistivity; when this is com-
bined with the usual 1attice resistivity, the result is a
resistance minimum in the case of antiferromagnetic
coupling. This logarithmic temperature dependence im-
plied that a divergence would occur in each term of
higher order in perturbation theory as the temperature
was decreased. Moreover, Nagaoka' ' pointed out that,
even in third order, the lifetimes of the conduction elec-



H. J. SPENCER

trons would also go negative at the Fermi surface, below
a critical temperature TI,. It is the study of such anom-
alous behavior which has resulted in the papers con-
cerned with this model over the last three years using
both perturbationa1 and nonperturbational techniques.
Other authors have concentrated on the magnetic
properties of this model. '~"

In this paper we present a perturbational treatment
of this interesting Hamiltonian, which can be used
to make straightforward calculations at all temper-
atures (and in a magnetic field) to all orders of the per-
turbation in the interaction between the conduction
electrons (characterized by a rectangular band model)
and a single, localized magnetic impurity. This latter
restriction implies that their collective effects (e.g. ,
permanent magnetism) and interference effects be-
tween impurities can be ignored.

In the next section the proof of a Kick theorem"
for spin- —,'operators is presented which is both simple
in form and easy to use; this results in the extension
of conventional quantum Geld theory techniques to all
problems involving such localized spin operators. It
must be emphasized that the present method uses only
Feynman-type diagrams in contrast to many other ap-
proaches to this problem. '4 It also has the principal
advantage (not immediately apparent in this problem)
that there is a normalized correspondence between
spin-space averages and averages taken in the repre-
sentational space. This means that for those problems
involving many localized spin operators (for example,
the Heisenberg model or the higher-concentration re-
gions of this model) one does riot have to compensate
for on-site coincidences. This must be done for all those
methods which do not exhibit a unit correspondence,
and this includes the Abrikosov technique' for S=—'„
even for zero magnetic Geld."

So in Sec. 3 the problem is reformulated using the
drone-fermion representation" used in Sec. 2 and the
various diagrammatic vertices for this interaction are
introduced. We follow Doniach' in using an effective
potential for the electrons (but now diagonalized dif-
ferently) which determines the repeated scattering
properties of any single impurity. These are then re-
summed, taking advantage of the unit correspondence
of this method, to determine the effects of multiple
scattering from several impurities (still in the low-

concentration region. )
In Sec. 4, second-order corrections to several self-

energy functions are evaluated in both the low- and
high-Geld regimes (relative to the thermal energy kT) .

"K.Yosida aiid A. Okiji, Progr. Theoret. Phys. (Kyotol 34,
505 (1965)."M. S. Fullenbaum and D. S. I'alk, Phys. Rev. 157, 454 (1967).

'2 H. Miwa, Progr. Theoret. Phys. (Kyoto) 34, 1040 (1965).
G. C. Wick, Phys. Rev. 80, 268 (1950).

'4 A discussion of these points is given in two other papers by
this author, Phys. Rev. 167, 430 (1968); 167, 434 (1968)."E.M. Yolin, Proc. Phys. Soc. (London) 85, 759 (1965)."R.P. Kenan, J. Appl. Phys. 37, 1453 (1966).

We concentrate here on the magnetic properties of the
electrons and of the impurity. '~ The static result is
compared with the calculations of Yosida and Okiji, "
who used conventional low-order perturbation theory
from the normal ground state. This is also compared
with the decoupling treatment of Nagaoka' and with
the recent work of Fullenbaum and Falk."This result
is shown to arise from a J' InT correction to the im-

purity g shift, where J is the exchange-coupling con-
stant. This term arises from the effects of the electrons
which have been partially polarized by the external
Geld. An analogous result holds for the electrons which
now are affected by the partially polarized impurity.

Since this is a Greens-function analysis we can
always investigate the complete line shape rather than
just the relaxation times which are given as a special
case on the energy shell. So the impurity properties can
be derived directly from the transverse susceptibility
function y~(cv), which in the low-Geld region is found
to have a Lorentzian form with a damping term pro-
portional to J'T. In the high-field region the temper-
ature dependence is electively replaced by the Zeeman
energy. The damping term for the electrons is also
shown to be proportional to the longitudinal spin
Quctuations.

A resummation is made in Sec. 5 by examining the
structure of higher-order propagators and exploiting
the idea of polarization discussed in Sec. 4. This results
in a closed-form expression for the effective potential
which does diverge (but not the mass operator) at
TI, for J&0. However, as the denominator of these
expressions is evaluated to O(J') Lin contrast to other
authors, which were to O(J)] a new divergence is also
introduced for J&0, but this is now at a much lower
temperature than TI,. Unlike previous perturbational
treatments~' for J&0, the sign of the lifetime for the
electrons is found to be unchanged throughout the
whole temperature range. Anomalous behavior, besides
maximum scattering, is indicated in the present theory
by the appearance at T& of conjugate poles in the com-

plex, co plane of the transform of the correlation func-
tion of the two spin systems, at the impurity.

In the last section the results of earlier authors'' '
(who have also effectively summed a series of self-

energy terms) are reduced to a comparable form and
the degree of agreement exhibited. We also include a
new manipulation of Nagaoka's second approxima-
tion to his high-temperature (T&Ts) result into a
form closely resembling the present result, which now

appears to be an interpolation of several previous and
disparate methods in the high-temperature regime.

2. WICK'S THEOREM FOR SPIN-~ OPERATORS

A simple Kick theorem'3 is presented which enables
time-ordered products of spin operators to be rewritten

"H. J. Spencer and S. Doniach, Phys. Rev. Letters 18, 994
(1967). Some of the present results were first reported here.
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as a sum of products of time-ordered pairs of the opera-
tors used to represent the actual spin operators.

A representation which is quite straightforward is the
drone-fermion representation, '6 where the drones ac-
commodate the Bose-like commutation rules between
different localized spin sites. Thus for spin- —, operators
S localized at the positions E; we have

S'=c tc ——'
27

where

Fto. 1. Diagrammatic repre-
sentation of the free "Geld" propa- b)
gators (the drone-fermions) in-
volving temperature variables:
(a) C propagator C'(r). (b) D
propagator D'(r). (c) Spin-flip c)
propagator F'(r) . (d) Electron
(Wannier) propagator Qp(r) of
spin ).

S,+=S,*+sSo=(S;-)", (2.2)

as the representation is Herrrutian.
Among themselves the fermion fields obey anticom-

mutation rules:

L'c c~ j+=Pd, d( 1+'=8~'~ (2.3)

c; i 0)=z, [ o)=o, (2.4)

then we have a complete, double representation of the
eigenstates of the spin operators. If we denote the
spin-up (spin-down) state for each site by }-',, +-', )
(}—',, ——', )) (omitting the site index for the moment),
then

and all the others anticommute.
If we define a "vacuum" state

~
0) with respect to

the C or D fields by the usual condition,

The final step is now trivial; we can use Gaudin's"
method for deriving Wick's theorem involving cyclic
permutation of the C or D operators under the trace;
thus for Wick ordering,

(Ts fAr, As, ~ ~ ~ As„})p'

all pairs

where I' is the signature of the permutation, and A; is
any operator c, ct, P, evaluated in the interaction
picture

ct(r) = exp(Bpr) ct exp( —Hpr) =exp(tppr) ct;

(-', , ——',)=(0) or dt ~0);

i-', , -', )=ctdt }0) or ct
i 0). (2.5)

where v =it, the usual "temperature variable. " Then
by Eq. (2.11)

or

Hp=topS =Cop(c c—s) (2 6)

PHp, ctj =tppct; L'z„dt's =o. (2.'/)

If we let X; denote a product of spin S, operators, then
a thermal trace over the two spin states gives, with
p= (p7 ) 1

Tr, [exp( PPp) X;}= s Tr, I exp( —PHp) X; }, (2.8)—
where in the right-hand side the trace refers to all four
orthogonal C and D states; all spin operators have been
replaced by their drone-fermion representations.

In an obvious notation, the equation involving ther-
mal averages becomes

It is shown below that Wick's theorem may be used for
traces of operator products in this representation. In
perturbation theory, we need to evaluate thermo-
dynamic averages with respect to a diagonalized Hamil-
tonian Hp which we will take to be proportional to S'.

(c,'«)o= ~;~f; (dpi')o= P;~ (2.12)
with

f = (exp(Pa&p)+1) '=1—f+.

We now define the free (denoted by zero superscript)
temperature-ordered C and (symrnetrized) D propaga-
tors, C'(r) and D'(r), and use Eq. (2.12),

C P(r) = (&w I c (r) «'(0) })o

=B,~exp( —poor) IO(r)f+ 8( r)f },— —

» '( ) = (2" I4»( )4 (0) })o=~ Ifl( ) —0( —) }

(2.13)
where 0(r) =1 if r) 0, and zero if r(0.

Then the C propagator can be represented diagram-
matically by a directed wavy line from the point 0 to
the point r and an undirected checked line between
0 and r for the D propagator, Figs. 1(a) and 1(b).
There is one other propagator of interest, that is the
spin-fhp propagator F(r), which is represented. by a
parallel pair of C and D lines, Fig. 1(c):

(»(S))o'=(X ( ))'. (2 9) F;P(r) = (Tref S, (r) Sp+(0) })p'=8;&Co(r) D (r) .

It is very important to note here that there are no
problems involving normalization since Z,'=-', Z,'; this
is of crucial importance in problems involving many
localized spins.

(2.14)

This well illustrates the nature of the drone propagator,

"M. Gaudin, Nucl. Phys. 15, 84 (1966).
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for it converts the C propagator from fermion prop-
erties to Bose-like (as one requires for spin waves, for ex-

ample) . These functions also have simple Fourier series
transforms for the temperature variable r ( P(—r(P),
using the notation

r= (2i+1)mkT,

s and 0, taking all integer values, so

C'(r) = (1/P) g exp( —i'm) C'(r),

ni, ——S 'I' g ac)„ (3.4)

G'( )=(T ( ( ) '(o)})o
=& ' Z exp( —G~r) I~(r)f.~' —0( —r)f.~ }

(3.5)

and zero otherwise, where we have introduced the
transform of the Wannier propagator' at the origin of
spin orientation 'A:

with
C'(r) = (toe

—iv) '; (2.15)

with

f,x =Ie-xp( —P4g)+1}-'=1—f,g+

similarly, Gg'(r) =1L ' Q I pt i ir } —' (3.6)

and
D'(p) = 2/ir—
F'(cr) =

I tanh(-', Po&e) ]/(o~s —in) . (2.16)

N.B. F'(u) is not defined for ore ——0, unless it can be
nonvanishingly renormalized, although Fe(r) is well de-

fined (in fact, —',).
We are now ready to proceed to investigate many-

body problems involving explicit localized spin opera-
tors, using the systematic techniques of quantum field

theory. "

Then in terms of the Wannier operators, the 8-function
range interaction is given by

Hi JS Q &x Ax'&x' (3.7)
X, 'A~

In terms of the drone-fermion representation for S=—'„
Hi = —II c tPcr t A t +Ijhccr t A i+P X (c c—s ) Ay tery }.

(3.8)

Using Hi in the form of Eq. (3.8) as the basis of our
perturbation theory and the above-proven Wick
theorem for the C and D operators, we can use all the
standard results of quantum 6eld theory, " especially
the Dyson development operator U(P) and the linked-
cluster theorem. Thus, for exact thermal averages of
any Heisenberg operator A we have, in the interaction
picture,

3. s-d HAMILTONIAN

We shall consider the effects of localized impurities
interacting with conduction electrons, in the limit of
low concentrations (c«1). This implies that we need
not be concerned with the eGects of interference be-
tween different impurity sites (as Abrikosov has
shown'), so that we will initially consider only one
impurity (at the origin, for convenience) and then
evaluate averages over the ensemble of random im-

purities. "
The unperturbed, diagonal Hamiltonian Ho for the

conduction electrons and the localized impurity in an
external static field @' is given by

He ——P $p),aei, ta, i,+o:pS*, X =&1 (3.1)
p, X

P

U(P) =T exp — dr'H, (r') (3.9)

The superscript I& denotes the inclusion only of top-
ologically distinct diagrams which are continuous with
the "external" operators in A, through any one of the
following interaction vertices (see Fig. 2). Equation
(3.9) also introduces a crucial property of the drone
D field. The transformed interaction Hamiltonian
Eq. (3.8) without the D operators would involve only
triple products of fermion operators, but the usual

with

~s=gf ~C' (3 2)kp) = ee p+s~oisi

s) Nl

T
a)

FIG. 2. The simplest interaction
vertices for the conduction electrons
scattering off the localized spin im-
purity. The solid lines represent
Wannier electron propagators and
(al-(d) correspond to the order of the
terms in Kq. (3.8) of the text.

(Nl g (4)

p((o) =ir ' ImGye(co+is) =p if —D(ce—-',Xois&D,

(3 3)
c) lLl (%1

It should be noted that although we have taken
g(electrons) =g(spin), this is only for convenience.
We will not need the explicit form for cp or the Fermi
energy p, as these will be superseded at the appropriate
Inoment by a suitable choice of band model for the
electrons. In fact, we will always use the constant
density-of-states model, "

'9A. A. Abrikosov, L. P. Gor'kov, and D. I. Dzyaloshinski,
Methods of QNuntlm Field Theory ie Statistical Physics (Prentice-
Hall, Inc. , Englewood Cliffs, N.J., 1963)."S.F. Edwards, Phil. Mag. 3, 1020 (1958).

Cs) ~ l%)
'W
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substitution of the Wick-ordering operator in the de-
velopment operator for the Dyson-ordering operator
is only valid for even-order products of fermionlike
operators. So although we are only dealing with single
localized spins, the presence of the drones is of strict
mathematical importance.

4. LOW-ORDER CORRECTIONS IN AN EXTERNAL
FIELD

The evaluation of the two lowest-order corrections
(in powers of J) to the self-energy parts of the pre-
viously defined propagators is exhibited in this section.
We define an effective potential Vi&"&(r) for Ith-order
scattering of electrons of spin orientation ) off the
impurity by the criterion that this part of the graph
is irreducible with respect to any one electron line. It
should be noted that this divers from Doniach's eGec-
tive potential where the contributions diagonal in the
combined spin of the impurity and of an electron are
chosen. This is convenient in the case when no external
6eld is present, as it leaves the Hamiltonian rotationally
invariant. However, in a later paper' this led to diK-
culties which will be specified in Sec. 6.

Thus, in Fig. 3, the effective potential will be de-
fined by writing the contribution from the diagram
in the form

f
P

dridrsGi'(r —rt) Vi(rt —rp) Gi (rp —r ) .
0

Thus the perturbation terms represented by Figs. 3(a)
and 3(b) give the total first-order contribution

VX"'(r) =~&(r) {(p'c)p —s I =)J~(&) (S')p (4 1)

Its (odd-periodic) Fourier series transform is therefore

oB the impurity, in contrast to the second-order re-
ducible graph, when the scattering is incoherent, i.e.,
the two spin averages are quite independent (see later) .
The contribution of this coherent graph is

V), ' (r) = JG—&, (r) C (r) C ( r) =—J—f+f G& (r).
(4 3)

Similarly, Fig. 3(d) corresponds to transverse coherent
scattering, with the excitation of a spin-fhp (or spin-
wave, in a lattice) in the intermediate state. Its con-
tribution is

Vip's' (r) =JrG i, (r)F ()r). (4.4)

The transform of both contributions becomes

This form exhibits the symmetry due to the choice
g.=g, although the above formalism allows for different

g values. Using the constant density-of-states model
for the electrons, we can write down the analytic con-
tinuation of this expression just above and below the
real &p axis (i.e., ip =re+is) .

D
Vg&'& (rp&is) =pJ' dI'.

tf'f +f f'(F. p) ~p)+f—"f % p-)'~p)l-
E+ sXppp —M&zs

This is still an exact expression for the second-order
effective one-electron potential. The absorptive part
is given by

ImVi&'& (rpais) = W prpJ'

V),"'(r) =ET(S')p (4.2) X I f+f +f"f "(pip )rp) +f "f"—(rpp )—)Irp, (4—.7)

This is the expected first-order field splitting of the
two spin bands which vanishes as the field decreases to
zero.

When we consider the second-order effects Fig. 3(c)
and 3(d), we can immediately appreciate the dynamics
of the situation as the graphs show explicitly which
terms in the Hamiltonian are contributing in each
case. For example, in Fig. 3(c), we can see that the
electron is scattering longitudinally and coherently

a)

where the usual limiting procedure has been used, that
lsq

lim (xWis) —'=(Px—'aimb(x).
s~p+

Now on the energy shell at the Fermi surface (pp=0)
we have

ImV), &'& (0+is) = WrrpJ'3f+f

=a3~pJ"-I ((S*)')p —(S*)p".I (4.8)

or in the limit of zero magnetic field (denoted by a
zero subscript, instead of ) )

Im Vp&'& ((pub is) = W —,'s.pJ'. (4.9)
I'IG. 3. The lowest-order cor-

rections to the one-electron Wan-
nier propagators. (a) and (b) are
6rst-order corrections 0{J), while
(c) and (d) are second-order
corrections 0(J') .

b)

5) tan ~

This is essentially Abrikosov'sv lowest-order result,
for S(S+1)=4 for S= p, and exhibits the expected
rotational invariance as both the transverse and longi-
tudinal terms contribute the same factor in the propor-
tion 2 to 1. The shift in the one-electron energy is
given by the real part of Eq. (4.6). It is evaluated
in two limits; the first is the high-temperature region
kTQ)GDp or co, then each of the three terms in the in-
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tegral can be evaluated separately to give

D—&o &i&o 2 D D—oo

D+&o——', boo k tr j D+&o—~&oo

2yPD D+(o—o&((oo—f " ln—+ln
tl D+o)—&((do

where lny~0. 58 is Euler's constant. Thus, in a finite
external field, neglecting terms of O(&oo/D), we have
for ~0

ReV),&o&(0) =2&hpJo(S*)o ln(trkT/2yD). (4.11)

Quctuations in the magnetization of the magnetic
scatterers —it is the dominant damping mechanism
at high temperatures. The energy shift gives a contri-
bution to the electronic relative magnetization, de-
Gned by

Again in the zero-field limit, we have (exactly)

ReVo&'&(o&) =S(S+1)pJo ln
~

(D—&o)/(D+oo) (. (4.12)
so that

f= o g &h((iitCZi), (4.18)

This could have been anticipated from Eq. (4.5) for ~, I 2J(S,) L1+2 J 1 ( &2,/2 D) ~I

The value of this expression above the cut on the real
co axis deGnes the new single-particle energy E~z and
the damping coefFicient p by

E &'& —iy&'& =oo&,—cV &+ &(0+is)
so that

Eo»," ——oo+-', X

(4.15)

and
X I&oo

—c2J(S*)ot 1+2pJ ln(tr~T/2yD) j) (4 16)

It can be seen immediately that the first- and second-
order shifts are direct Geld shifts and vanish as the
external Geld vanishes. As we shall see, the InT term
occurs in all higher orders and the present result in-
dicates that its introduction is a "polarization" eGect
as will be confirmed in the next section. The coeQicient
y(" is just the electronic relaxation time in the first
Born approximation given by Abrikosovr for @*=0.
The present result demonstrates that it originates from

Vo&'&(&o+is) =S(S+1)pJ'G&( (&o&is). (4.13)

If we are in the high-temperature regime, that is, far
above the Kondo temperature T~, we can use the low-
concentration expression for the electron self-energy
Moq(o&) t'anticipating the results of the next section,
i.e., Eq. (5.37)j

In a similar manner, we can calculate the first- and
second-order corrections to C(r) and D(r), whose
self-energy parts are denoted by Z(r) and A(r), re-
spectively. Ke will first evaluate Z which is sufhcient
to give the corrections to the static susceptibility. The
first-order result corresponding to Fig. 4(a) merely
reQects the polarization of the impurity spins by the
induced electronic magnetization:

Z&'&(o)) =2'= —pJ&oo. (4.20)

As expected there are no self-consistent solutions (e.g.,
molecular-6eld type) for Z&'& and V&'& when @'=0.
This is contrary to the case where the impurities inter-
act, when the Curie temperature is finite.

When we evaluate Z to O(J'), the first-order cor-
rections on the first-order internal electron "loop"
must also be included /see Fig. 4(b) (i and ii) j since
these give a large contribution. This cancels exactly with
parts of the other second-order graphs, involving the
excitation of an electron-hole pair /see Fig. 4(b) (iii
and iv) g.

So we have

Z&"&(r) = J'C'(r) Q Gh (—r) G&,'( r), —

&""( ) = J'D'(r) Gt'(r) G—L'( r) (4 21)—
Thus the analytic continuation of the transforms of
these two expressions is

(4.22)

Again using the constant density-of-states curve, the imaginary part of this function above or below the real co

axis is

2(&oo —o)) 1+exp( —pM)Imz('&(+~is) =+w(pJ)'{ra cath(-', Pro)+
exp (do —&o —1 1+exp Po)o—(4.23)
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If this exact expression is evaluated in the high-tem-
perature region kT)&coo in the limit co—+co then

ImZ&2& ((os&iS) = %42r(pJ) 'kT.

Similarly when kT&)coo or o;, then

(4.24)

ReZ"'(co) =4(pJ)'{ (co ——2,('2) L1+ln(2yPD/2r)]

+ (o. —M —2D(S*)s) ln2}. (4.25)

If all the other contributions are included up to O(J'),
the result is

(iv)

(etc) = (22ri)
—'

Cy

da&f (or)C(s))

OO F
dM f (N)

{( ) 2+@2}

Z&' +2((vobis) = —pAvs+4(p j)'
X {(o.—srrus) {1+in(27PD/2r) $+(res —~) in2+i2rkT}.

(4.26)

So on the energy shell of the C excitation, i.e., co=coo,

Z&'+2&(res+is) =2Jf {1+2pJin(2rkT/2yD) }

ai4 (2prj) k2T (4.2.7)

The other limiting case which can be evaluated from
Eq. (4.22) is the very high-field limit ~s, co))kT; then

Z~r+ &(cps&is) =2' {1+2pJln
~

&os/D ~}+i2r(pJ)2tes.

(4.28)

If we are interested in the high-temperature static sus-
ceptibility of the total system p', we will only be
interested in Eq. (4.27).

So Dyson's equation for the C propagator with Z(co)
evaluated on the energy shell gives

C(co&is) = {Ms Z((op&is) —
co}

'= {ce„Nil'—co}

(4.29)
where

~„=(os{1+pj{1+2pj ln(2rkT/2yD) g j

and

r =4~(pj)2kT. (4.30)

The magnetization can be directly evaluated in this
approximation, since I' (the Korringa width) is much
smaller than kT. In the usual manner the correlation
function (ctc) is obtained by replacing the sum over
v by an integral over co on the Fermi-Dirac contour
C~, which encircles the whole of the imaginary co axis,
except the origin, in a counterclockwise direction. This
contour is then deformed to encircle the damped pole
off the real or axis:

(c)
(i)

Fro. 4. The lowest-order corrections to O(J2) for the spin
resonance frequency shift. (a)and (b) correspond to all simple
corrections to the individual CD lines, while (c) represents their
simplest interaction.

This is now approximated by taking

OO I'
(ctc)=f ((u,) — dt's, , (4.32)

The use of Eq. (2.1) leads directly to the relative mag-
netization of the impurity spin:

(S*)= ——', tanh(-,'P(u, ) . (4.33)

This can be expanded in the high-temperature approxi-
mation to give

(S*) (S')s{1+pj+2(pj)'{ln(2rkT/2yD) —1j}.
(434)

Apart from the factor of 1 in the O(J') term, this has
the same structure as the electronic magnetization,
that is, using Eq. (4.20),

co~toe —2jt {1+2pjin(2rkT/2yD) }. (4.35)

This means that the total static susceptibility for a
concentration c of impurities has the form

x*=x,t*(0)+cy,*(0){1+2pJL1+2pJ 1n(2rkT/2yD) ]},
(4.36)

where the free static susceptibilities of the electrons
y, t'(0) and of one impurity spin z, '(0) are used.

This result exactly agrees with that found by Fullen-
baum and Falk" (for g=2) who used a decoupling
scheme similar to Nagaoka's in a finite 6eld, and the
total static susceptibility was found from the change
in the free energy to O(J'). lt also agrees with the
second-order result of Yosida and Okijirs (they included
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no first-order contribution). However, Nagaoka's cal-
culation differs from the present result by a factor of
2 in the O(J') term, as does that of Scalapino" using
the Anderson model evaluated to second order in
J( ff t' ) ~ The discrepancy is not understood but it
should be emphasized that in this part of the calcula-
tion no diagrams have been omitted to O(J') in any
of the self-energy terms, U or Z. The D field self-energy
A(p1) Fig. 4(b) (v) is only needed for the evaluation
of the spin-Qip propagator and hence the dynamic g
shift, or the localized transverse susceptibility zr(p1).
The latter is the analytic continuation above the real
p1 axis of the transform of F(r), which is equal to the
real Fourier transform of the retarded function

~'.1(~) =ig(1') (L~ (&), ~+(0)j+) (4 3&)

The contributions of Fig. 4(c) do not give a loga-
rithmic temperature shift and cancel exactly in the
static limit" (minus factor, due to interchange of the
fermion like D line) and so in the limit Pcs«1 are
neglected.

This just leaves the self-energy effects on the indi-
vidual C and D propagators, which then become a
convolution to give F(r)
F(~) = = (1/0) Z D(~) ~(~—~), (4.38)

or

1
F(ra) =—. dsf (s)

7i Z

&& {Ls+2A (s) )Lp1p —(u+s —P (p) —s) j}-'. (4.39)

This is deformed around the discontinuities of D
and C at Imp=0 and Ims= Imago, respectively.

Writing s=si+is2; A(si+is) =hi(si)+i'(si), etc.,

Thus
(s )=-;—(s-s+). (4.44)

dp&{1—exp( —Pp1) } ' discF(p1)

—',-—f—(,) = ——', tanh(-,'P „) (4.45)

Lcf. Eq. (4.33)j.
The above results can be neatly summarized by

stating the the impurity transverse susceptibility has
the I.orentzian form

Q! p)+ir
yr (p1) = tanh(-2'ppr„)

(pp„—pp) +F
which is illustrated in Fig. 5.

(4.46)

that

A&@(p1+is) =2(pJ) 2{pppln(AD/2r) +1$&i2rkT},

(4.41)

we see that the first square bracket in Eq. (4.40) is
strongly peaked around s'~=0 while the second peaks
at s&=co„. After ensuring a unique analytic contin-
uation, "we get

F (p1) =2f (co~) {p1q —M —2A. (pp —Mq) }

—{cup—p1 —Z(p1) }-', (4.42)

but to O(J'), near co„A(cu p1„—+is) = 21iI', so the final
result, in this approximation, is

F(palais) =}tanh(21pp1„) j/{(o,—cuaiF}. (4.43)

There is an internal check on the correctness of Eq.
(4.43) through using the sum rule for 5= —,':

F(pp) = —22r ' dsi f (s,)

2A2(si)

(s,+2A1) '+ (2A ) '

~2 (PP1 Sl)—Esi+2~2+2~3 '
(~P—~1+Si—&)'+ (&2)'

'

(4 4o)

We have written out Eq. (4.40) to show the nature
of the approximation to follow, which can only be done
if the widths are small compared to kT; however we
cannot be sure of this in higher orders, as we believe
that the imaginary parts of the self-energies diverge
in the anomalous temperature region (see later). But
in simple second-order calculations there is no problem;
thus taking into account the form of Zi(cv) and noting

"D.J. Scalapino, Phys. Rev. Letters 16, 937 (1966).

FIG. 5. The real and imaginary parts of the transverse suscepti-
bility evaluated to 0(J').

"G. Baym and N. D. Mermin, J. Math. Phys. 2, 232 (1961).
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S. HIGHER-ORDER EFFECTS (Q a
In this section complete subseries of higher-order

graphs are summed, which result in expressions evalu-
ated O(J') in the (divergent) denominators. This is
accomplished by calculating the self-energy parts to
O(J') of more complex propagators. This extends the
work of previous authors whose results were evaluated
to O(J) in the denominator and the divergences at
the Kondo temperature TI, now enter into certain cor-
relation functions rather than the resistivity, which
reaches the unitarity limit of maximum (finite) scatter-
ing at TI,. Although various explicit formulas for the
self-energies are obtained for finite magnetic 6elds
they are, in fact, evaluated in the zero-6eld limit, where
rotational symmetry introduces several simplifying
features. This leads to equations which de6ne a certain
critical temperature (Ts for the case of antiferromag-
netic coupling, J&0) and to a new ferromagnetic
resonance (J)0) which occurs at a much lower tem-

perature and so is merely of academic interest.
The first lnT term in the electronic eGective potential

only appears in second order $0(J')j for finite fields
but in zero external Geld a nonvanishing lnT appears
in third order, and is the first internal correction to the
second-order skeleton graphs (which themselves were
seen to exhibit no abnormalities when @*=0).This
suggests that all higher-order internal corrections to
the simple skeleton graphs will be divergent. Thus
propagators are constructed from these skeletons and
their own self-energy parts are constructed to O(J').
In fact, a further series of graphs is also included arising
from third-order skeleton graphs, which have the same
structure as before; this maintains the correct co-
efficient to O(J') in the numerator. By considering
those irreducible graphs which occur within an initial
and final interaction there will always be a factor of
J' contributed to the numerator. In practice, this means
we look for repeated scatterings of any two internal
lines within the second. -order skeleton graphs, while

a)

FIG. 7. Simplest diagonal element of the scattering matrix
~'u, (&) .

the third line remains unaffected from the initial to
final vertex (see Figs. 10 and 11).

Physically, this "bare" line effectively maintains
the local. spin (in the case of the electron self-energy)
in a definite orientation with respect to the external
electronic spin, i.e., the spin is "polarized" between
the initial and 6nal interaction and effectively behaves
as if in a magnetic field like the finite-field second-order
result (even in the case when there is no external mag-
netic field, the quantization of the electronic spin di-
rection determines that of the local spin). This agrees
with Abrikosov s~ intuitive choice of cutting only one
electron line and two spin lines at any internal point
and with Silverstein and Duke. "

In all cases we will need the following propagators,
illustrated in Fig. 6 )similar to the g(cp) of Nagaoka'
etc.j, defined by

S"gi.(r) =G),'( ) C'()~'r),

S'Di, (r) =G i'(r) D'()tr). (5.1)

The Fourier series transforms (Bose-like as a pair of
fermions) are

z0

p )pi,+X top ter

ffp —~ fp—x

2V p $p i irr— (5.2)

We will define a longitudinal scattering matrix by

S*~~ =S"i~ (r)
P

+ dridrsS*'a&' (r—ri) 3'&&' (ri —rs) S xv (rs) (5.3)
0

(5 4)

b) On evaluation of the graph in Fig. 7 and using Eqs.
(5.3) and (5.4), we have 3'qq(r) =El'(r), so

S*i~(~) =S*'u, (~)/L1 —)tJS*'u, (~)j (5.5)

Fro. 6. The skeleton propagators corresponding to the correlated
spin polarization of the conduction electrons around the impurity
(a)Longitudinal part S~qq'(r). (b) Transverse part g"&,(r). Note:
The X in a circle refers to the direction of the C propagator (relative
to the electron), for if ) =1, it propagates from 0 to r and vice
versa for ) = —1.

For the oG-diagonal longitudinal matrix elements, we
need both graphs illustrated in Fig. 8, to be accurate

"S.D. Silverstein and C. B.Duke, Phys. Rev. 161,456 (1967);
161, 470 (1967).
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So,

V, i(-.) = —(J /P) Z Co(h'(- —-.))

~ {S'» (~) -sS*'» (~) j (5 11)

Similarly, for the transverse part LFig. 3(d) j, Eq. (4.4)
becomes

w
V

V,&" (r) =-'J'{D'(hr) S o, ,,(r)+Cs(h. )S",(r) j

(5.12)

to O(J') 3'„&,(T) =AJAR(r) —JsS''s(r), so

which on transforming and renormalizing like Eq.Fin. 8. The two lowest-order off-diagonal elements of 5'x, x r .
o.v) Decomes

V~"(&) = (J'/&3) 2 {D'(lt(p—~) )LS*-i.~(~)

*),
& (n) = ', . (5.6)

7iJSzo& y(&) {1 AS oy(&) j

The result for S'),(r) can be simply obtained by examin-
ing I"ig. 9 and realizing that the complete series can
be obtained by replacing S*'&,, z(a) in the second term
by the complete S'»„,(cr); remarkably this results in
a form very similar to Eq. (5.6). The equation cor-
responding to Fig. 9 is

S'S(~) =S"~(~)—J'S"& (~)S*'&.-& (~)S"& (~)

—sS"-~.x(~)3+C'(&i(p —~) )
&&LS"(-) --',S" (-)3}. (5.»)

Before proceeding, we must note that this procedure
is not quite complete, as we are missing a whole sub-
series of graphs which have the same structure as those
already considered. These are the two third-order skele-
ton graphs Fig. 11 which are needed when @'=0 to
preserve rotational symmetry. They give a contribution

V&, &s'&(r) =usC (li1) {R&, (T)+R&, (T) }, (5.14)
where

S"~( ) {1-l~JS*').&, ( ) j
1—hJS*o, , ,(~) {1—uS'o, (n) }

%e will first use these propagators and their trans-
forms in evaluating the effective potential for the elec-
trons in a systematic way to O(J'). ol

+le carl renormalize the longitudinal scattering po-
tential, Fig. 3(c), by splitting Eq. (4.3) into two equal
contributions then renormalizing appropriate pairs of
free propagators, thus

Rh (r) = ZTlS x(t—rl) S x,—x(ri) l
0

si'(r) f&n& i)( =)&,"-i.( —)
0

(5.15)

A'(~) =4'(~) =S"~(~)S*", ~(~). (5.16)

Vs&so(r) =2K(Js/P) Q C'(X(p —rr) )R),'(~).

V&,
" (r) = —-,'J'{C'(s)S*'),t(r)+C'( r)S"&.t (r)}-

= s {Vx""(r)+V&"'"(r)j

Then upon eGecting a Fourier series transform,

V.&"&(-)=-(J'/2O) Z {C'(---)S"i(-)

(5.17)

(5 g) This is simply renormalized by orally converting S*'z, &,
—&

(-w)

~a~~e+

+C'(~—p) S*'st (~) } (5 9)

Now each of these parts can scatter independently
and repeatedly (i.e., S"~S'), but this would involve
overcounting the first term twice (see Fig. 10). If we
now de6ne the renormalized terms corresponding to
the correct summation (note absence of brackets
around superscript), we have

(~) (-y)

%e

FIG. 9. The diagrammatic equation corresponding to Eq. (60)V i(P) = Vy (r')+Vg s & Vx & ~ 5 10 of the text.
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FIG. 10. Renormalization of the
(skeleton) second-order effective po-
tential, illustrating the procedure to
avoid overcounting the Qrst term
twice. if

l

I

i

t

. l

l

I
I

J

~ ~ ~ ~

S*q, q in Eis(tr) [renormalizing S'&i, {rr) also would lead
to some overcountingj:

J' ~ C'() (p-=))S "(=)S",, i, (=)
P — 1—ITS*'g g(n) {1—)JS''i, (cr) }

(5.18)

We can now define the complete second-order effec-
tive potential, or "polarization potential" Vq~ as the
sum

S'(co~is) =A ({o)aimB({o), (5.22)

action Hamiltonian (represented here by fermionlike C
and D operators) has converted a bare fermionlike
electron line to a Bose-like propagator. This introduces
a temperature-dependent factor which changes sign
as the momentum passes through the Fermi surface.
So from Eq. (5.20) with the constant density of states,
the analytically continued form is

V P V 2{+V2t+V st (5.19) g {{o)={p dE I
tanh{-', PE) j/(E —{o)

The above expressions are somewhat inelegant, so we
shall evaluate them in the zero-external-field limit
(where many other graphs due only to field splitting
also vanish). Thus we have lim„. sC (&r) =sD (Xr)
with Iy'(XP) =hay'(P), so we can define the zero-field cor-
relation propagator So(cr) by

{f' f. }—
X'S'(n) =S"), (6) =2S"3.,x =—g . (5 2o)

$o
—icr

In this limit Eqs. (5.7—5.9) become

—,')tS'(u)

1—~2JS'(tr)
'

—-')~S'(a)
S'i„-i,(~)~

{1—-',JS'(rx) }{1+JSo(tr)}
'

) S'(n) {1+-',JS'(~) }
{1--',JS'(-) }{1+»'(-) }

This exhibits the unexpected property of factorizable
denominators, as we shall see this leads to ferromag-
netic-resonance behavior as well as the usual antiferro-
magnetic. In fact, if we had only worked to 0(J) in
the denominator we would only achieve the antiferro-
magnetic result but with a factor s instead of unity: this
factor is important because the Kondo temperature
Ti, depends exponentially upon it (see Sec. 6).

Before evaluating V~(r) we will look a little more
carefully at So(n) as this function frequently occurs in
the present work (and in superconductivity). We can
see that the eBect of the spin operators in the inter-

B({o)= tanh(-', P{o), if
I

{o I&D

=0, otherwise. (5.23)

(i3

(b)
Fro, li. The two third-order skeleton graphs which must be

included to preserve spherical symmetry to 0(J'}.

We will also need to use the function Q(cr) defined by

'( )L —J'( )j
cr {1--,'JS'(-) }{1+»'(-) }

' 5.24

or in its analytically continued form to O(J) in the
numerator

1TiwpJB({o)

I {1—-'JSs(to) }{1+JS'(&) } I'

We are now in a position to finally evaluate V"(i) by
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using equations (5.11—5.25):

Vo'(~) = '(J--'/p) Z D'(~ —~)g'(~) Q(~)

3 J'
Voi'((o) = ———Q tanh(-', PP, )2E p

(5.26)

This procedure is necessary to pick up the simple
second-order result when Q(zi) =1. Thus deforming
Cb around the two mentioned discontinuities we obtain,
just above the real co axis,

I, (c +is) = ——,
' discQ((u) coth(-,'pcs) {tp —&oI

'

X '. .'"' . (527)
2~i c~ (1—z ')(~—z)(4—z)

The latter form defines the complex integral Ii, (&a) in
terms of the Bose-contour Cb, which encircles the whole
of the imaginary s axis; we have used the analytic
continuations co=ii and in=z=zi+iz2. To evaluate
I, (co) we see that for

~

a& ~(D discontinuities occur in
the complex s plane at z2 ——0 and s2 ——co2. However, the
discontinuity along the real axis takes in the pole at
z=$~ as well as the discontinuity from Q(z), i.e.,

Q(zi) (P
disc

4—zi

(5.28)

ii2—7rb(E, (o)—Q((u) coth(-,'pro)

+z{t.—~I ' Q(~) —'—:Q(~,)

1 " dzi discQ(zi)
(5.29)2z.i (1—e ~*') (tp —zi) (a)—z,)

We have used the convention that when the phase is
not specified the principal part (6') is understood. Be-
cause of the approximations made and the explicit de-
pendence of J in Eq. (5.27), we shall evaluate Eq.
(5.29) only to O(1) in the numerator of the real part,
and to 0(J) in the numerator of the imaginary part:

—{Lcoth(APE.)3/(4 —~)+i {:coth(zP ) &(4—) —PJ/(t. —)jI
2

I {1—zI&'(~) I {1+»'(~)I I'
(5.30)

Thus by Eq (5.27.) we obtain, in the limit ar((kT,

Vo~((rais)

-',pJ'{ln
~

(D co)/(D+c ) ~aim—L1—pJA(a) jl
I {1—-'pJA(~) I {1+pJA(")l I'

(5.31)

This is the central result of this section, so if we now
only consider excitations near the Fermi surface, i.e.,~0 we can use the analytical result Lsee Eq. (4.10)j

A (0) = de{ tanh(-,'Px) )/x=2 in(iPD);

Eqs. (5.34) become

kT, =fD exp(1/2pJ) ={Dexp{10'(J)J,

kT,~ i D exp( —1/p J) =——fD exp {—20e(J) I .

(5.35a)

(5.35b)

These only have low-temperature solutions (kT,(D),
if in Eq. (5.35a) J is negative giving T, ~3'K and
if J is positive in Eq. (5.35b) giving T~ 2&&10 K.
Thus T, is the usual antiferromagnetic "transition
point" found by Xagaoka, ' which we will always de-
note by T&, while T,+ is a new ferromagnetic charac-
teristic temperature. IIowever, this latter is only of
academic interest'for

i-=27/~=1. 13. (5.32) T.+/Tg kTi,/gD. ——(5.36)

Thus at the Fermi surface co=0, Eq. (5.31) becomes

,'pJ'{1 2-pJ 1n(i—pD) IVo~(0&is) =
~
{1—pJ ln(iPD) I {1+2pJln(iPD) I ~'

(5.33)

We can immediately see that this diverges under two
conditions

Before proceeding further we will introduce a com-
ment regarding the stability of this solution, i.e., the
sign of the imaginary part of V~(co+is) which in our
notation should take the sign of s. This is true for the
antiferromagnetic case in the temperature range from
zero to the unphysically high value of

iD exp(1/2p I
J I)

1+2pJ1 ({Dn/kT, ) =0,
1—pJ ln(t D/kT, +) =0.

Using Nagaoka's values for the parameters

LD (5X10')'K, p ~
J ~=0.05j,

(5.34a)

(5.34b)
However, an instability occurs below T& for the ferro-
magnetic case, before its own T,+ is reached, but the
significance of this result is unknown. It seems pos-
sible that higher-order terms would counteract this
change in sign.
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Although the effective potential V diverges at TI„
this is not the quantity of direct physical significance.
The single-particle lifetimes r are determined by the
imaginary part of the electron self-energy M~t, (to).
This is given by Edwards's" method of taking an en-

semble average over all impurity sites in the low con-
centration limit (c—&0) and this "renormalization"
method must be used when V diverges':

where

G,t, (to) =
f Pvg

—to —cMrt, (to) }
—', (5.37)

~ ~

M&t, (~) = V~(m) /f 1—V~(~) Gis(~) j (5 38)

The quasiparticle lifetime is given by

~ ~

(&)
' ' ' . ~ - .

1/r, t, = ImcM, t, ($,q+is) . (5.39)

From Eqs. (4.9)—(4.13) we know that the real part of

Gt,'(co) vanishes at the Fermi surface as does the real

part of V (o~) in the above approximation, so on using

the form of V~(0+is) valid in the temperature range
1 &T/T& &em for J(0 we obtain rt from Eq. (5.33) and

Eqs. (5.38) and (5.39). The restriction (T)T&) antici-

pates the anomalous results of the remainder of this
section:

rp i=c(vr/p) fw'+6 [ 1n(T/Tt) ['j ', (5.40)

Equation (5.38) must be used in the temperature range
1&T/Ts&4 even for small concentrations, as cV~

is diverging as T approaches TI, from above, but out-
side this range cV~(a&) may be used to sufficient ac-

curacy.
Then using the following equation for the resistivity

(at temperature T) p...(T), we achieve the final result,
above the Kondo temperature:

28 S8~

p (T)—1— dgprvPs f —~ rp. (5.41)
3m' et', 2mp

So

p„,(T) =c(2m'/se') for'+6 ( 1n(T/Ts) ~'j ', (5.42)

where s is the number of conduction electrons (mass m)

per atom. A similar analysis for the C self-energy Z
involving pairwise renormalization of the correspond-

ing second-order skeleton graphs leads to the analogous
result (for Sg'=0):

J'
g, (p) =—Q {G'(n+r) —G'(a —r) }S (a)Q(a).

(5.43)

Using the same approximations which were used in
evaluating V Lsee Eq. (5.26)$ we find the damping
term to be

&4s-(pJ)'kT{1—pJA(co) j

I f1—-'p~A(~) j {1+»A(~)j I'

(5.44)

FIG. 12. The one-electron damping at the Fermi surface (or
equivalently, the spin-impurity resistivity in arbitrary units)
plotted against the reduced temperature T/Ts for antiferromag-
netic coupling ( J&0). No. 1 is our present result PEq. (5.40) g,
No. 2 is the modi6ed result of Nagaoka (or Abrikosov), and No. 3
is that of Doniach for S& =1.Only valid for T& TI,.

So, using Eqs. (4.30) and (5.33), on the C excitation
energy shell, in zero external field, we have,

%1'{1—2' ln(gPD) }ImZp~ 0+is =
j {1—pj ln(fPD) }{1+2pJ lng PD) } ~-'

(5.45)

In this case damping of the C propagator becomes
infinite at the two critical temperatures, again in-
dicating anomalous behavior. Unfortunately we cannot
evaluate the real part of the C-field self-energy for
general co, but it is identically zero on the energy shell
(at=0) as can be seen from Eq. (5.43). This means
that (5') =0 for all temperatures, when @'=0.

However, the divergences in the 8 functions fEq.
(5.21)] which enter into the evaluation of the above
self-energies do have interesting physical consequences.
We can see this by examining the exact propagators
8'& t, (r) in their Wick-ordered form:

8't t(r) =(T~{nt(r)c'(r)nt'(o)c(o) })
and

&'lt (r) = (Tir{n t(t) c(r) c'(o)n 1'(0) }) (5 46)

If we now take the limit of v.~0 in each case, we have

8't t(0-) = —(nt ntcc'),

(5.47)

In order to interpret these expressions we note that the
s component of the electronic spin density at the im-
purity site, written as —', 0-' is defined by

~*=g Xn, tn, . (5.48)

Now the correlation of this electronic spin density with
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the impurity magnetization at the origin is given by

(o'S*)=Q 'A (n), 'a), S') (5.49)

(o.*S*)=1++XS*), ),(0 ) (5.51)

Thus, for the noninteracting system,

(~*S') =2&'(S*) (5.52)

and this vanishes at all temperatures when @'=0.
However, a peculiar transformation occurs when all

the "polarization" diagrams of the type summed in

Eq. (5.3) are considered. For in zero external field

we have

lim(@'~0) (o'S')

exp( —ia0-) g'(n)

~ —. I1--',Jg'(-) }ll+»'(-) }

If this is converted to a Bose-type contour in the com-

plex s plane, we have
(o'S') —1

1 ds e*'So (s)
=lim

,„;2i „(1—a ) I1—-',JS'(s) }I1+JS'(s) }

(5.54)

Apart from the Bose factor, the denominator of the
integrand has no zeros above TI„sodeforming the con-

tour will only pick up the poles from g'(s) which we

have seen PEq. (5.42) j gives a vanishing result. How-

ever, at T), the expression 1+JSo(s) has its first zero
at s=O, indicating the occurrence of anomalous corre-
lations. As the temperature is further lowered, two solu-

tions occur giving rise to two conjugate poles on the
imaginary s axis. This is very similar to the behavior
of the exact solution to the Nagaoka decoupled equa-
tions found by Bloomfield and Hamann. '4 Further
discussion of the low-temperature properties of this
formalism will not be pursued here, but it might be
noted that this anomalous behavior has points in
common with the breakdown of the T-matrix approxi-
mation in superconductivity for an attractive 8-function

potential. "
6. DISCUSSION

In this section the results of several authors who have
previously investigated this Hamiltonian are com-

24 P. Bloom6eld and D. R. Hamann (to be published).
"L.P. Kadanoft and G. Baym, Qgantum Statistical Mechanics

(W. A. Benjamin, Inc. , New York, 1962), p. 187.

If this sum is written out then we can use the drone-
fermion representation for S' in either of its two equiv-
alent forms, namely

S'= etc —
~ or S'= ~

—cc~. (5.50)

So we have

pared and contrasted. We only deal with those treat-
ments which have attempted a series summation in
the electron self-energy part M. In fact, apart from
Doniach, ' all these authors calculate M directly, with-
out the aid of V, and so include: a divergence at TI, for
1/rF, they then restrict their solutions to the high-
temperature region T) T), /see remarks after Eq.
(5.40) g.

Ke shall Grst analyze Nagaoka's'' results for his
high-temperature (perturbation) solution of his trun-
cation scheme for the equations of motion of the Green's
functions. If we write Nagaoka's equation for the
diagonal element of the electron's Green's function
using the same notation as in his first paper' (denoted
NI), apart from modifying his J (for the purposes of
comparison), then Eq. (2.17) of NI becomes

2mGi, ), (ro) =
( -r.)

J'I'(ro)—=Im '+»9( )+&r( )r( )I'
(6.3)

Now in NI, the zeroth approximation of m), =f), and
m~=G were used, in our present notation this becomes

2g'(co+is) =g'(ro+is)

i'il'e(o)+is) = P'(ro+is) =—G'(ro+is)

=ln
( (D—o))/(D+ro) i+Arp. (6.4)

This results, near the Fermi surface, in

c47T'pJ
—'( pJ)'+1+2pJ 1n(1pD)

8 (T) —'
+

p 3p(J( (T/
(6.5)

The initial expansion to O(J') was necessary for a mean-
ingful result. Otherwise we would have

G),),(co+is) '=2ir(M —
P),)'/Iro —

P),+6+i/r), }, (6.6)

J'r (ro)

( -~.)D+2JS( )+J'&( ) I ( )j (6.1)

This is then inverted and expanded to O(J') in the
numerator to give

J'I'(o))

( D+»Oi )+&'~(~)r( )i
'

(6.2)

This is the form in Eq. (3.2) of NI apart from the term
of O(J') in the denominator; however, this must be
retained to remove the divergence at T~. In the limit
o)+is, we obtain the damping coeKcient:
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where 6 is the shift. As we can see, this vanishes at
the Fermi surface (PQ/ —0, t0=0) .

In his second paper' (NII) Nagaoka starts with the
perturbational approximation i'sq=Jk and Gkk(to) =
G»'(&e), and upon neglecting higher-order effects

I Eq. (4.2) of NII7, he finds for ms Lsee Eq. (4.7)
of NII7

;pJ ln—(f.PD)

1+2pJ In(|PD)

This can now be used to find

Iml'(0+is) =Im(1/S) g (,', m—i,—) /(&k is)—

(6.7)

=z.p I-', —mp}. (6.8)

'6This result was derived by a different method in the last
section of Ref. 10, where its validity was also restricted to T) Tf,.
This was based on low-order perturbation results in the calculation
oi (S*)which appears to diverge at low temperatures.

"K.Fischer, Phys. Rev. 158, 613 (1967).
» K. Yosida, Phys. Rev. 147', 223 (1966).

Finally, on neglecting the real part of I'(0), the self-
consistent result is

c4xp7
I ss (wPJ)s+L1+2PJ ln(AD) 7s}

=c(z./p) Im'+-'I'-
~
in(T/Ts) ~'} '. (6.9)

On comparing this result's with Eq. (5.33) and using
Eq. (5.38) we can see that this is in agreement for
J(0 if we had neglected terms of 0(J), which appear
apparently to be unimportant near T&. In. fact they do
give a numerical contribution of order unity, as we can
see by comparing the above result with Eq. (5.40).
The difference has been lost somewhere in the de-

coupling scheme along with the ferromagnetic result.
These high-temperature results contrast markedly with
the self-consistent solution found at low temperatures
(below Ts), which indicates a possible type of con-
densation. This latter result is found by the use of
equations analogous to those in superconductivity and
the self-consistent assumption that mp diverges at
absolute zero. However Fischer, '~ who follows Nagaoka
in his truncation formulation, adopts a different self-
consistent low-temperature assumption and 6nds that
mi —s /see Eq. (6.7)7 with the result that the resis-
tivity vanishes as ln—'(T) at absolute zero, in agree-
ment with Eq. (5.42) if this equation had been used
below TI,. The presence of a low-temperature "bound
state" is being investigated in the present formalism.
Yosida" has also found such a possible bound state at
O'K by applying perturbation theory to a singlet-
correlated ground-state wave function for the s-d model.

This results in an energy approximately kT& lower
than the corresponding uncorrelated ground state. The
present calculations do indicate the presence of anom-
alous behavior, in this case by correlations arising for

T&T& in the spin correlations at the impurity site
LEq. (5.54)7. We mention in passing the work of
Takano and Ogawa who use Gor'kov's' decoupling
method in contrast to that of Zubarev" used by
Nagaoka. Unfortunately they use the coupled-fermion
representation for the spin- —,

' operators and are forced
to neglect unphysical states with unknown conge-
quences. However, they do 6nd a ferromagnetic reso-
nance, although their parameters differ from all other
theories (see later), and they also f'ind a sharp phase
transition at T~, to a possible low-temperature "bound
state. " Doniach' has summed a series of self-energy
graphs using his zero-temperature spin-Wick theorem.
Although this method results in a resonance rather
than a divergence at Tl„two points must be mentioned.
Due to an ansatz extension to finite temperatures, "
the resulting value of TI, is too small and because of
his method of averaging, the total spin components
(S=s), S,=1 and Si——0 diA'er from each other, even
in zero magnetic 6eld. This latter separation into S&
channels shows up in an instability in the effective
potential for S~=O but not S~=1. The former having
the wrong sign throughout the whole temperature
range.

The first successful finite-temperature calculation
using a perturbational method and treating the spin
operators correctly was that of Abrikosov. ~ He summed
a series of "parquet" diagrams which in essence are
similar to most of our self-energy terms. His result
(in our notation) is

1/r&=~(rr/P) 16 t»(TITs) } '. (6.10)

This could agree with Nagaoka's second result if the
resonant part (rr') had been included.

Suhl and Wong'4 have also investigated this problem
using Chew-Low scattering theory; however, little con-
tact seemed to exist between their theory and previous
methods. But very recently Silverstein and Duke"
have shown an exact agreement between Suhl's ap-
proach and that of Abrikosov by imposing the restric-
tion of on-shell energies in the scattering amplitude
which also removes any complex poles. They show that
the restriction to parquet graphs is valid to third order
in the iterative results to logarithmic accuracy —this
region is within our own approximation. Finally

'9 F. Takano and T. Ogawa, Progr. Theoret. Phys. (Kyoto) 35,
343 (1966).

so L. P. Gor'kev, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
/English transl. : Soviet Phys. —IETP '7, 505 (1958)).si D. N. Zubarev, Usp. Fiz. Nauk 71, /11 (1960) LEnglish
transi. :Soviet Phys. —Usp. 3, 320 (1960)g.

»This is identical with the Yolin-Abrikosov pseudofermion
technique for S=-', . The unphysical "vacuum" state gives no
contribution (apart from overcounting) but this is not true for the
two-fermion state, which is compensated correctly in the tech-
niques of the above authors."Nagaoka (Ref. 6) has reported that Shiba has generalized this
method to 6nite temperatures."H. Suhl and D. Wong, Physics 3, 27 (196/).
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TABLE I.Coefficient x, defining the Kondo resonance temperature.

Source

Nagaoka {NII)
Takano, Ogawa'
Abrikosov
Silverstein, Duke
Doniach
Present work

~ Their ferromagnetic result is z whereas ours is 1 [see Eq. (5.35b) of
the text].

Bloomfield and Hamann have solved Nagaoka's de-
coupled equations exactly, throughout the whole tem-
perature range, giving a smooth behavior of the physical
quantities considered, as the temperature is lowered.

As a 6nal summary of the basic results of the above
theories we tabulate (in Table I) the parameter x
found in each theory which finds an antiferromagnetic
resonance condition given by equations like Eq. (5.35)
(always in our present notation and band structure):

1+xpJ ln(fD/he) =0
or

kT/, gD exp( —1/xp——
~
J ~). (6.11)

It is the exponential dependence of T~ on x which makes
its magnitude important. We also plot the damping
term ri, ' for equivalently the spin-impurity resistivity
Eq. (5.42) j against the reduced temperature T/T& for
J(0. This is contrasted with the modified (high-tem-
perature extension) result of Nagaoka LEq. (6.9)j
and one of Doniach's results, that for total spin one.

As can be seen the ascent to the maximum is not very
steep (this was anticipated by Abrikosov) of width
about 2TA, . The behavior below Tq is not exhibited in
the present theory due to the possible correlation be-
tween the spin systems below T&,. It is possible that the
resistivity retains its maximum value all the way from
TA, to zero.

7. CONCLUSION

The discovery of a simple Wick theorem for spin- —',
operators has enabled the powerful techniques of quan-
tum field theory to be used in the present problem which
is one of some dynamical complexity. The extension
of the Feynman diagram method to represent spin

propagators has enabled us to systematically investi-
gate the magnetic properties of this Inodel. In the
present paper we have calculated the self-energies of
the various propagators to O(J') for the case of low
concentration of impurities. We have found that the
electronic energy levels are split by a J' lnT term giving
rise to such an expression in the electronic g factor. This
shift is a polarization effect of the localized impurity
spin and vanishes as the external field goes to zero. A
similar polarization term occurs in the static and dy-
namic properties of the impurity spin, and leads to
another lnT term in the second-order g shift and dy-
namic susceptibility of the impurity.

We approached the Kondo temperature TI, from the
high-temperature region by a resummation of a com-
plete subseries of self-energy diagrams selected on the
basis of the idea of mutual "polarization" of the two
spin systems, even in zero external field where the re-
sulting expressions were evaluated. As the calculation
was carried out to O(J') in the resulting denominators,
two characteristic temperatures appeared. One was
the Kondo temperature for J(0, while the other one
occurred for J&0 and was much smaller than TI,. The
use of an effective potential indicated that the spin-
impurity resistivity reached its maximum (but still
finite) value at the characteristic temperature in a ln'T
manner. The divergences in the present theory mani-
fested themselves in anomalous behavior in the correla-
tion function between the two spin systems at the im-
purity site. However the properties of this model were
not investigated here in the anomalous low-temper-
ature region.

The present, problem (c((1) is one of the rarer ex-
amples where molecular-field solutions cannot be found.
So the standard approximations used to handle spin
operators in such theories have to be superceded, as
in this paper. However, we have reported elsewhere on
applications of this new method to molecular-field type
problems like the Heisenberg ferromagnet and the
rare-earth model for metals.
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