
PHYSICAL RE VIE% VOLUME 171, NUMB ER 2 10 JULY 1968
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The magnetization properties of a long superconducting cylinder with an ideal surface and a radius much
larger than the low-6eld penetration depth are discussed on the basis of numerical solutions to the one-
dimensional Ginzburg-Landau equations for a half-space. The current-carrying properties of the complete
set of nodeless surface solutions and Meissner solutions are discussed in detail, and a separate numerical
investigation of infinitesimal solutions is included. A stability criterion is derived, and infinitesimal solutions
are shown to be unstable below II,3. Finally these results are used for determining critical currents and
magnetization curves. It is shown that there is a new kind of superheating and supercooling due to the
shielding properties of the surface sheath.

L INTRODUCTION

INCR Ginzburg and Landau in 1950' proposed their
phenomenological equations for the superconduct-

ing state, a great amount of effort has been put into
obtaining approximate and exact solutions to the
equations. In general, exact solutions have been one
dimensional, the most favored geometry being the
infinite half-space, which is also the subject of the
present paper.

The GL equations are nonlinear, second-order dif-
ferential equations which couple the spatial variations
of the magnetic held and the order parameter in a super-
conductor. The equations have been very useful for
describing the transition between the normal and the
superconducting state caused by a changing external
field.

This transition was originally believed to take place
at the thermodynamic critical field H„at which the
difference in free energy between the normal and the
superconducting state is equal to the magnetic field
energy of the excluded Aux. However, on the basis of
the linearized GL equations, Abrikosov' found an upper
critical field H, s zt42H„where zz i——s the Gl. parameter.
He predicted that in a decreasing field the supercon-
ducting state would nucleate at H, s ()H,), when zz

exceeded I/K2 (type II). When «(I/V2 (type I) the
normal state could presumably exist in a metastable
state below H„until the external field becomes equal to
the "supercooling" field H,2.

By considering the special boundary condition, which
applies to the order parameter in the GL theory, Saint-
James and de Gennes' later showed that the nucleation
takes place more easily at the surface of the super-
conductor, provided the external field is parallel to the
surface. They solved the linearized equations in a half-
space and obtained a solution describing a supercon-

' L. D. Landau and V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).' A. A. Ahrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
/English transl. : Soviet Phys. —JETP 5, 1174 (1957)).

s D. Saint-James and P. G. de Gennes, Phys. Letters '7, 306
(1963).

ducting surface sheath superposed on a normal interior.
They imposed the condition that the total current
carried by the sheath should be zero, and predicted a
nucleation field H, 3

——jI.69H,2. The existence of the
sheath and the magnitude of H, 3 was subsequently
verified by a number of experiments.

Since the experimental observation of the sheath is
done by measuring the effects of the associated currents,
the original description is clearly incomplete, i.e., we
have to take current-carrying states into account.

The critical currents in the sheath have been measured
in many different ways. Transport current measure-
ments~' show that the sheath also exists below H,2."
The critical current is extremely sensitive to the angle
between the surface plane and the external field, and it
also depends on the angle between the field and the
direction of the current. '7 Furthermore, it has turned
out that the superconductor does not get normal, but
enters a resistive Aux-Qow state, when the critical
current is exceeded. ' The magnitude of the critical
transport current is very sensitive to the surface
condition.

In the following we shall deal with the case where the
current is perpendicular to the field. Its magnitude may
then be determined by magnetization measurements on
cylinders. '~' The surface sheath shows hysteresis simi-
lar to that of a thin cylindrical film. This means that it
is possible to define a Ruxoid quantum number, which is
constant, except when the current is critical. Barnes and
Fink" have shown that the hysteresis loop above H,2 is

4 P. S. Swartz and H. R. Hart, Jr., Phys. Rev. 137, A818 {1965).' R. V. Bellau, Phys. Letters 21, 13 (1966).
R. G. Jones and A. C. Rose-Innes, Phys. Letters 22, 271

(1966).' H. R. Hart, Jr., and P. S. Swartz, Phys. Rev. 150, 403 (1967).
8 P. S. Swartz and H. R. Hart, Jr., Phys. Rev. 150, 412 (1967).' R. V. Bellau, Solid State Commun. 5, 533 (1967).
M J. G. Park, Rev. Mod. Phys. 36, 87 (1964)."D.J. Sandiford and D. G. Schweitzer, Phys. Letters 13, 98

{1964)."D. P. Jones and J. G. Park, Phys. Letters 20, 111 (1966)."L.J. Barnes and H. J. Fink, Phys. Rev. 149, 186 {1966)."R. W. Rollins and J. Silcox, Solid State Coinmun. 4, 323
(1966).
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frequency-independent, and the energy is dissipated
only in the "critical state, "when the Quxoid quantum
number is changing. It is necessary to distinguish
between the diamagnetic and paramagnetic critical
state, the first occurring in increasing and the second in

decreasing external field. The experiments" show clearly
that the two critical currents are not equal in magnitude
at a definite external field.

A theoretical determination of the critical current has
in the opinion of the authors not yet been satisfactorily
achieved. By straightforward integration of the GL
equations for a half-space with an ideal surface it is
possible to determine the maximum currents allowed
for by the equations. This was done by Abrikosov, "who

used a Gaussian trial function as an approximation to
the order parameter, and by Park" and one of the
authors (P.V.C.),"who both used exact integrations by
computer.

The magnitude of the critical currents so obtained is,
however, far too large to explain the measurements.
Fink and Barnes'8 proposed instead to define the critical
current by the condition that the Gibbs free energy
in the critical state is equal to that of the normal state.
This hypothesis gave apparently better agreement
with experiments and was therefore used in several

papers, '~" but it now seems that there is experimental
evidence against it.' From the theorist's point of view
it is dificult to see how the free-energy criterion used by
Fink and Barnes can be fitted into the GL scheme,
which should allow one to predict realistic critical
currents. We believe that the disagreement between
theory and experiment may be resolved by investigating
the stability of the solutions to the GL equations and
also taking into account the irregularities of a real
surface.

Surface superconductivity is also related to the prob-
lems of magnetic superheating of the Meissner state and
supercooling of the normal state. It was believed3 that
the nucleation of the Meissner state in a decreasing
held takes place at H, 3, when H,3&H„ i.e., for ~(0.417.
However, Feder" recently showed that the normal state
with a surface sheath may be separated from the
Meissner state by a potential barrier. This makes super-
cooling possible below H, s (or H, ) when a i—s greater
than a critical value I(., that is less than 0.417. This pre-
diction has been verified experimentally, "-" and the
supercooling field for surface solutions without a current

"A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 4'7, 720 (1964)
/English transl. : Soviet Phys. —JETP 20, 480 (1965)j."J.G. Park, Phys. Rev. Letters 15, 352 (1965)."P.V. Christiansen, Solid State Commun. 4, 607 (1966).' H. J. Fink and L. J. Barnes, Phys. Rev. Letters 15, 792
(1965)."J.G. Park, Phys. Rev. Letters 16, 1196 (1966).' H. J. Fink, Phys. Rev. Letters 16, 447 (1966).

"H. J. Fink, Phys. Rev. Letters 1'7, 696 (1966).
2' J. Feder, Solid State Commun. 5, 299 (1967)."J.P. McEvoy, D. P. Jones, and J. G. Park, Solid State

Commun. 5, 641 (1967).
'4F. W. Smith and M. Cardona, Phys. Letters 25A, 671

(1967).

(in this paper called H„) was determined from numeri-

cal integration of the GL equations. -"' How the super-

cooling phenomenon is affected by induced paramag-
netic currents in the sheath will be one of the topics of
this paper.

Matricon and Saint- James" calculated a superheating
field H, j„which they defined as the maximum field for
which a Meissner solution to the GL equations exists.
This held seems to explain the experimental results on

small samples quite well. ""In general, it is difficult to
achieve the maximum superheating when the sample is
of ordinary dimensions. '~" In this paper we show that
a macroscopic cylinder with ~&0.417 possesses a mini-

mum superheating field H, due to the (virtual) dia-

magnetic shielding currents in the sheath. This kind of
superheating has been investigated experimentally by
McEvoy and others. " '4

In this paper we take the point of view that a com-

plete discussion of the one-dimensional solutions to the
GL equations forms the necessary basis on which to
predict the physical consequences of the existence of a
surface sheath. We solve the one-dimensional GL
equations for an inhnite half-space. The external held
is parallel to the surface, and the current density is
perpendicular to the external field everywhere. Our
results for this geometry may be used for a cylinder of
inhnite length and with a radius much greater than the
low-held penetration depth X. Our results are in accord-
ance with the earlier determinations of superheating and
supercooling fields mentioned in this Introduction, but
the possible existence of current-carrying metastable
surface states adds new features to the problem.

In Sec. II we discuss the general properties of surface
solutions. Section III contains a treatment of solutions
to the linearized GL equations, whereas the results for
the full, nonlinear equations are presented in Sec. IV.
The important question of stability is discussed in Sec.
V, and these considerations are used to predict magnet-
ization curves and critical currents in Sec. VI.

II. GENERAL PROPERTIES OF THE SOLUTIONS

A. Boundary Conditions

We seek one-dimensional solutions of the GL
equations in an inhnite half-space x& 0. For this purpose

"J.G. Park, Solid State Commun. 5, 645 (1967).
'6 J. Matricon and D. Saint-James, Phys. Letters 24A, 241

(1967}."J.Feder, S. R. Kiser, and F. Rothwarf, Phys. Rev. Letters
1'7, 87 (1966)."F.W. Smith and M. Cardona, Solid State Commun. 5, 345
(1967}."F. W. Smith and M. Cardona, Phys. Letters 24A, 247 (1967).

'0 R. W. de Blois and W. de Sorbo, Phys. Rev. Letters 12, 499
(1964)."R. Doll and P. Graff, Phys. Rev. Letters 19, 897 (1967).

"G.Fischer, R. Klein, and J.P. McEvoy, Solid State Commun.
4, 361 (1966)."J.P. McEvoy and J. G. Park, in P'roceedings of the Tenth
International Conference on Low-Temperature Physics, Moscow,
1W6 (Proizvodstrenno-Izdatel'skii Kombinat, VINITI, Moscow,
1967).

'4 J. P. McEvoy (private communication).
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a"(x) =f(x)'a(x) . (GL 2)

x is the GL parameter, f(x) is the order parameter
(normalized to its zero-6eld value), and a(x) is the only
nonvanishing component of the vector potential. The
gauge is chosen so as to make f real. Prime denotes
differentiation with respect to x.

The GL equations possess a useful integral

(1/") (f')'+ (~')' ~'f'+f—' 'f'= C—-(2 1)

where C is a constant.
We always look for solutions of (GL 1) and (GL 2)

with the special boundary condition

it is convenient to use reduced quantities' by measuring
distances in units of the low-field penetration depth X

and fields in units of %2H„H, being the thermodynamic
critical field. All reduced quantities are denoted by
lower-case symbols, e.g., h, = 1/v2.

The GL equations are

f"(g) =xsLf(g)'ya(g)s —1/f(g), (GL 1)

out the connection between Meissner and surface
solutions we may imagine that the order parameter for
a Meissner solution falls to zero at x= ~ in such a
manner that the internal field equals h, . Such a "surface"
solution describes a superconducting domain of infinite
thickness and a normal domain at x= ~. The Meissner
solution is thus a limiting case of surface solutions
describing superconducting regions near the surface of
increasing thickness.

In the following the term Meissner solution often
means the equivalent surface solution with /s, =+5, or
—h. . We classify solutions with h,)ho as paramagnetic,
those with h;(ho as diamagnetic. The total current per
unit length is defined as i= h;—ho.

B.Restrictions on Boundary Values

For a given ho, the values of ao and h; are restricted by
the requirement that 0&fp'&1. (2.5) may be solved for

fp ~

fp' (1—ap')——+I (1—ag')' —2(hP —hp') )'". (2.8)
f'(0) =0.

u'(0) = hp,f(o) =fp,

Since the quantity under the square root in (2.8) has2.2

The following names are used for the boundary values: to be positive or zero, the allowed values of ao and h;
must lie between (or on) the two curves

(2 3) h;= + (-,'ap4 —ap'+hps+-', ) '". (2.9)

a(0) =ap, a'( ~) =h, .

ho is the external field, which points in the direction of
the positive s axis. The current and the vector potential
point in the y direction. The quantity u(x) is pro-
portional to the velocity of the superconducting
electrons.

In terms of the boundary values at x=0 the integral
(2.1) becomes

C= hp'+fp'(1 —ap' —-' fps) .

We introduce 3=fps (1—aps) an—d denote solutions with
t& 0 and t(0 as plus- and minus-type solutions,
respectively.

Since 0&fp'&1, plus solutions are further restricted
by

hp+ aps& hp'+-', ,

hp+as'& hp'+-', ,

for
I

imp I & 1

Surface solutions to the GL equations obey the following
boundary condition at infinity: For minus solutions we get

f( ~) =f'( ~) =0. (2 4) IS'I&So and.

By evaluating C at x= ~ we get an equality obeyed by
surface solutions

The allowed regions in the ap-h; plane are shown in
Fig. 1.

hP =hp'+fp'(1 —ap' —-,'fps) . (2.5)

When we exclude solutions that oscillate at infinity, the
only other possible type of asymptotic behavior is that
of the Meissner solutions. They obey

ho

(/g2 )x h2+f2(1 g2 if 2) (2.7)

(2 6)

For Meissner solutions the equality corresponding to
(2.5) is

-hp

0
ao

By comparing (2.5) and (2.7) we conclude that
Meissner solutions are equivalent to surface solutions
with an internal field h;=+8, or —h, . In order to bring

FIG. 1. Section of the at)-It; plane for h0=0.6. The heavily
drawn curves are the boundaries of the area in which solutions
exist. Regions marked (+) and/or ( —) contain plus- and/or
minus-type solutions. Reduced units are used here as in each of the
following figures.
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C. Solution Curves

The numerical integration of (GL 1) and (GL 2) was
performed using a program in which the values of i~, ho,

and one more parameter, e.g. , t =f0'—(1—~') or ao, are
the input. The value of fp then uniquely determines the
functions f(x) and a(x), obtained by step-by-step
integration (Runge-IZutta method) . During the process
of integration f(x) may (a) exceed 1 and go to infinity,
(b) become negative, (c) go towards zero through
positive values (surface solution), or (d) go towards 1
from below (Meissner solution). By making this dis-
tinction we have excluded the possibility of finding
surface solutions with nodes in the order parameter. In
practice only case (a) or case (b) will occur if the
integration extends far enough. As soon as it can be
seen whether the outcome will be (a) or (b) the inte-
gration stops and the process is repeated with a new fp
value. The cycle is repeated until case (c) or (d) occurs
within some reasonable prescribed tolerance. In general
one finds that the f~ range 0(fp(1 consists of adjacent
(a) and (b) intervals separated by (c) points, but in
special cases an interval degenerates to a single point
corresponding to a Meissner solution /case (d) j. For
surface solutions the accuracy of the internal field ob-
tained by the integration was checked by comparison
with Eq. (2.5).

For given values of a and hp there is consequently an
infinity of surface solutions. We have represented each
of these by a point in an ap-h; diagram. Together the
points form pieces of continuous curve (Sec. IV). In
general there may be several solutions with the same
value of ao (Sec. III), but it is always possible to divide
the solution curves in intervals where a single-valued
parameter description can be used.

By using the ap-h; representation we have concen-
trated on the aspect of the solutions that is directly
connected to magnetization measurements. Strictly
speaking our results apply only to an infinite half-space,
but this is a good model of a long cylinder with radius
much larger than the low-field penetration depth X. The
thickness of the surface solutions is very small compared
to the cylinder radius, and the magnetic moment per
unit volume is therefore (except for the Meissner
solutions) m= (h;—ho)/4ir.

The Meissner solutions with h;=h, are end points of
solution curves in the upper half of Fig. 1. In addition
there exist in the lower half of Fig. 1 "anomalous"
solutions carrying very large currents, which are sufIi-

cient to reverse the field in the interior. The Meissner
solutions with h;= —h, form the end points of these
anomalous solution curves. Although some of the
anomalous solutions may be stable, it is hard to see their
physical significance, and we shall for the most part
ignore them in what follows.

D. Enveloye

From (2.5) one sees that curves of constant fp in the
ao-h, diagram are ellipses centered at (0, 0). The

h= ho+ ao fo'x. (2.10)

From (GL 1) one gets to the same order in t+

f"=~'(t++2ao&ox)fo (2.11)

Integrating (2.11) and using f'(8) =0 one finds

(2.12)

The part of f(x) for x) 5 is a surface solution with the
same internal field and same fo as our original solution.
The external field is h(8) = ho —(fq'/ho)t+, and the va, lue
of t is t -f'(8)+a'(8) —1= t~. —

Close to the envelope the internal field h, may be
regarded as a function h, = h, (ho, 3) so that

hh;= (Bh,/Bt) At+ (Bh,/Bho) Ahp. (2.13)

When considering the change in h; from a solution with
small positive t to one with small negative t the deriva-
tives may be evaluated on the envelope (at the point
called 2'), since we only work to first order in t+. Thus,

~h'= (~&'/~~) ~(—2~+)+ (~h'/~h )~(—fo'/ho) ~+.

As hh;=0 we obtain the relation

(Bh;/Bt) p —( fp'/2hp) (Bh——,/Bho) z, (2.15)

which should be satisfied for all T.

As a final point we note that the envelope is the
limiting solution curve for ~~ ~. When ~= ~ it follows

envelope of this family of ellipses is that part of the
curves (2.9) for which

~ ~ ~&1. A solution on the
envelope is denoted by T; the value of t for such a
solution is zero, since fo' ——1—aP. Along a solution curve
the solutions may change from plus type to minus type
only if the curve touches the envelope where t=0.

The following "crossing rule" is closely connected to
the empirical possibility of a single-valued parameter
description: A solution curve may cross itself in the
ap-h; diagram, only if the crossing branches contain
solutions of different type. In that case the value of fo
will be diGerent for the two solutions having the same
ap and h, .

The solutions on the envelope satisfy a general rela-
tion, which will be useful when we discuss the paramag-
netic shielding properties of the sheath (Sec. VI). We
shall derive this relation by using t as an expansion
parameter.

Consider a plus-type solution in the vicinity of the
envelope. This solution then has a small, positive t= t+.
Since f"(0) is positive, f'(x) becomes zero at some
distance 8=0(t+) from the surface. Since f'(0) is always
zero, the variation of f over the distance from x=O to
x=8 is 3 f=O(t+'). (GL 2) now determines a(x) and
h=a' to first order in t+ as x=O(t+):

u= ao+ box,
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from (GL1) that

From this condition a continuous surface solution may
be constructed in the following way: lo

f2 ] g2

f=0,
for 0+s+xp

for x) xp.

The quantity xp is determined by the condition a(xp) =
1. Since K is infinite, these solutions do not have to
satisfy the boundary condition f'(0) =0 nor be differ-
entiable everywhere. For every one of them fp'= 1—ups.

Thus, the envelope becomes the limiting solution curve
when K is infinite.

05

0.)

0.0
0.0 0,1 05 1.0

III. INFINITESIMAL SOLUTIONS

Whenever the external 6eld hp is less than the nucle-
ation 6eld h,3= 1.6946K, we may 6nd a solution with an
infinitesimal order para, meter f(x) and a finite value of
the vector potential at the surface. This value, called
up*, is determined by the linearized (GL 1):

FIG. 3. The If,'-h0 plane vrith h„h.2, h.3, and h,h. The points
(a)—(n) are the values of (», hp) for the representative solution
curves (see Fig. 4).

current associated with such a solution is paramagnetic
if —1+ap*&1, and diamagnetic if ~~+ —1.

The boundary condition (2.2) can now be written
f"(x) = »'$(ap*+hpx)' —1)f(x), (3.1)

U'( —»/2kp, $p) =0, (3,4)
together with the boundary conditions (2.2) and (2.4).
The solution to (3.1) is a Weber function (parabolic
cylinder function) I:

f(x) =nU( —»/2hp, &),

where o. is an arbitrary infinitesimal constant and

&= (2»/hp) '"(up*+ hpx) .

(3.2)

(3.3)

From the integral condition (2.5) it is seen that the

1.0

ao

- 1.0

-2.0

0 0.1
40/

Fio. 2. op* plotted against hp/K. The dotted curve refers to one-
node solutions.

35 IIendbook of Mathematical FNections, edited by M. Abramo-
vritz and 1,A. Stegun (National Bureau of Standards, Washington,
1964).

&p
——(2»/hp) 'I'ap*.

When the current direction and the number of nodes for

f(x) in the half-space x&0 are given, (3.4) uniquely
determines ap* as a function of hp/». We have solved

Eq. (3.4), and the resulting ap* curve for the zero-node
solutions is shown in Fig. 2. We have also indicated the
one-node branch (dotted curve); it can easily be proven
that the rs-node branch cuts the axis ap*=0 at hp/»=

1/(4rs+1) and goes asymptotically to —po at hp/»=

1/(2N+1). However, as mentioned in the previous
section, an investigation of GL solutions with nodes in

f(x) is beyond the scope of this paper.
From Fig. 2 we can get some information about the

number of nodeless surface solutions for a given K, hp,

and ~. A solution f(x) to the nonlinear GL equations
with an infinitesimal fp goes to infinity without nodes for
x-+ po, if and only if (ap, hp/») is to the right of the solid
curve in Fig. 2. A solution with fp sufficiently close below
1 always goes to infinity. In the light of our method of
obtaining surface solutions (Sec.II C) we conclude that
the number of such solutions is even to the right of the
up* curve and odd to the left. When counting we must
include not only the normal solutions described in Sec.
IV but also the solutions on the anomalous branch
(Sec. II C). In the following section we shall see that
there is at most one anomalous solution. for a given K,

hp, and ap. Whether there is one or none may therefore
be decided when we know the number of normal
solutions.

The constant n may be determined from the first non-
linear approximation to the GL equations. The method
is due to Abrikosov" and Feder."We shall only state
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the result:

with

(2hp/z) ' 'ci(ap —ap*)
CX

cp+ cs/2a
(3.5)

co= U4( —z/2hp, ()dP,

Cy=
to

c2=
$0

XU'( —z/2hp, $') d$'

From Eqs. (3.5) and ( GL 2) we get an expression for the
slope of the solution curve in the ao-h; diagram at a

h th order parameter is an infinitesima
Weber function (such points are in the following denote
by the symbol W):

(
h,—hp & (2hp/K) '"ci'

a,—ap*&~ 2a(co+ cs/2as)

Toe integra s co, c~, anTh
'

t I c and c have been evaluated numen-
sultin slo ecall for several values of hp/z, and the resulting s opeca y or

was then compared to the solution curve o
'

ytained b
direct integration of the GL equations (Sec. IV).

ci——0, (—cs/2cp) '~'= z,. (3.7)

I(:, is the critical ~ value introduced by Feder." Our

whereas Feder got 0.409. Park" determined I(:, by direct
integration of the GL equations and found the number
0.4066, which is also obtained by our method base on
direct integrations (Sec. IV) . Since it is not possible to
estimate accurately the error involved in the calculation
of the Weber integrals, we conclude

~,=0.4066. (3.8)

The Weber integrals can also be used for correcting
ri osov s expressiAb 'k ' pression" for the critical current i, in t e

~ ~

limit hoch 3. The main features of his formula remain
unchanged. We find for hp—+h, s,

(~—hp/h. s) "'
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with the constant equal to 0.30. The Abrikosov formula
is identical with (3.9) with the constant equal to 0.48,
and ~,=0.395.

The paramagnetic (+) and diamagnetic (—) critical
current are thus equal in magnitude in this limit. A
numerical treatment'~ has shown that (3.9) is not well
satisfied in the accessible range of fields.

0.770

IV. NUMERICAL SOLUTIONS

We shall next discuss the characteristic changes of
the solution curves mentioned in Sec. II C, as the param-
eters ~ and hp are varied. We have chosen a number of
representative points in the ~-ho plane (Fig. 3) and
drawn the corresponding curves obtained from numeri-
cal solutions of (GL 1) and (GL 2) in Fig. 4.

0.761-

0.760
0.52 053 080

curves mean the following:

FIG. 6. At ho=h, the zero-current solution Z~ is identical with
the Meissner solution M. The figure shows how the values of
(—a0) for Z, and 3II (=Z~) approach each other asymptotically
when ff: increases.

'I.O

0.9

02

M, MI
8'„, 8'g

~sy ~llf
E„
jV„

EM
T

Meissner solutions with h, =h„
paramagnetic and diamagnetic Weber solu-
tions,
solutions with zero total current,
paramagnetic extremum,
diamagnetic extremum with connection to Z„
but not to M,
diamagnetic extremum with no connection to
~S7
diamagnetic extremum with connection to M,
touching point between the solution curve and
the envelope.

06
Ofi 06 07 0,8

We have investigated the changes of the solution
curves when ~ and hp are varied so as to cover the whole

FIG. 5. Enlarged section of the If:-ho plane (Fig. 3) with h,
h„, and (part of) h,~ plotted against ~. In addition a few of the
points on Fig. 3 ib)-if) have been shown.

OeO

In Fig. 3 we have also plotted h„h,2, h, ~, and h,h. The
latter is the maximum 6eld that permits the existence of
Meissner solutions as mentioned in the Introduction.
Our own calculation of h,h agrees with that of Ref. 26.

When h, &hp&h h there are two Meissner solutions
with h, =h, having difIerent ao (~ and he both being
fixed)."Below h, there is only one such solution, above
h, i, none. Correspondingly, two Weber solutions are
found between h, 2 and h,3, one below h,2, and none above
h, s (Sec. III).

Figures 4(a) —4(i) are nine of the fourteen curves
belonging .to the points a—n on Fig. 3. The remaining
curves j—n have not been shown, since they diQer from
the others in a rather trivial manner to be explained
below.

The symbols attached to some of the points on these

"H. J. Fink and R. D. Kessinger, Phys. Letters 25A, 241
i1967).

0.70

063 g t ~ t g ~ I l I I I ~ ~ t

0.9 1.0 29
-ao

FIG. 7. Solution curves below h (y) and above h (5) for If;=0.5.
The dashed line (h;=0.8275) and the dotted-dashed line (h;=
0.83) are the lines of zero current in the two cases. The shift of the
lower part of the curves is too small to be brought out on the
figure.
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ho =hap
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hachisT

Fro. 8. The change of the solution curve close to the touching
point T, when h0 is lowered through h,~ and hp at ~=0.42. (c) is
a much enlarged section of Fig. 4(f). The branches with plus- and
minus-type solutions are marked accordingly. The dashed line is
h;=h;*, the value of (h;) p at hp=h, ~.

K-hp plane. On this basis we discuss in the following a
number of K-dependent fields, which we define in terms
of certain geometrical changes of the curves. Some of
these fields are well known, whereas others (h-, h, ~, hp)

are new. A physical interpretation of the fields will be
deferred until Sec. VI.

h„:This Geld was calculated by Park" as the smallest
field below h,3 permitting the existence of zero-current
solutions Z, . These solutions are the ones that have
received most attention in the literature about surface
superconductivity. We have checked Park's calculation
for one value of K and otherwise used his results. At
K = K =0.4066, h„equals h,3, it approaches h, as K

increases (Fig. 5). Park estimated that h..=h, when
K=Kg and offered the value 0.595 as a lower bound on
Kz. Our results indicate that h., approa, ches h, asymp-
totically.

Figure 4(d) shows a solution curve for the case where
h„&ho&h, (h, &h,3). There are two zero-current solu-

tions, Z, and Z~. When Q decreases (~ being fixed), Z,
and Z~ approach each other and coalesce at hp ——h„.
Below h„both points have vanished, and the solution
curve no longer intersects the axis. Above h„Z~ dis-

appears, but Z, remains provided ho&h, a [Figs. 4(a)-
4(c)). When hp) h„, Z, finally disappears [Figs. 4(h)
and 4(i)). We may note that Z~ also exists in the
field range h,a&hp&h, (h,3&k,), where Z, is nonexistent
[Fig. 4(h) j.

When hp= h„Z~ is just the Meissner solution M. At
this constant value of hp, Z„and Z~ approach each
other (Fig. 6) when ~ increases. They are still well

separated for x=0.595 (Park's lower bound), which
means that the solution curve intersects the axis twice
at 6elds slightly below h, . Since Z~ and Z, seem to
approach each other asymptotically, we conclude that
Kd does not exist and h„approaches h, asymptotically.

h: The geometrical change de6ning the field h is
brought out in Fig. 7, where we have shown solution
curves immediately above and below h . Above h a
diamagnetic extremum Eg exists, and the Meissner
solutions 3f and M~ are connected by a branch of
surface solutions. The two curves on Fig. 7 labeled 5

approach each other when the 6eld is lowered, and come
together at h . It is not possible for the curves to cross

each other, since they both consist of plus-type solutions
in the region considered. The connection (B) between M
and Mi is therefore broken at h, and a connection (y)
between Z, and M established instead. Figures 4(b)
and 4(c) show solution curves well above and below h,
respectively.

In Ref. 17 h was called h, h and introduced as the
lowest field for which it was possible to find a diamag-
netic "extreme current. " To avoid confusion with the
Meissner superheating field customarily called h,h, we
have chosen the name h in this paper. The calculation
of h was done with an. accuracy better than 1% (the
accuracy could easily be improved to better than 10 ',
if necessary). The h -versus-x curve starts out (Fig. 5)
at the intersection between h, and h,3 with the same slope
as the latter and joins to h.z at x—0.72.

h p' The details of the change in the curves at the
6eld h, p are explained by Fig. 8. Above h„ the curve
forms a loop in the vicinity of the touching point T, and
there is a point of intersection between the branches
with plus- and minus-type solutions [Fig. 8(a) j.When
ho decreases to h,~ this point moves towards T and
coincides with T at h.p. The loop has now become a
spike [Fig. 8(b)g, hence the subscript sp. Below h, ~
the spike is softened, and there is no longer a point of
intersection between the two branches.

We may consider Fig. 8 in the light of the general
relation (2.15) and Fig. 9, which shows the dependence
of the internal field at T on ho. Figures 8(a) —8(c)
correspond to negative, zero, and positive values of
(Bh,/R) ~, respectively, as may be easily seen by follow-
ing the change of h; along the curve in the three cases.
Figure 9 shows that (Bh;/Bho) r is positive above, zero
at h,~, and negative below in agreement with Eq. (2.15).
It is convenient to determine h,p directly from a curve
like Fig. 9 for diGerent values of K.

In the ~-hp plane h,~ starts out at (x„h,3) and falls
rather rapidly to zero [Fig. 10(a)j.We have calculated
h,p with an accuracy better than 10 ', except for the
low-field part (x)0.44), which is not too well deter-
mined. We leave open the possibility that h,p has a point

&c3-

+= 0.42

hc--

0205-

h)»0

Q701-

0700
Q&

hp

it
Qg ht ht

Fxo. 9. The value of h; at the touching point T plotted against
hp for ~=0.42. The curve has a minimum at hp=h & and follows
hp asymptotically at h,l.
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of inQection close to the axis and approaches zero
asymptotically.

hp. The dashed line on Fig. 8 is h, =h;*, this being the
value of the internal field at T when ho ——h,p. We deGne

hs ((h„) as the minimum field for which the positive
branch below h,p contains solutions with h, =h;*.
Consequently, hp is the field at which the two points of
intersection between the positive branch and the dashed
line LFig. 8(c)] come together and vanish LFig. 8(d) ).
It has been calculated with the same accuracy as h,p,
the result being shown on Fig. 10(a).

h 3 . When ho approaches h, 3 from below, 5'„and 5'&

approach each other and coalesce at ao= —1.This means
that solution curves like Fig. 4(a) shrink to a point at
h, 3 and disappear above. There may still be solution
curves above h, s LFigs. 4(h) and 4(i)].

h,s. If hp is lowered through h,s, Wq moves towards
ao ———~ and disappears completely below h,2. The
representative solution curves below h,2 have not been
displayed on Fig. 4. They may be simply derived from
the others as follows: (j) and (k) are obtained from (a)
and (c) by extending the branch ending at W'z to
infinity (ap ———~). (l), (m), and (n) are the equiv-
alents of (e), (f), and (g) with the whole branch
containing 5'q and Eq' removed.

h, : When ho is lowered through h„M and 3f~ ap-
proach the axis from below, M~ tending towards ao=
—~. At ho

——h, they are incident on the axis, M& being
at (minus) infinity. Below h. , Mi has disappeared, and
M lies above the axis LFigs. 4(c) and 4(d) j.

h,h. When ho is raised through h,h, M and M~ ap-
proach each other, coalesce at h,h, and disappear above
LFigs. 4(b) and 4(a) $.

We may check Park's" value of ~, from our calcula-
tions of h,p and h;*. Figure 10(b) shows these fields
together with h, s and h„(according to Park) in the
vicinity of ~,. It is seen that the Gelds meet'at ~= 0.4066,
which was the value of ~. quoted by Park.

We shall at last mention briefly the anomalous solu-
tions (Secs, II C and III) . When h, (hp(h h there are
two Meissner solutions M' and M~' with h;= —h, and
the same values of ao as M and M~, respectively. The
points M' and M~' are in the ~-h; diagram connected
with a branch consisting of anomalous solutions with
negative h, .

3/Ij' disappears when ho(h„ the anomalous solution
curve then starts at M', crosses the axis ls;= —Q (Fig.
1) and goes towards ap ———eo like the solution curve on
Fig. 4(h) . The solution with Is,= —hp was discussed by
Park in Ref. 25. From these remarks one may easily
check that the curves on Fig. 4 are in accordance with
the rule laid down in Sec. III concerning the total
number of solutions belonging to a definite a, ho, and co.

We conclude that surface solutions to the GI equa-
tions exist in the whole ~-ho plane, except when hp) h 3
and simultaneously h» h,h. In the next section we turn
to the important question of the stability of these
solutions.

V. STABILITY CONSIDERATIONS

In this section we shall Grst outline a general theory
of small fluctuations in the order parameter and the
vector potential. Afterwards we use this scheme for
discussing the stability of the special one-dimensional
GI. solutions described in the preceding sections. Since
we only consider small fluctuations we are not able to
distinguish metastability from absolute stability. For a
cylinder with radius much greater than the low-field
penetration depth, current-carrying surface states can
never be absolutely stable, but they may well be
metastable.

For a state with order parameter f, vector potential
a and external Geld ho we have the following expression
for the (reduced) free energy relative to that of the
normal state:

a.—a-= (1/8~) Psf' f'+(ll") (—&f)'+f'a'

0.6

0.5

0.4

0.1

0690

+ (curl a—hp)'jdr. (5.1)

We shall assume that the sample is a cylinder with zero
demagnetizing coeKcient, so that the integrand in (5.1)
vanishes outside the superconductor. The vector
potential is chosen in the unique gauge that makes the
order parameter real. We now substitute f—+f+8f, a~
a+ha and evaluate (5.1) to second order in 8f and ba.
In doing so we must take into account that 8. may
contain a curl-free term that is singular on vortex lines:

081-
I 0.681

0.4 0.41 045 0406 OA07 0.410

(a) (b)
FIG. 10. {a) Enlarged section of the s-hp plane {Fig.3) with

h„, h,~, and hp lotted against sc. The dotted rectangle is magni6ed
in Fig. 10(b). b) The dotted rectangle of Fig. 10(a) showing how
h;*, h,~, and h„come together at z =f{,=0.4066.

(a) euri-tree= (vQpt & p) /2m ps. (5.2)

Pp= 2~/i~ is the (reduced) flux quantum, t the tangent
vector for the vortex line, y the radius vector in the
normal plane, and v an integer called the Quxoid
quantum number. We shall assume that v is unchanged
by the variation ba for every vortex. The Grst-order
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functional derivatives of g.—g then vanish, when f and
a satisfy the (3-dimensional) GL equations and GL-
boundary conditions. ' We shall assume that the bound-

ary conditions for f and a are valid for f+8f and a+Ba
as well, i.e.,

V'8f n=0,

curlba=o,

Sa n=0, on the surface (5.3)

where n is the surface normal vector. The second-order
correction to the free energy may then be written in the
following way:

8 (zg, g„)—= (1/Szr) $b f*(3f'+a' 1 (—1/~—') V')8f
+ha* 2fahf+bf*2fa ha

+Ba* ( f'+ curl curl)Ra)dr. (5.4)

We have formally allowed complex functions 8f and Sa,
although physical fluctuations have to be real.

Without loss of generality one can assume the normal-

ization condition

rule. The special form of Eq. (5.9), obtained by our
choice of the wave function hP, (5.6), ensures that 8a
and a have the same sort of Laurent expansion near a
vortex line. For a Axed c the equations will have solu-
tions for discrete e's, because of the boundary conditions.
We assume that every eigenvalue e and the correspond-
ing normalized eigenfunctions 6f, 8a are continuous
functions of c. By differentiating (5.8) and (5.9) with
respect to c we get

L3fz+az —1—(1/z') 'P j(PP f/Pc) +2fa (&Pa/Pc)

=e(88 j/Bc)+ (de/dc) 8f,

2fa (88f/Bc) + curl crul(88a/8 )c

= (c c 1)f—'(el(a/Pc)+(2cc+c'dc/dc)f $a

These equations can have a solution (88j/Bc, Ma/Bc)
only if the four-component wave function associated
with the "inhomogeneous" terms (de/dc)b f and (2ce+
c'de/dc)f'ba is orthogonal to the solution (8f, Ba) to the
homogeneous equations, i.e.,

[(d~/dc) [ Bf ['+ (2ce+c'dc/dc) f'[ Ba [']dr =0.

LI Sf ['+cf'I Sa I'jdr= 1, (5.5)
By using the normalization condition (5.5) we get

dc/dc= —2ce f'
I

Ba I'dr. (5.10)
where c is an undetermined real constant.

By introducing the four-component "wave function" It is seen that every e branch is defined for all c and has a
constant sign. A negative e (c) has a minimum for c=0.
The GL solution (f, a) is therefore unstable if and only
if Eqs. (5.8) and (5.9) with c=O can be solved for a
negative e.

When applied to the case of an infinite half-space
x&0 with a=LO, a(x), 0j and f~f(x) the theory can
be considerably simplified. First, we notice that the
operator A, commutes with the translation operators
for the y and 2' directions. This means that we only have
to look for eigenfunctions of the type

g,*=(6f*, cfba*), (5.6)

we can write (5.4) in the form

(5.7)(P(g,—g„) = (1/Szr) +,*A,g,dr.

A, is a Hermitian 4&(4 operator matrix. The eigenvalue

equation for A, can be obtained from the condition that
the integral (5.4) be stationary with respect to varia-
tions inbf and Sa that satisfy the normalization equation

(5.5). For the eigenvalue e we get the following differ-

ential

8f=y(x) expLi(k„y+k, z) $,

8a= n(x) expLi(k„y+k, z) ]. (5.11)
equations.

By inserting these expressions in (5.8) and (5.9) and
f+a 1 ( /')~'~~f+ fa'~a='~f (58) putting c=owe get

2 fa8f+ curl cur18a = (c'e—1)f'ba $3f'+ a' 1+ (1/z') (k '+k '—d'/dx') j$+2fan„—= ep,

Our main assumption is that any physically accept-
able infinitesimal fluctuation (8f, 8a) can be expressed
as a superposition of solutions to (5.8) and (5.9) for
various values of e. These solutions have to satisfy the
boundary conditions (5.3) and the Quxoid quantization

(ky'+k z)n,+zk„n„'+ik,n, '= f'n„—
2F4+ (k ' d'/dx') n k„k,n, +ik~—,'= f'n— —

(k '—d'/dx') n k,k,n„+zk,n, '= f'n, —(5.12)— .
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[s=hp/«j,

A further simplification results if the lowest eigenvalue provided hp&h, 3. At these points we have
occurs for k„=k,=O. This will certainly be the case if
« is sufficiently small. For larger «values e(h„, h, ) may f=nU( 1/—2s, $); n«1
have a saddle point, so that

'e/'h ') o 'e/'h '&o for k„=k,=O.
a= ap*+hpx= (s/2)'~'g.

Equation (5.14) gives as a first approximation

(5.17)

One would therefore expect that the lowest e occurs for
h, =0 (and n, =0) and h„ finite, if « is greater than some
critical value which depends on the type of ( f, a)
solution in question. A Ructuation of this sort has been
considered by Kramer37 for the case ~= ~. In spite of
these remarks we shall drop the k's, realizing that some
of the (large «) solutions we predict, in this way, to be
stable may be found to be unstable in a more thorough
treatment.

When k„=k,=0 we also have a,=n, =0, and there-
fore

5f= 5f(x)—; ha=—(0, 8a(x), 0).

(a constant) (5.18)

and bf is then determined by (5.13):

neap 2s
Bf=

(2s)'" e—2s
U(—(2 )-'-1, '7

d'8 f (, 1+e& neap
«P I'f~

(
)1&U( /s &)' (5'9)

For &&0, &2s, we find the following solution, which
satisfies the boundary condition for h f:

Pf'+a' 1—(1/—«') d'/dx'jb f+2fata= eh f, (5.13)

6a"=f'Ra+2 fa5 f. (5.14)

The boundary conditions are

g f'(0) =ha'(0) =ha'(~) =0,

The equations (5.12) then reduce to one-dimensional
form + 2, UL —(») '+1 6

2s/e+2(1 —ap*') $U( —1/2s, ~o) f 1+e
(e'—4s') U'( —(1+e)/», $p)

$&p
——(2/s)'~'ap*j. (5.20)

From Eq. (5.14) it is then possible to get a better
expression for 8a. The boundary condition for 6a is

where the last equality is the analog of the Quxoid
quantization rule. The normalization condition (5.5) is 'a'( ~)— [2fab f+f'bapgdx=0. (5.21)

( bf ('dx& ".

We may assume that the lowest eigenvalue e changes
continuously along the continuous solution curves in
the ap-h, diagrams. The instability starts when &=0.
When this value is inserted in (5.13) and (5.14) the
resulting equations express that (f+5f, a+la) is a
solution to the GL equations just like (f, a) is. The two
solutions are therefore neighboring points on the same
solution curve, and they have furthermore the same
internal field because of the boundary condition
Ba'(~) =0. Thus, the instability sets in at points of
horizontal slope on the solution curves. In order to solve
the stability question it is therefore sufficient to deter-
mine the lowest eigenvalue for one point on every part
of the solution curve that does not contain an extremum.

As an example we shall show that the infinitesimal
Weber solutions at 8'„and S"~ are always unstable

» I.. Kramer, Phys. Letters 24A, 57j. {&967).

It can be shown by simple means that the integral in
(5.21) is a continuous function of e for e&0. Further-
more,

«(2s) iI'ha ( oo)

0. Jap
for e~0—(if hp&h„)

U'( —1/2s, P) d~
$0

for &
—+—~.

Equation (5.21) therefore is satisffed for at least, one
negative e, which proves the instability at t/t/'„and 5'd.

The point Z, is always connected to lV„by a piece of
continuous curve containing one extremum (E'). The
instability at lV„ therefore suggests that Z, is stable.
The mere existence of surface superconductivity shows
that this conclusion is correct. For the solution at T we
may guess that it is stable above h,~ and unstable below.
This hypothesis has important consequences for the
supercooling problem to be discussed in the next section.
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FIG. 11. Magnetization curve (h.; versus ho) for ~=0.42. The
two cases of minimum (h ) and maximum (h,b) superheating
have been shown. The 6gure is explained in detail in the text.

The degenerate surface solutions at 3f and M& have
~=0, because we have, close to these points, solutions
with varying thickness for constant ho and A,;
(h;=h, ). It is therefore dificult to draw definite con-
clusions about the stability of the branches connected
to M and 3f~, except near h, where such a branch be-
comes connected to Z, . The real Meissner solutions are
probably (meta-) stable at M and unstable at M&.

We have only considered infinitesimal Auctuations
and said nothing about vortex formation, which requires
a finite amount of energy. This limitation probably
means that states that are found to be (meta-) stable
by us may turn out to have a, Gnite lifetime much longer
than the "natural" relaxation time encountered in the
time-dependent GL theory.

VI. PHYSICAL CONSEQUENCES

In this section the solution curves will be discussed
with the results of Sec. V in mind. We shall attempt to
draw some physical conclusions from the condition that
the stable and unstable parts of the curves are separated
by extremurn points. The physical system considered is
a cylinder with an ideally smooth surface in an external
field parallel to the axis.

In the previous section the Weber solutions 5"„and
8'~ were shown to be unstable when ho(h, a. It was
argued that the currentless solution Z, is always stable.
Solution curves like Figs. 4(a) and 4(b) are then stable
along E~—Z,—E~. From this one concludes that the
paramagnetic and diamagnetic critical current is the
current at E„and E&, respectively. In Ref. 17 these
critical currents were given as functions of /g (h,s&hs&
h, s) for several values of ~.

An interesting feature about these results is the pro-
nounced asymmetry for the two directions. Park's cal-
culation showed that in the limit of large values of ~ the
paramagnetic critical current is always greater than the
diamagnetic one. At finite values of ~ the asymmetry
may be reversed, provided ko is not too close to h,s.
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As already mentioned in the Introduction, the critical
currents obtained in this manner are far too great to
explain the measurements. ' ' It has been stated" that
the reason for this discrepancy is that the large magnetic
energy associated with the current-carrying surface
states on a cylinder of large radius has not been taken
into account in the GL method. We do not believe in
this explanation because the magnetic part of the free
energy does occur in Eq. (5.1). It is clear that surface
irregularities play an important role in the formation
and pinning of vortices in the surface sheath, and such
features cannot be incorporated in the idealized situation
we have considered. It is possible, however, that only a
small fixed portion of the surface area is effective in
carrying the true maximum current density. ' This
hypothesis is sustained by the fact that the asymmetry
in the current brought out by our calculations matches
the experimental results rather well.

When the specimen considered exists in the Meissner
state above h, we speak of superheating. The term
supercooling means that either the specimen is com-
pletely normal below h, or a surface sheath is present on
a normal interior.

In the previous section we concluded that the
Meissner solution M is stable in the whole region of its
existence 0&hpgk i,. This conclusion has support from
several experiments, but it is generally not easy to
achieve the full superheating above h, . We shall now
argue that h acts as a minimum superheating Geld due
to the specific connectedness of the solution curves
below Ig .

Let us imagine that we "heat" the specimen above h.
in the ~ region ~)0.417, for which h,s) h, . As long as
hs&h the solution curve looks like Fig. 4(c). Suppose
the specimen by accident jumped from the state of
complete Meissner effect with an internal Geld equal to
zero to a surface state somewhere on the stable part of
the curve E~—Z,—M. By this process some Aux would
enter, since for a surface state the internal Geld is
diGerent from zero. The sudden change of Qux induces
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an electromotive force, which causes a current to Aow in
the sheath. The direction of the current is such as to
counteract the change of Aux by driving the specimen
into surface states with smaller values of h, if possible,
thereby reducing the Aux in the interior. Since there is a
continuous connection between Z, and M below h, the
specimen may be driven back into the Meissner state
M through surface states of increasing thickness. We
note that although the internal Geld for the Meissner
solution M is h„ the Aux inside wiB be zero for this state,
since it describes an infinitely thick superconducting
domain (Sec. II) . Thus the jump to the surface state is
a virtual transition, the system returning to the state of
complete Meissner eGect, from which it came. Above h

the connection between Z, and M along the solution
curve is no longer present, the stable part being E„—
Z,—8&. The electromotive force induced by such a jump
now drives the specimen towards E~ instead, since this
is the state of smallest h; connected with Z, .

The argument above is related to the "critical-state"
hypothesis mentioned in the Introduction. According to
this hypothesis the surface sheath when present always
carries the critical diamagnetic (paramagnetic) current,
if the external field has increased (decreased) monotoni-
cally from zero (above h,g). Below h no diamagnetic
critical current exists in the sheath; the cylinder there-
fore remains in the Meissner state when ho increases
from 0 to h . We conclude that h is the minimum

superheating Geld.
Magnetization experiments performed by McEvoy

and others" '4 on Pb-alloy cylinders with ~ values in
the range 0.5—1.0 have revealed a new kind of magnetic
hysteresis very similar to our "minimum superheating. "
The name H was introduced in Ref. 32 to denote the
Geld at which the Meissner state breaks down when the
external field is increased from below II,.

In Figs. 11 and 12 we have drawn magnetization
curves (h; as a function of ho) for the two extreme cases
of superheating to h,~ and to h . In the latter case the
specimen jumps to a surface state when ho exceeds h,
and the electromotive force then drives it to the state of
critical diamagnetic current at Ed,. When ho is raised the
sheath seeks to keep h; constant in the manner of a
superconducting ring in a changing external Geld. Since
the current cannot exceed the critical one, h; is the
internal 6eld at Eq when ho increases from h to h,3 (Figs.
11 and 12; h and h,3 are too close on Fig. 11 to bring out
this part clearly on the curve) . At ho

——h,&, Ez as well as
the rest of this part of the solution curve disappears and
h; becomes equal to the normal-state value ho.

When ho decreases from above h, a the sheath appears
again at ho ——h,a. Now the sheath sets up a paramagnetic
critical current in order to keep the decrease in h; as
small as possible. The magnetization exhibits hysteresis,
since the internal field is now greater than the external
one.

The paramagnetic extremum E„separates the un-

stable branch 5'~—E„ from the stable 8„—T—8"
(above h ) or the stable part of E~—T—M (below h ).
The internal Geld at E„decreases with ho until ho h p.
At ho ——h„, E~ and T coincide [Fig. 8(b) j.The internal
field at E„must therefore assume its minimum value
h;~ at ho=h„just like the internal field (h;)p for the
solution on the envelope [cf. Eq. (2.15) and Sec. IV).
As a consequence, when ho decreases below h,„ the
specimen cannot remain in the paramagnetic critical
state E„, since according to thermodynamics the mag-
netic permeability Bh;/Bho has to be non-negative.

Below h,~, T. becomes unstable since there is no
extremum point separating it from W~ [Figs. 8(c),
8(d), and 4(g)$. Two extrema now appear on the
positive branch of the solution curve in a small field
range below h„[Fig. 8(c)j. When these extrema dis-
appear [Figs. 8(d) and 4(g) j, the whole solution curve
3E—9~ becomes unstable and supercooling not possible.
The Geld at which this happens is, however, not the
minimum supercooling field, since this would mean that
a region of negative (differential) permeability existed.
The minimum supercooling Geld is hp, which we intro-
duced in Sec. IV as the smallest external Geld allowing
solutions on the positive branch with h;=h, * [h;*=
(h;)r for ho=h„f.

The magnetization curve is consequently horizontal
(h;= h;*) between h„and hp. It drops to zero below hp,
since this is the Geld below which no state with h;= h;*
exists on the positive branch, even though stable
solutions (with higher h, ) are present at lower fields.

If h,~=hp ——0 (~&0.45) the specimen may be super-
cooled to ho= 0. In this case the internal field at both T
and E„decreases monotonically when hz is lowered.
When Q—&0, the solutions 7 and E„approach M. This
means that the paramagnetic critical state becomes
Meissner-like in this limit, and the internal field
approaches h.. [At ho ——0 the solution curve degenerates
into two points M and S"„,which in the ao-h, diagram
are situated at (0, h, ) and (1, 0), respectively. j When
ho is raised again from zero the specimen remains in the
1VIeissner state M with the constant internal field h, (or
0) until h (assuming minimum superheating), and the
cycle is repeated.

If current-carrying surface states could not be
realized, the cylinder would supercool to h„, this being
the minimum field for which (stable) currentless solu-
tions exist. In that case h; would be equal to ho when ho
decreases from h, s to h„, and drop to zero at h„. Surface
irregularities reduce the current-carrying capacity of
the sheath, so that the actual supercooling Geld for an
imperfect cylinder lies somewhere between h„and hp.

The considerations on the inhuence of (meta-) stable
surface states on the magnetization properties of a
cylinder are of course subject to the limitations imposed
by the assumptions on the role of fluctuations discussed
in Sec. V. We want especially to emphasize that
nucleation of vortices is not taken into account in our
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scheme. Such processes may either introduce some slow
time dependence of the metastable states considered or
perhaps destroy the picture completely. By using ac
fields with a characteristic time shorter than the relaxa-
tion time of the metastable states one might be able to
see the influence of the sheath in the different regions of
the ~-h0 plane that we have considered. Also preparation
of even more perfect sample surfaces would assist in
providing a check on the adequacy of the present theory.
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The complex ac impedance of a type-II superconductor in the intermediate state has been measured
between 3 and 40 MHz. The results are compared with a model of vortices acted on by a pinning force and
the Lorentz force. Also, the inertial inductance of the superelectrons has been measured at 10 MHz and
is shown to be suKciently large, for thin 6lms, to provide a convenient measure of the penetration depth.

r 1HE purpose of this paper is to point out that the
.motion of Abrikosov vortices can change not only

the real but also the imaginary part of the complex ac
impedance and to show that a simple model gives
reasonably good agreement with experiment on thin

Al films between 3 and 40 Mc/sec. It is also shown that
the well-known inertial inductance of the superelectrons
is not always negligible at low radio frequencies and

that it provides a simple method for the measurement

of the penetration depth in thin films.

In the last few years a considerable amount of evi-

dence has demonstrated that most of the dissipation
and hysteresis observed in type-II superconductors can
be related to the motion of Abrikosov vortices. ' The
vortices are assumed to move under the influence of
three forces: a i.orentz force Fi,=c 'J & @p, a structure-

dependent pinning force F„, and a dissipative force
—gV~. All forces are defined for a unit length of the
vortex. Where possible we follow the notation of Kim
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et al.i The dissipation is thought to be due to the flow
of normal curvents in the core and surrounding region
as discussed by Bardeen and Stephen. ' The pinning
force F„is attributed to lattice defects.

The typical dc behavior for thin-film type-II super-
conductor to a normal field H&)H„ is shown in Fig. 1.
This can be understood as follows. If n, is the maximum
value of the pinning force Ii„, then for Fl,&u, the
vortices do not move and the flow resistivity pf

——0. For
Jil))n, the vortices will move with a velocity VL,=
PIg ', where for the moment we consider a defect-free
sample (i.e., cr, =O). Therefore, we have

pt ——(B/C p) FI,VI,/ I'= BCp/rtc'

In a real sample we must consider the complex problem
of scattering of vortices from the defects. At constant
voltage this scattering leads to an additional dissipation
as discussed by Yamafugi and Irie. ' Kim et a/. ' have
shown experimentally that for their samples this does
not influence the slope of the V-I curve. We will assume
that Eq. (1) holds if pr is defined from the slope of the
V-I curve.

We consider a single vortex in a potential well arising
from the elastic displacement of the vortex relative to
its pinning center. If the displacement is small we

5 K. Yamafuji and F. Irie, Phys. Letters 25A, 387 (1967).


