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The effect of band nonparabolicity on the scattering of light from a plasma in a solid is discussed. Quasi-
elastic scattering, which in an ordinary plasma is suppressed by Coulomb effects, can occur with a reasonable
cross section in a nonparabolic plasma. Detailed calculations are performed for the cases of InSb and InAs.
They indicate that the quasi-elastic scattering could be used to measure electron velocity distributions in
these crystals. Magnetic 6eld eGects are discussed brieQy, and an argument is given to indicate why the
Landau-Raman and plasmon scattering do not mix appreciably.

I. INTRODUCTIOÃ

& ~URING the past two or three years, it has become
apparent that the interaction of light with mobile

electrons in crystals is a considerably more complicated
phenomenon than its interaction with free, classical
electrons. This difference is due to the complicated
dynamics of electron moti. on in solids. The velocity of
band electrons is generally a nonlinear function of their
momenta. As a consequence, such electrons give rise to
nonlinear optical processes that have no counterparts in
a classical electron system. These effects have been
studied both experimentally' and theoretically. ' They
are of interest as probes of electronic behavior in semi-
conducting crystals and as the basis for optical devices. '

To date, theoretical work concerning the nonlinear
optical behavior of electrons in crystals has been con-
cerned with the response of a single electron to the
electromagnetic Geld. Collective effects have been dis-
cussed' within the framework of classical electron
dynamics, but no attempt has been made to see how
they are modified when the electrons have a non-
parabolic energy-momentum relation. Our paper con-
siders this question. %'e will see that nonparabolicity
appreciably changes the collective response of electrons
in solids. In particular, it gives rise to a new form of
nearly elastic light scattering, which might be used to
determine electron temperatures and velocity distri-
butions in nonequilibrium situations. It also enables a
light wave to couple to modes that are normally
optically inactive.

To understand the novel features of light scattering
from plasmas in crystals, we must brieQy recall the
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analogous problem for a classical plasma. This problem
has been extensively discussed, ' and the results are now
well known. In a classical plasma, light scattering is
caused by electron density Quctuations. More specifi-
cally, the differential cross section for light scattering is
proportional to the (tl, or) Fourier component of the
electron density-density correlation function. Here q is
the difference of the wave vectors of the incident and
scattered light waves, and + is the corresponding
frequency difference. Two quite different regimes are
possible depending upon whether q is large, or small,
compared to the characteristic wave vector qa of the
plasma (qtr is the Debye wave vector in a Maxwellian
plasma, the Fermi-Thomas wave vector in a degenerate
one). When q))qD, collective effects are unimportant,
and scattering is essentially caused by individual
electrons in the plasma. The frequency of the scattered
light is then very slightly shifted from that of the
incident radiation because the electrons that cause the
scattering are moving. Such scattering is often termed
quasi elastic In -quasi-e. lastic scattering or/q tr, where tr

is the average velocity of electrons in the plasma. Its
spectrum is a direct measure of the electron velocity
distribution.

On the other hand, when q((q~, light scattering is
drastically modiGed by collective effects. The plasma
now behaves as a continuum and quasi-elastic scattering
is suppressed. Instead, one observes Raman scattering
from collective modes. A single component plasma has
one such mode, the plasma oscillation, with frequency
or„'= 4rrle'/trt.

In gas plasmas, the quantity (q/qD) can be varied
through unity. Both quasi-elastic' and Raman7 scatter-
ing can be observed. The former has been used to
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determine the velocity distribution of electrons in gas
plasmas. In solid-state plasmas, however, light scatter-
ing experiments are invariably done in the collective
regime q«qa. Such experiments measure properties of
the collective modes, but give no information about the
velocity distribution. This, at least, is the case in a
plasma of particles having a parabolic energy-momen-
tum relation.

The situation is somewhat different in a plasma whose
constituents have a nonparabolic energy-momentum
relation. In such a medium a light wave can scatter from
energy density Quctuations, as well as the usual density
Quctuations. To see why this is so we consider a simple
case, the Hamiltonian appropriate to e-type InSb or
InAs. It is'

where m* is the effective mass and Eg the energy gap.
%hen an electron with such a Hamiltonian is coupled
to the electromagnetic 6eld Cvia the replacement
p-+p —(e/c)Aj a considerable variety of electron-
photon interactions arise. Among them are terms of the
form (p'/m*Eo) A' and (p A)'/m*Eo. These inter-
actions have no counterparts for a classical particle.
They directly couple two photons to the momentum of
the electron and, in a many-electron system, give rise
to scattering from Quctuations in the energy-momentum
tensor. Such Quctuations can occur without accompany-
ing Quctuations in electron density. As a consequence,
they are very much less affected by electron-electron
interactions than are the density fluctuations. Quasi-
elastic scattering from such Quctuations is rot suppressed
in the limit q«qD. It could provide a new tool for
studying velocity distributions in materials such as
InSb or InAs.

The (p A)' interaction is also' believed to be respon-
sible for the Raman scattering of light from electrons in
Landau levels (Landau-Raman scattering) . In a many-
''ectron system one can show that, in fact, this scatter-
ing is due to a collective mode of the electron gas—the
Bernstein mode' at ~=2&v, (a&,=cyclotron frequency):
This mode is nearly optically inactive in a classical
plasma, but is activated by the band nonparabolicity.
It is only very weakly coupled to the plasma oscilla-
tion. ' This fact explains why, in experiments' on InAs,
one observes no interaction between the plasmon mode
and that at ~=2', .

In developing the theory of these subjects, we will
first consider the problem of light scattering (in the
absence of a magnetic field) from a plasma whose con-
stituents have a rather general energy-momentum
relation. The derivation of a formula for the scattering
cross section is presented in Sec. II. As in the classical
case, the cross section is proportional to the Fourier
transform (with respect to space and time) of a

8 E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).' Ira B. Bernstein, Phys. Rev. 109, 10 (1958).

correlation function for the unperturbed plasma. This
function is evaluated in the random phase approxima-
tion (RPA).

A specific application of the formulas of Sec. II is
made in Sec. III, where we consider the scattering of
light from a plasma having an energy-momentum
relation of the form given in Eq. (1). This is a good
approximation in e-type semiconductors of the InSb
type. The scattering formulas are evaluated for Fermi-
Dirac and Maxwellian distributions. The Maxwellian
case is of particular interest, since the calculation
shows that light scattering might be used as a tool to
determine electron temperatures in such plasmas.

Finally, in Sec. IV, we consider the problem of light
scattering from a plasma in a magnetic field. The
complete formulas are very complicated, so we only
analyze the case in which q J 8 (the applied magnetic
field). In this geometry, we show that the Landau-
Raman scattering at cv=2co, is due to the Bernstein
mode. Its coupling to the plasmon can be determined
from Bernstein's work, and is weak.

II. LIGHT SCATTERING CROSS SECTION

In this section we will discuss the problem of light
scattering from a many-electron system described by
the Hamiltonian

(2)

~o is the static dielectric constant. The single-particle
kinetic energy will not, in general, be of the classical
form E(p) =p'/2m*. In Eq. (2) we are using an effective,
one-band Hamiltonian to describe electron motion in
semiconductors. Such an approach is valid when all
photon energies (ooo, &oi, ~ ~ ~ ) are small compared to the
energy-band gap." These conditions are fairly well
satisfied in many of the experiments referred to above.
In the worst case (InSb pumped by a CO, laser) one
expects corrections of order (5oro/Eg)'~25%. A multi-
band treatment of the many-electron problem will be
required to handle these finite-frequency effects. Some
work has been done on this problem" but a complete
treatment has not been presented. The main eGect of
working at Gnite frequency appears to be the replace-
ment of the Thomson cross section o.&= (e'/m~c')s by
an enhanced cross section o = or IEo'/CEO' —(K~o)'gI'.
This effect will scale up all cross sections, but not
appreciably change the frequency spectrum of the
scattered light. Since we are mainly interested in the
spectrum, we wi11 ignore finite-frequency effects and
work with the single-band Hamiltonian. The essentia1
physical ideas we wish to discuss are well illustrated by
this model, which is accurate in the limit Sero/Eg-+0.

I.et us now couple the many-electron system to the
electromagnetic field. To do this we replace p; by
I J. M. Luttinger and W. Kohn, Phys. Rev. 9'T, 869 (1955).' A. L. Mc%horter and P. N. Argyres, Bull. Am. Phys. Soc. 12,

102 (1967).
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p;—(e/c)A; in Eq. (2), where A;=A(r;) is the vector
potential. Strictly speaking, one should symmetrize the
resultant expression in y; and A;, since these quantities
do not commute. In the applications we will discuss,
however, the wave vectors of the light waves are small,
and this eGect is unimportant. After replacing p; by
p,—(e/c)A;, we expand II in powers of A, :

II=IIp+IIi+IIs+ " = Q [&(p')]

+ s' Q [e'/«r't] —(elc) Z [A' ~E/~p']i'
+ zi(e/c)' g [A,'l9'E/aPts A$]+ . (3)

Here the electrons are linearly coupled to the field via
II&, and quadratically via H&. For the classical case, it is
well known" that the B& terms make an exceedingly
small contribution to the light scattering cross section.
The same argument applies when the bands are non-
parabolic. Thus, to calculate the cross section, we may
drop the IIi term in Eq. (3) and consider only first-
order transitions due to H2.

For a process in which a light quantum scatters from
state (qp, (dp) to (qi, p)i), and the electronic system goes
from an initial state I to a final state F, the transition
rate is

(R= (2pr/5) [(2trSC') '/(pp(pi] (I i
Xst

i P)
&& (I t X, i I)8(E,+od Ep), (4)—

wllel"e Q= qp
—

qy c0= cvp —Goy

Xs= (e/c)' Z [«(~'~/~p'~p') 'ie""] (5)

is the electronic portion of H2, and cp and c~ are the
polarization vectors. "

We may now manipulate Eq. (5) in the usual way't
to express the cross section in terms of a correlation
function. We sum over final states, average over initial,
and use the representation of the 8 function

t(x)=(t/2 ) f e'"dl

+ z g [cy+p' cg & (47I e /6pq )cz.ck] ( 12)

and
Xs——Q [r(k, q) CI,+,tc),]. (13)

The Green's function takes the form

After some simple algebra we obtain the result

d' /dpd (=,/, ) f e' (tt''(t,)x (p) )(dt/2 )(,6)

where Xs——X,(0),
X t(t) eiHptX t(0) e t'Hp—t (7)

and the angular brackets indicate the thermal average
of the enclosed operators. Equation (6) is our basic
formula. In the case of a parabolic band

Xs——(ep si) (e'/m*c') Q [e*'"*], (8)

and is proportional to the Fourier transform of the
electron density operator. The quantity (X,t(t) X&(0) )
is then the familiar electron density-density correlation
function. On the other hand, in nonparabolic situations
3C~ is a more complicated operator and more complicated
correlation functions (such as that of energy density)
play a role.

To evaluate the correlation function

I(t) = (X,t(t)X, (0) ), (9)
it is usually convenient to investigate the closely
related Green's function. '

G(t) = ig(t)—([X t(t), X, (0)]). (10)
If the plasma is in thermal equilibrium the Fourier
transforms of the two quantities are related by the
fluctuation-dissipation theorem"

j(M) =2 IIm[G(o))]}/[1—e e"], (11)
where )/l '= kT.is

To evaluate G we use the RPA. In second quantized
notation

IIp= Q [E(tp) c),rci,-]

G= —se(t) g p*(k, q)+(1, q) (I c~-.'(t)c~(t), CI'(0)CI-.(0)1)}. (14)

The equation of motion for the quantity

B(k, l,q) = —stl(t) &[ci-p'(t)" (t), ci'(0) ci-p(0)])
is

ZBg/Bt=()(t) ([cy p cg, ci ci ]) ttsg(t) ([[c)t p
—(t)cg(t)t IIp], ci (0)ci,(0)])=B(t)d)(k—1) (N)t p

—re)

+[&(k)—&(k—q) ]8—so(t) Z &[c~-9'(t)CI"-p'(t) (4«'/«q") ci (t) "-p (t), CI'(0) CI-.(0)])
+io(t) g ([CI,+p (t) ck "(t) (4rre'/ppq")c), (t) c),(t), ci (0) ci (0)]),

kIqI
(16)

"P.M. Platzman and N. Tzoar, Phys. Rev. 130, A11 (1964}."In this treatment, we are ignoring any transverse currents induced in the electron gas by the perturbation H&, which is
longitudinal. Such currents can occur if the energy-momentum relation is sufficiently anisotropic. However, their eBect is usually
small. Moreover, they vanish in symmetric cases, such as that of InSb.

'4 L. Van Hove, Phys. Rev. 95, 249 (1954}."D.N. Zubarev, Usp. Fiz. Nauk 71t 71 (1960) LEnglish transl. : Soviet Phys. —Usp. 3, 320 (1960)j.
'6 Henceforth, we use units such that 5=1.
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where we have defined two new functions
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nk ——(ck'ck).

The essential approximation'7 of the RPA is to factor
the last two terms of Eq. (16),retaining only those terms
which force q=q'. These terms are large in the limit

q
—+0 and must always be kept, even if the plasma is

weakly coupled (which we assume), in the sense that
the average potential energy of particles in it is small
compared to their kinetic energy. In the RPA, Eq. (16)
takes the form

cog(k, 1, q; cu) = (1/2ir) b(k —1) (nk, —nk)

+ LE(k) —E(k—q) $g (k, 1, q; (v)

+(4ire'/ooq') (nk—q nk) Z I:B(k' 1 q'~) j (17)
kI

where 5(k, 1, q; co) is the Fourier transform of

g(k, 1, q; t), and co has a small, positive imaginary
part.

Equation (17) is a trivial integral equation whose
solution is

8(k—1) (nk q
—nk) 47re'

2irI s)—E(k)+E(k—q) j opq'

X
(nk—q nk) (ni—q ni)

2~L~—E( )+E(k—q) 3L~—E(1)+E(1—q) ~

&& I 1+ (4ire'/epq') zp (q, (o)]—', (18)

with

e~ —& sk
P(ql ) Z E(k)+E( )

' ( )

Using this result, we may now compute G from Eq. (14):

G= (2ir) ' Q ' ' +(2u) '(4sre'/opq')
I
~(l, q) I (n, ,—n, )

os E 1 +E 1—q—
X L1+ (4ire'/opq')Zo(q, po)j ' Q

5*(k, q)
(u —Ek+Ek—q

&(l, q)
( )

co—E(1)+E(1—q)

As mentioned earlier, we are interested in the behavior
of G for small q. In this limit, one may set q=0 in the
functions F (k, q) and F*(k, q) . Also P*(k, 0) = 5 (k, 0) .
With these approximations, G may be rewritten in the
rather simple form

Zp(q, cu)

Ll+ (4ire'/opq') Zo(q, (u) j

+ (2p.)
—' 47re'

I Zip(q, ~) —Zp(q, pi)Z&(q, po))

epq' L1+ (4ire'/opq') Zp(q, po) ]
(21)

"See, for example, David Pines and Philippe Nozieres, The
Theory of Quputuru Liquids, I (W. A. Benjamin, Inc. , New York,
1966).

s (k) (nk, —nk)
( 1 ) = Z E(k)+E(k )

( )

and
g (Zip —Soap) /2irZp

ImLZi'Zo* —
I

Zo I'Z,j
ir

I
Zp I'(1—e-e")

(25)

(26)

It should be emphasized that this formula is only valid
in the quasi-elastic range Lwhere ~/q=O(n) j and does
not describe Raman scattering from the collective
modes. It is accurate to order (q/qn)'. The crucial
feature of Eq. (26) is the fact that J(cv) isindependent
of q and pniie in the limit (q/qD) ~0. This is in striking
contrast to the case of the classical plasma where J(po)
varies as (q/qn) in the qua, si-elastic range.

In the next section we will evaluate Eq. (26) for a
plasma having the energy-momentum relation of Eq.
(1).Here we may anticipate these results to say that it
is the nooparabolic terms in the expression for K2 that

P(k) (nk, —nk)

ro —E(k)+E(k—q)

Equation (21) is convenient for investigating the
quasi-elastic scattering of light from the plasma. We
are particularly interested in such scattering since it can
be used to determine the velocity distribution. As was
mentioned in the Introduction, quasi-elastic scattering
from a classical plasnia (parabolic E-versus-P relation)
is strongly suppressed in the limit g«qD. This statement
may easily be verified from Eq. (21) . In the parabolic
case P= (ep ~ ei) (e'/sn*c'), and Zip —Soap ——0. The cor-
relation function Lsee Eq. (11)) becomes (in the limit
kT—&0)

f e' ' Im(Zp)8(&o)
~(~)=(1/~)(~ ei)'

I .. . , (24)
km*c' o q, (o

where the plasma dielectric constant

o(q, ~) =
I 1+ (4~e'/eoq') &o(q, ~)j

Equation (24) is well known. It indicates that the
correlation function of a single-component classical
plasma differs from that of a gas of noninteracting
electrons by the factor

I e(q, co)
I

'. In the quasi-
elastic regime this factor produces an enormous reduc-
tion in the scattering cross section, since

I
e

I

' (q/qn)'
is typically 10 —10 ' in solid-state plasma experiments.
As a consequence, quasi-elastic scattering from such
plasmas is unobservable. The only scattering one can
expect to see is Raman scattering from the plasma mode.

Now let us consider quasi-elastic scattering from a
plasma having a nonparabolic energy-momentum
relation. In this case the second term of Eq. (21) does
not vanish, but is actually the dominant one in the
limit q«qD. This statement follows from the fact that,
in the quasi-elastic range, o=O(qn'/q'). In this limit
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make the expression (ZP—Zggs) nonzero. As empha-
sized earlier, these terms couple light to the energy-
momentum tensor of the plasma. It is these terms, and
these alone, which give rise to a Gnite quasi-elastic
cross section. This fact leads us to say that the quasi-
elastic scattering is caused by Quctuations in the energy-
momentum density.

III. EVALUATION OF THE CROSS SECTION

In the preceding section we have derived a fairly
general formula LEq. (26)$ describing the quasi-elastic
scattering of light from a plasma having a nonparabolic
energy-momentum relation. We now wish to apply this
result to a speci6c case, that of the band structure
appropriate to n-type InSb and InAs. This case is an
important one from several points of view. In the 6rst
place, the band structures of these materials are known
to be strongly nonparabolic, and thus will give rise to
considerable scattering of the sort that interests us here.
Secondly, these materials are used in many solid-state
plasma experiments. ' It would be useful to have a
general technique for studying electron velocity distri-
butions in them. And„ finally, these are materials in
which we know from prior experience that light scatter-
ing from mobile electrons can be observed. '

The energy-momentum relation of conduction-band
electrons in InSb or InAs has the form

E(p)=(p'/2~*) —(1/Eg) (p'/ ~*)'+ " ( 7)

With such a Hamiltonian the electron —two-photon
coupling term (H&) is

e' f1'if pP&
2m*c', EEgl Qm*&

f 1'I, (p.*'ti 2ir; s,)'j
&Egj (2rl*j m*Eg

For photon scattering from (qe, ~pe, so) to (qi, or&, s&) the
electronic portion of this operator becomes

e' ( 2 (Peg'i)
(& si) I

1——
Itl*c', ( Eg E2m~j)

(p' )(p") " (29)
2 . t

m*Eg

Here we have assumed that p; and A; commute. In
second quantized notation

Xs——Q [S(k)ci,tci,+,j, (30)

with

k' ) 2(k sg)(k s,)
m*Eg) mug

(31)

We now return to Eq. (26), which determines the
correlation function (and hence the scattering cross
section) in the quasi-elastic regime. All quantities
appearing in this formula are de6ned via Eqs. (19),
(22), (23), and (31). The problem is that of evaluating
the integrals that determine Zo, Zj, and Z2. We will
perform this computation in two cases—that of a
Fermi-Dirac velocity distribution and a Maxwellian.

In the Fermi-Dirac case the expressions for 2 are
(for small q)

(Be/BE) (k q/m*) S (k)
32

co—(k q/m*)

Bn/BE~ B(E——Ei ) in a Fermi distribution, so

vi:qp Sn(kv, 0) dQ2 = —2m*kg 33
(oi—qvvig) (2v.) ' '

where p, is the cosine of the angle between q and k, and
vp is the Fermi velocity. The function 7 is angularly
dependent through its last term Lsee Eq. (31)$, which
is of the form

/ 2c' ) (kp re) (kv s~)

geist

—=— . 34
(m*c2) rleEg

Other portions of 5 are constant as far as the angular
integrations in Eq. (33) are concerned. Consequently,
they cancel when one calculates the combination
(Zis —ZgZ&) appearing in Eq. (25). Only the contribu-
tions from g2 remain, and they yield the result

( 4e'rg
)'( ff

(sp e) (s,.s, )ysysr '
(&i'—&(A) =

I&~*c'Eg (n —u) (2~)'

(kp ee)'(kp si)'~gdpdq pdpdp

(~—
i ) (2~)' (~—~) (2~)'

~ ~

(35)
where ii = (oi/qvp) .

The evaluation of the integrals appearing in this
equation is straightforward, but very tedious. For most
purposes, the important physical quantity is the sum of
Eq. (35) over 6nal polarizations, and its average over
initial. This is the only quantity we will discuss. After
doing the polarization sums and integrals appearing in
Eq. (35), the result is

(+1 @54)polsrisstion sversge (e kIr /rl EgÃz c )

XP'o(., )Q'(ri)+P (., )Q( )+P (., )$, (36)

where p, is the cosine of the scattering angle. Po, P~, and
P2 are real polynomials in the variables p, and p,.

Q(.) = @de t'ran+1&

-i (n —
i )

and is complex valued for —1&ii(1.Also Zo(q, o&) =
Ls2m*kv/(2s)')Q(ri). Hence

&e'&' 4k' & P ' P—
"Betsy Ancker-Johnson, Sensiconductors and Seminsetuls

(Academic Press Inc., New York, 1966), Vol. I. (38)
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(kT/Eg), due to nonparabolicity. We see that non-
parabolicity has essentially no effect on the plasmon
scattering, whereas it completely changes the quasi-
elastic scattering. Physically, this result is not hard to
understand. The plasmon is an electron density
fluctuation and will inevitably have a large electrostatic
energy. This energy suppresses density fiuctuations and
accounts for the factor (q/qD)' whether the plasma is
parabolic or not. On the other hand, in the quasi-
elastic regime, nonparabolicity couples light to other
sorts of fluctuations which are uncharged and, there-
fore, not suppressed by Coulomb forces.

FIG. 2. Quasi-elastic spectrum for a Maxwellian plasma in
n-type InSb. The corresponding Maxwellian distribution is indi-
cated for comparison.

for a Maxwellian plasma. Linear terms in Z'(]) drop
out, and the result is

dicho ~) m*c' +0 Eaj

For p, =0, the frequency dependence of this formula is
plotted in Fig. 2. It is important to realize that the
width of this spectrum is a direct measure of electron
temperature in the plasma. The width is slightly greater
than that of a Maxwellian with the same temperature.
The integrated cross section is about

do ( e' & f(u~ kT&s

dQ (m*c'j k~e &oi
(48)

(49)

where 8 is a small correction, of order (Er/Eg) or

For hot electrons (T&100'E) this cross section is
greater than the plasmon cross section, which has been
observed' in InAs. Thus, there would appear to be a
distinct possibility of observing quasi-elastic scattering
in such materials. Such an experiment would directly
measure electron temperature in these semiconductors.

It remains to say a few words concerning the effect
of nonparabolicity on the plasmon scattering. Such
scattering corresponds to an entirely different limit of
the variables q and co, namely co))yves. Under these cir-
cumstances, the Green's function is most conveniently
estimated from Eq. (21). In the limit cv))qsp one can
easily show that all three integrals (Zo, 2t, 2&) are of
order q'. As a consequence, the total plasmon cross
section is

IV. LIGHT SCATTERING IN A MAGNETIC FIELD

In this section we will briefly discuss the scattering
of light from a plasma subjected to a static magnetic
field. These calculations are even more complicated than
the preceding ones, and our presentation is far from
complete. Our main aim is to understand the coupling
between the Landau-Raman scattering (at a&=2~,) and
the plasmon scattering. To simplify matters, we will
omit spin-dependent terms from the electron-photon
coupling B2. Such terms are known to exist, and give
rise to the spin-Rip Raman scattering that has been
observed in InSb and InAs. "However, one can see that
they have a relatively small effect on orbital transitions,
such as Landau-Raman scattering. ' These transitions
are our main concern in this section, so we are justified
in dropping spin-dependent terms from II2.

Equations (6), (9), (10), and (11) are the starting
point for a derivation of the formula for the light
scattering cross section in the presence of a magnetic
field. To evaluate G, we again use the random phase
approximation. The calculation closely parallels those
given in the literature" for the case of a plasma of
parabolic carriers in a magnetic field. It is also similar
to that of Sec. II, and the final result is analogous to
Eq. (21).We will present none of the details, but merely
quote the final result, which is

Here the functions Z~"', Z~&" ~&'& Z~&'~ are defined

"In a many-electron system, such scattering must be thought of
as arising from spin density fluctuations in the electron gas. The
approximation used in this paper (RPA) predicts that such
fluctuations should be merely the sum of spin density fluctuations
due to individual electrons, i.e., there is no spin-wave mode in the
RPA. This conclusion may be altered when exchange forces be-
tween the electrons are taken into account. Paramagnetic spin
waves have recently been observed in alkali metals LP. M. Platz-
man and P. A. Wolff, Phys. Rev. Letters 18, 280 (1967); S.
Schultz and G. Dunifer, ibad. 18, 288 (1967)g, and there is at
least a possibility that they might also exist in degenerate semi-
conductors. If they do, spin-Qip Raman scattering would be an
ideal tool for studying their properties.

2& N. David Mermin and Eric Canel, Ann. Phys. (N.Y.) 20,
247 (1964); M. J. Stephen, Phys. Rev. 129, 997 (1963).
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as follows'.

dk, . ' f(n, k,) —f(n', k,+q, )
2M&0'(q, a)) = —(m*co,) Q '

P„*(x)e 'q—**q~ ( —qvm*(o, ) (51)

dk.
zM&'&(q, &e) = —(m*&e,) g

(27r) ' y„~ (x)X,q „(x—q,m*a).)

[f &v„*(x q„—m*(u,)e'&**&v„(x)5[f(n, k,) f(n—', k,+q,)j
[(u+E(n, k, ) —E(n', k,+q, )j

dk~
2M& &(q, (o) = —(m co.) Q y„*(x)e "*'«„(x—q„m (u.)(2~)'

[f p„*(x—q„m*~,)K2tp„(x) j[f(n, k,) f(n', —k,+q,)]
[a)+E(n, k,) —E(n', k,+q, ) j

dk, „'f(n, k, ) f(n'—, k,+q, )
ZM&'& = —(m*&d.) g ', (p.*(x)Xgq. (x—q„m*(o,)

' ' ',' ' . (54)

In these formulas the p„'s are Landau-level wave
functions, E (n, k,) is the energy of an electron in the nth
Landau level with momentum k, in the field direction,
and co, is the cyclotron frequency. We have used the
gauge A=(0, 8x, 0) in which, with an appropriate
change of variables, BC2 can be written as a function of
x, P„and k, (independent of k„).f is the sum of the
spin-up and spin-down Fermi functions. Spin enters the
problem in this relatively trivial way only because we
have ignored the spin dependence of K&. Equations
(51)—(54) are the natural generalizations of Eqs. (19),
(22), and (23) of Sec. II. ZM&'& de6ned by Eq. (51) is
essentially the same as the function L' of Mermin and
Canel2' [their Eq. (2.27) j.

Equations (50) and (54) are exceedingly compli-
cated. They simplify considerably, however, in the
specia, l case in which q is perpendicular to the applied
magnetic field B. In particular, to lowest order in the
band nonparabolicity, one may ignore the small e6ects
of nonparabolicity in the energy denominators of
Eqs. (51)—(54). The functions ZM& & then take the
form

lM& ~(v)

v=co ~+v&0c

(50) we have

4e
G= —&M&@+

g2 1 4~~2 g2 g (0)

Finally,

4~e'i
+ I

(57)
q' j [1+(4xe'/q')Z, &'&jM

lM&" (v) lM "&(v) —lM&" (v) tM&'~ (v)

4"'(v)

= —&M"'+
q~ 1- 4m'e~ q~ Z~(0)

4~e' ZM&'~ Z„[iM&'~(.) ~(~+v~,) 3—z7r (56)
q' [1+(47re'/q') ZM&"j

From Eq. (55) we see that 2M&0' diverges as

DM"'(v)/(~+v~. ) 3

at the point &u+vco, =0. Hence, in the la,st term of Eq.
(56), only terms in which this divergence is canceled by
a corresponding pole of Z~('~ survive. We have

lM"'(v) lM&'&(v) 8(co+we, )G= —Z~("—zx ~ ~M"'(v)

These functions are simple, in the sense that their only
singularities are a set of discrete poles at frequencies
M = &O)c.

We now calculate Im(G) (which determines the
correlation function) in this approximation. From Eq.

X&(~+v~.) + (4~e'/q')
I
&M"' ~'

)& Im
1+ (4~e'/q') ZM "' (58)



P. A. WOLF F

The plasma mode and the Bernstein mode at 2', cross
(as a function of magnetic field) when cv„'=3ar,2. This
behavior is illustrated in Fig. 3. At the crossover point
the modes mix, but weakly in the limit q/qD«1. The
dispersion relation (ignoring modes at 3a&„4~„etc.) can
be written in the form

pi
0

I

0.2 0.4
(~agua)

I

0.6

FIG. 3. Magnetic field variation of plasma and Bernstein modes
in the geometry q iB.These curves are for the case

3q' (v ~' )/u)„' =0.01.

A straightforward calculation of matrix elements shows

that, to lowest order in q', the combination

vanishes for v= +2. Thus, for co~2co„

1
ImG (4s.e'/q')

~

Sir&'& ~' Im
1+(4m e'/q') Zii&0~

(59)

This formula is a very interesting one because it shows
that near cv = 2&v, ImG is proportional to Im(1/e), where
6= L1+ (4~e'/q') Z ~"j. The zeros of e(q, ar) determine
the collective modes of the plasma. Equation (59)
indicates that these modes, rather than single-particle
excitations, are responsible for the scattering. In the

q J 8 geometry there is a plasma mode at frequency
(&u„'+&uP)'~', and the Bernstein' modes at frequencies
~=2'„3', ~ ~ ~ . The Landau-Raman scattering at
co=2co. is, in reality therefore, scattering from the
Bernstein mode (at least for q J B) . Light is coupled to
this mode by band nonparabolicity. This coupling is
much stronger than that which occurs in a classical
plasma, via density fluctuations, which are of order q'
in Bernstein modes. The strength (per particle) of the
nonparabolicity induced scattering from Bernstein
modes is the same as that one estimates' for a single
carrier.

L&2 (~ 2+~ 9) jr~2 4& 2$ 3q2~ 2(&&2) 0 (60)

This is Bernstein's result, ' which was derived for a
Maxwellian plasma, but it can also be shown to be
correct in the Fermi-Dirac case. The mode splitting at
the cross-over point is 2q((vi'))'I'. In the experiments
referred to above, this splitting is small. These experi-
ments, unfortunately, were not performed in the
relatively simple q J 8 geometry and our analysis does
not apply directly to them. Nevertheless, it is not
surprising that the measurements appear to indicate
that the plasma mode and Bernstein mode pass through
one another, without interaction. A quite refined experi-
ment would be required to detect the small splitting
(typical of the solid-state plasma case) indicated in
Fig. 3. The interaction between the two modes is weak
because they are of quite a different character; the
plasmon is a perturbation of total electron density,
whereas the Bernstein mode is mainly an angular
distortion of the distribution function in velocity space
which, in the limit q~0, is a V2 spherical harmonic.
The two are nearly orthogonal to one another.

{Note added i' proof. Quasi-elastic scattering has
recently been observed by Mooradian } Phys. Rev.
Letters 20, 1102 (1968)] in several semiconductors.
For the case he studies most carefully (I-type GaAs)
the intensity of the quasi-elastic scattering is con-
siderably larger than that predicted by our theory.

A. L. McWhorter has pointed out that the non-
parabolicity induced scattering can only be thought of
as arising from energy density fluctuations when the
energy-momentum has the form of Eq. (1). In more
general cases, other sorts of fluctuations will be involved.
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