
INVESTICiATION OF MAGNETIC INTERACTION S

(1.0&0.3) cm ' for the exchange interaction of each
Tb'+ ion with its four nearest neighbors in the a-b
plane. A magnetic moment of (9.0&0.6) pz per ion at
an angle of 35' from the e axis was obtained from the
high-6eld Zeeman splitting.

Metamagnetic behavior produces anomalies in the
Zeeman pattern at about 8 and 20 kOe. Good agreement
was obtained between the experimentally determined

exchange interactions, the positions of the Inetamag-
netic anomalies, and the observed Neel point.
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The Bogoliubov inequality is used to prove the absence of spontaneous magnetic ordering in one and two
dimensions for a many-band model for electrons in a metal interacting via the Coulomb and the exchange
interactions. The discussion follows closely Mermin and Wagner's recent proof of a similar theorem for
the Heisenberg model of an interacting spin system.

where

LC', Vj=0,

O'= Q exp(ik. r,) (s,,+is,„) (2)

and r; and s; are the position and spin of the ith elec-
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"'"SING an inequality due to Bogoliubov, Mermin
and Wagner' have proved rigorously the absence

of both ferromagnetism and antiferromagnetism in one-
and two-dimensional spin systems described by the
Heisenberg Hamiltonian. This theorem concerning
the absence of magnetic ordering in one and two
dimensions can be proved not only for systems described
by the Heisenberg Hamiltonian, but for many others
as well. Wegner' has shown that it applies to ferromag-
netism in systems of locally interacting electrons and
nuclei, and Hamilton' has shown that it applies to
spin density waves in an electron gas. Much of the
above work was stimulated by Hohenberg's4 discussion
of a similar theorem for one- and two-dimensional
superAuids and superconductors.

Wegner proves the nonexistence of ferromagnetism
in systems of electrons for all potentials V, describing
the interaction of the electrons among themselves and
with nuclei, that satisfy the condition

where

H= T+Hc+H. +Hz, (3)

T= Q T, (1—1')c)„,tcg „.,
1I~ro

~~c= P&(1&')e~.m), ,
.

H,„=—P J(ll') [Qn(,z(,+2S+(1)S (i') J,
l&l~ 0'

Hz 2hg cos(q 1) Sz(l——) .

The nut:lei in the crystal are assumed to form a Bravais

'D. C. Mattis, The T/zeory of Magnetzsm (Harper R Row,
Publishers, Inc. , New York, 1965).

tron. Potentials that are local (i.e., that do not contain
the electron momenta, p,) and d.o not contain the spin
coordinates s; satisfy this condition. Since V can con-
tain a periodic potential, the proof applies, for example,
to electrons in energy bands interacting via Coulomb
fol ces.

The purpose of this paper is to demonstrate the
absence of ferromagnetism and antiferromagnetism in
systems of electrons described by the Hamiltonian (3),
which is often used, in practice5 to discuss magnetic
ordering in metals. Although the interaction, described
by the terms Bz and H, , is usually assumed to repre-
sent approximately the effects of a full Coulomb, or a
screened Coulomb interaction, it is not in general a
local interaction. For this reason, a separate proof is
required to establish that model Hamiltonians of the
type (3) also do not admit magnetic ordering in one
and two dimensions.

We consider systems described by the Hamiltonian
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and c~ " and c~, are the corresponding Fermi creation
and annihilation operators. The spin operators have
been defined in the usual way, i.e.,

5+(i) =el) cli 5 (t) =clb'cia

lattice, cbeing the vector from the origin to a particular
lattice site; r is the band index, o (= &2;) is the spin
index and the notation i=—(1, r) has been used. The
basic states in this description are the Wannier states
pi„(r), which are related to the Bloch states by

gl„(r) =E '12+ exp( —ik 1)pl,„(r),

(in fact
I C, Hoj= 0),

(I Lc, H,„])c tJ )=4+ J(lil2) {1—expLik (1,—ll) ]I

x (5+(fl) 5—(i2) 25z(ii) Sz(i2) &~ (»)

(I t C, Hz], Ctj)= —4%ho,

(LC, A])= —2cVo.

(16)

Since each lattice site is a center of symmetry, the
factors /exp(ik (li—1,) )—1j in (13) and (15) can
be replaced by Leos(k (ll —12))—1]. Furthermore, it
can be shown that

and

Sz(i) =-,'(»li —«i).
T is the band energy, which includes the kinetic energy
of the electrons and their interaction with a periodic
potential, Hg and H, . are the so-called Coulomb and
exchange interactions between the electrons, and Hz
is the Zeeman interaction of the spins with a fictitious
magnetic 6eld of wave vector q. For future use, we also
introduce the spatial Fourier transforms

where

and

I (L{:C,2'3, C'1)
I

&iV~k',

1(KC, H-j, C'1&
I
&&»',

a= 2+
I

1I'
I
T.(1) I

h=12+
I
li-12I2I ~(44) I. (19)

5.(k) = Q exp( ik —1) S (i)

of the spin operators (8) (5 can be S+, 5, or Sz).
The quantity we wish to compute is the spin mag-

netic moment

o = (1/Ã) g cosq 1(Sz(l) )

»~(IC, ~j& (ILC, Hi, C j&-&({~,~ I& (»)

to prove our result. For the operators C and 2 we use

C=S ( —k), ~ = 2{:5+(k+q)+5+(k—q) j (12)

The expectation values appearing in (11) are

(LI C, T], C'j)= p {expIik (4—12)j 1I2'(ll 12)

X (Cllrb C12ri+C12rl Clyri &~ (13)

induced by the fictitious magnetic Geld. If the magnetic
field can induce a magnetization 0. that tends to a
constant nonzero value when h tends to zero, the system
will exhibit a spontaneous magnetization. If the induced
magnetization tends to zero as h tends to zero, there
will be no spontaneous magnetization. The case q=0
of course corresponds to ferromagnetism, but the
interaction (7) for arbitrary q probes for more com-
plicated kinds of ordering.

Following Mermin and Wagner, ' we make use of
the Bogoliubov inequality

1t is of course essential that both expressions (19)
should converge. The final result which we shall need
ls

P ({A,3 lI )(21V»b2, (20)

where e~ is the total number of bands, which we assume
is finite. Now, putting the above results into the
inequality (11), summing both sides over all values
of% inside the Brillouin zone, we find

(2kTo2/cV) P P(a+5) k2+4
I

hsz
I j '&»b' (21)

Since (21) is essentially the same as Eq. (11) of Mermin
and Wagner, ' we can immediately write their equations
(1) and (2); i.e., for sufficiently small fields h,

I
o

I
((const/T")

I
ln

I
h II

'~2 (2 dimensions)

(22)

I
o

I
&(const/2 ~')

I
h I'~', (1 dimension) .

(23)

There is thus no spontaneous magnetization in one
or two dimensions at any nonzero temperature T for
interacting electron systems described by the many-
band Hamiltonian (3). From (21), it is clear that no
conclusion can be reached in three dimensions.

As an example, consider the simple model often
used for the study of strong correlations between
electrons in a single narrow band, for which the Hamil-
tonian is

(LI C Hcj C'3&=0
H= Q T(1—1') cl, tcl,+UQ»li»li. (24)
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The few rigorous results that have been established
concerning the properties of this Hamiltonian have
been listed by Herring, ' and the one pertinent to our
discussion is that Lieb and Mattis~ have shown that
there can be no ferromagnetism for a linear chain of
atoms with T(l—1') nonzero only for nearest neighbors,
but with an interaction energy that can be an arbitrary
function of rrtl+rstl Si.nce the Hamiltonian (24) is
a particular case of our Hamiltonian (3), our con-
clusions, which cover more possibilities than those of
Lieb and Mattis, apply to it. There is thus not only no
ferromagnetism but no antiferromagnetism for both
one and two dimensions; also the range of the hopping
integral T(1—1) is restricted only by the condition
that the expression (19) for a converge. It is a trivial
matter to show that our results also apply if the inter-

6 C. Herring, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. IV.

7 E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).

action is an arbitrary function of n&t+e&l, since

LC, m&t+N&2=0.
Although the above results have some intellectual

interest, they are clearly inapplicable to real three-
dimensional solids. However, as pointed out by Herring
in connection with the Lieb-Mattis theorems, many
approximation schemes that have been applied to
real solids can equally well be applied to one- and two-
dimensional solids. If these approximation schemes
predict the occurrence of spontaneous magnetization
in one and two dimensions as well as in three dimensions
for the Hamiltonian (3), the validity of these pre-
dictions in three dimensions should be clearly investi-
gated more fully.
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With the aid of a new Wick theorem for spin--, operators, the properties of a single localized paramagnetic
impurity in a metal are investigated, using diagrammatic techniques which are completely analogous to
those of standard quantum field theory. Attention is directed at the high-temperature magnetic properties
of this system. The present results include a new lnT term in the g shift for the impurity spin and for the
electronic susceptibility. In the high-field limit, the former logarithmic result is replaced by the logarithm
of the Zeeman energy. A high-order equation is also obtained for the resistivity by a selective resummation
of a complete subseries of electron self-energy diagrams. In this approximation, the resistivity exhibits a
maximum for both ferro- and antiferromagnetic coupling (but at different temperatures) as the characteristic
temperature is approached. The "bound-state" behavior appears in this theory as an anomalous correlation
between the two spin systems, and first occurs at the characteristic temperature when the external magnetic
field is zero.

I. INTRODUCTION

r lHE model originally proposed by Kasuya' of a..contact s-d exchange interaction between the con-
duction electrons and localized magnetic impurities
in metals has led to many theoretical papers' ' which
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have gradually exposed several interesting properties
lying behind its superficially simple structure. The
divergent behavior in the resistivity in the case of
isolated impurities was first found by Kondo, ' who used
standard perturbation theory to calculate the effect
of the Pauli principle on the second-order intermediate
states for the scattering probability of the conduction
electrons. The sharpness of the Fermi surface gives
rise to a lnT term in the resistivity; when this is com-
bined with the usual 1attice resistivity, the result is a
resistance minimum in the case of antiferromagnetic
coupling. This logarithmic temperature dependence im-
plied that a divergence would occur in each term of
higher order in perturbation theory as the temperature
was decreased. Moreover, Nagaoka' ' pointed out that,
even in third order, the lifetimes of the conduction elec-


