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A general treatment of electro- and magneto-optical phenomena in the presence of resonant absorption
is given. The resulting expressions in terms of the real and imaginary parts of a matrix index of refraction
are easily utilized in calculations. We consider in detail the effects of these phenomena in'Mossbauer experi-
ments with polarized p rays, presenting expressions for absorption as a function of polarization as well as
for the polarization of the transmitted beam, which are valid for arbitrarily thick absorbers. Comparisons
with experimental data are presented.

I. INTRODUCTION

lHE polarization dependence of the Mossbauer ab-..sorption of nuclear p radiation has been thoroughly
studied experimentally and theoretically. ' ' These treat-
ments consider the cross section for the absorption of
polarized radiation by a single nucleus, and they are
adequate for most purposes. In considering the absorp-
tion of polarized radiation by a relatively thick array
of nuclei, however, it is necessary to take into account
the reemission of the absorbed radiation and the
coherence of this reemitted radiation with the incident
wave. In the absence of absorption these multiple
scattering eEects give rise to such phenomena as
birefringence and Faraday rotation. ~

In this paper we consider the absorption of polarized
p rays by nuclei, taking into account the reemitted
radiation. Such a treatment is necessary for the proper
interpretation of the delicate experiments recently
performed in an attempt to determine time-reversal
noninvariance in nuclear y decays' as well as for
Mossbauer polarimetry measurements. The reason that
the selection rules for absorption of polarized radiation
by a single nucleus may not adequately describe the
situation in an absorber of finite thickness may be seen

by considering a beam of polarized p rays incident on a
resonant absorber. A fraction of the radiation will be
absorbed by the Grst layer of nuclei in the sample, and
this fraction will be determined by the selection rules
derived in Refs. j. and 2. Part of this absorbed radiation
will be reemitted in the forward direction, and will
combine coherently with the incident beam. Since the
reemitted radiation will in general have a polarization
different from that of the incident beam, the radiation
seen by the second layer of nuclei in the sample will be
different from that seen by the Grst layer, and hence a

~ cwork performed under the auspices of the U.S.Atomic Energy
Commission.' H. Frauenfelder, G. E.Nagle, R. D. Taylor, D. R. F. Cochran,
and W. M. Visscher, Phys. Rev. 126, 1065 (1962).

s J.T. Dehn, J. G. Marzolf, and J. F. Salmon, Phys. Rev. 135,
Bj307 (1964),' P. Imbert, Phys. Letters 8, 95 (1964); J. Phys. (Paris} 27,
429 (1966);U.Gonser, in Proceedings of the Asilomar Conference
on Hyperfine fnteractIons, 1967 (to be published).

4 O. C. Kistner, Phys. Rev. Letters 19, 872 (1967};in Proceed-
ings of the Asilomar Conference on Hyperhne Interactions, 3.967
(to be published) .
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different fraction of the radiation will be absorbed by
the second layer. To calculate the total absorption of
the sample, then, it is necessary to iterate not only the
absorption of the successive layers of nuclei, but also
the "rotation" of the polarization induced by the
coherent scattering in each successive layer. In effect,
we must iterate the emplitlde of the wave rather than
its intensity as it progresses through the absorber, i.e.,
we must calculate the polarization-dependent index of
refraction. This index of refraction will be, in general, a
2X2 matrix, corresponding to the two possible in-
dependent states of polarization of the radiation, and
will be complex. The real part will be related to the
change in polarization of the wave, and the imaginary
part to the absorption.

In the following sections we will derive an expression
for the matrix index of refraction for an absorber of
nuclei in a magnetic field, allowing for a mixture of
multipoles in the nuclear transition and for an arbitrary
angle between the propagation vector of the y rays and
the direction of the magnetic Geld. We consider the
effects of time-reversal noninvariance in the nuclear
transition on the index of refraction. Expressions are
given for the transmission as a function of p-ray energy
and initial polarization, and for the polarization of the
transmitted beam. Comparison with experimental
results4 will be made.

The principal results derived here are Eqs. (5") and
(6"), which provide a compact and convenient treat-
ment for phenomena such as Faraday rotation and
absorption, not only of p rays, but of electromagnetic
radiation in general. It is necessary to use these equations
for a correct treatment of Mossbauer absorption if the
absorber lines are split by magnetic Gelds or electric
field gradients. The equations are used. with expressions
for the index of refraction due to resonant nuclear
absorption to derive results for the polarization depend. -
ence of the absorption of Mossbauer p rays.

We use the term "Faraday rotation" in a general
sense to indicate changes in the polarization of radiation
as it propagates through a medium. In the examples
considered here the direction of the polarization changes
as it propagates, and a circular component appears as
well. In our treatment these effects are automatically
taken into account.
417
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for left and right circularly polarized radiation, respec-
tively. The off-diagonal terms represent the possibility
of converting left to right circular polarization and vice
versa. Diagonalization of n tells us the types of polari-
zation which are transmitted without change. The index
of refraction is in general, however, complex (i.e., non-
Hermitian): The real parts describe the "rotation" of
the polarization and the change in phase velocity,
while the imaginary parts describe the polarization
dependence of the absorption. This means that n is not
necessarily diagonalizable. Any polarization will be
altered on passing through a medium with a non-
diagonalizable index of refraction.

It is fortunately not necessary to diagonalize n to
solve the wave equation (1). The solution, which we
denote by 1$(z) ), will be a column vector with two
components,

DETECTOR

FIG. 1. Schematic of general Mossbauer experiment for observing
birefringence and Faraday rotation eGects.

II. OUTLINE OF THE THEORY

A schematic illustration of the experimental situation
for which the theory is applicable is shown in Fig. 1.
Monoenergetic, arbitrarily polarized p rays are incident
on a sample that contains E absorbing nuclei per unit
volume. The absorbing nuclei are in a n1agnetic field
H that makes an angle 0 with the propagation vector of
the incident radiation. The projection of H on the
azimuthal plane makes an angle p with respect to the
component of linear polarization present in the incident
radiation. Ke want to calculate the transmission of the

7 radiation as a function of its energy and initial
polarization and also the polarization of the trans-
mitted radiation. The y ray that propagates through the
absorbing medium finds itself in a region with an index
of refraction n (We wi.ll first consider the development
of the theory assuming that the ind. ex of refraction is
known. In the next section we will turn to its calculation
from the properties of the absorbing nuclei. )

The equation for the propagation of a plane wave
along the s axis is, then,

(P+n'k'))& (z) =0, (1)
with the solution

where f+(z) is the amplitude for left circular polariza-
tion and p (z) is the amplitude for right circular
polarization. The solution (2) is still formally correct
provided we interpret e'"~' as a matrix that acts on

1$(0) ). The vector 1$(0)) describes the polarization
of the radiation incident on the absorber:

lt(o))=()
represents left circular polarization;

I 4 (o) ) = ( ),
right circular polarization;

linear polarization along the x axis; etc. The intensity of
radiation at s is given by

I(z) = (4 (z) 14 (z) )= (4(0) I exp( —i~'»)

X exp(ie»)
I f(0) ), (3)

where (a I b) represents the vector product of the two-
dimensional column vector

I b) with the row vector
(a I. Note that if e is real (i.e., no absorption), et=I
and I(z) = Q (0) I f(0) )=I(0). Also, if e and et com-
mute, we may write

exp( iet») exp—(iekz) =exp/i(e nt)»5—
4 (z) =&'""V(0). (2) =exp( —2 Iml»)

In an isotropic medium, n is simply a scalar quantity,
and we may take $(0) = 1.In the presence of a magnetic
field, however, the index of refraction depends on the
polarization of the radiation, so that n must be con-
sidered as a 2X2 matrix with elements n». , p, p'= &1.
In this case n++ and n are the indices of refraction

and

I(z) =()& (0) I exp( —2 Imekz) 1$(0) ).
In this case, the real part of the index of refraction, and
hence the rotation of the polarization, plays no role in
the determination of the intensity of the transmitted
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radiation. The most interesting situation that we will
consider occurs when the real and imaginary parts of
the index of refraction do not commute with one
another, so that Eq. (3) must be used. This non-
commutativity of the two parts of the index of re-
fraction implies that rotation of polarization followed
by absorption yields an intensity different from that
obtained by absorption followed by rotation.

The expression (3) for the transmitted intensity is
correct for arbitrary but complete initial polarization.
To generalize this to the case of partially polarized
radiation it is convenient to introduce the Poincare-
Stokes representation for the polarization, and the
density matrix for the incident beam. To do this we
rewrite (3) as

I(s) = P (iP(0)
~

exp( intks)—{ zn)
tn=+3,

X (nz { exp(inks) { P(0) )

In terms of the density matrix, then, Eq. (3) can be
written

I(s) = Tr} exp(inks) p exp( —intks) 7, (5)
where the trace is over the two-dimensional polarization
variables. We may also write down the expression for the
polarization vector in Poincare space, P', of the trans-
rnitted beam:

P'I(s) = TrLd exp(inks) p exp( —inzks) 7. (6)
Equations (5) and (6) contain expressions for phe-
nomena such as Faraday rotation, birefringence, the
Cotton-Mouton effect, etc. All of these are represented
by rotations of the vector P in the abstract Poincare
space of the polarization. We may further simplify
these expressions by using again the fact that any 2&(2
matrix can be written as a linear combination of the
unit matrix and the Pauli matrices. In particular,

by inserting a complete set of polarization states.
Rearranging this gives

I(s) = g (nz
~

exp(izzks) { P(0) )

nks=a+b zz=a+bzoz+b„o„+bror.

From the standard forms for the Pauli matrices,

(0
El—

(7)

X(g(0) { exp( inzk—s) { zn).
we find

Averaging over the initial polarization {f(0)) then
yields an expression for the transmitted intensity of a
partially polarized beam. We have

I(s) = Q (nz
~

exp(inks) p exp( —zn'ks)
~

zn),

a = -', ks(n+ ++n ),
bt. = ',ks(n, +-n +),
b„=-',iks(n, —n, ),
br = ',ks(n~+ —-n ) .

where

p =
I 4 (0) ) (4 (o) I

is the density matrix for the incident beam. Since it is
the averaged outer product of a two-dimensional
vector, p is a 2&(2 matrix, and hence may be written in
terms of the unit matrix and the three Pauli matrices:

p=-,'(1+P zz).

Here the 0-'s are the 2)&2 Pauli matrices, and the three
parameters Pg, P„, P~ give the Poincare representation
of the polarization. In the basis that we use here,
P~ ——~1 represent left and right circular polarization,
P~ ——~1 represent linear polarization along the x and y
axes, and I'„=&1 represent linear polarization at +
and —45' to the x axis. If { P {=0, the beam is un-
polarized, and

~
P

~

= 1 represents a completely polarized
beam. An elliptically polarized beam has P'g, P„, and
P~~O. It should be noted that P is a vector in an
abstract space. This has been emphasized by denoting
the axes by $, z, i, and the corresponding Pauli matrices
by 0~, 0„, 0~. Coordinates in real space are given by x,
y, s. For a detailed discussion of the Poincare representa-
tion, see the papers of Fano. '

' U. Pano, J. Opt. Soc. Am. 39, 859 (1949);Phys. Rev. 93, 121
(1954).

Substituting (7) in (5) and (6),

I(s) =exp} i(a —a*)7

XTr{{exp(ib d)]p{ exp( —ib* g)7} (5')
P'I(s) =expLi(a —a*)]

X Tr{d} exp(ib zz)]pLexp( —ib*. zz) 7}. (g)
We then make use of the identity

exp(ib d) =cosh+i(b d) sinb,

where b= (bzz+b„'+&rz) '~', b= b/b, and the expressions

Tr1=2,

Trr„=O,

Tr0~0'p =28~q~

T10Is0 yo p
= 2Z6~qp~

Tro„o „oso~ =2 (j„/~~+/„$„& g„&g„)—
(where zz, z', P, y run over p, zz, i, and e„„s is the unit
antisymmetric tensor of third rank) . Substituting these
and (4) in (5') and (6') gives expressions for the
intensity and polarization of the transmitted beam in
terms of the initial polarization P and the parameters
a and b, which are related through (8) to the corn
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III. CALCULATION OF THE INDEX OF
REFRACTION

We will assume that the scattering and absorption of
the p rays is done entirely by the nuclei of the absorber,
so that electronic effects are neglected. In this case, the
index of refraction is given by the well-known

expression'

rt =1+(2s./b') Nf (9)

where f is the coherent forward scattering amplitude for

p rays from a single nucleus. This amplitude will, in

general, be a 2&2 matrix, since a nucleus may absorb a
p ray of one polarization and emit one of another
polarization coherently in the forward direction. Also,
the forward scattering amplitude for right circular
polarization will differ from that for left circular polariza-
tion. The problem then reduces to the calculation of f.

Let the spins and magnetic quantum number for the
ground and excited state of the nucleus be given by Io,
mo, and Ij, m&, respectively. The resonant scattering
amplitude for the scattering of a photon ks with polar-
ization p to kp' is then given byr

(kp IQrrto ] 50 ) Iytttg) (Itsy [ IR [ kspIQtteo)
X

AQ+~~Q —6 &+s&1'

(10)

Here 3C' is the interaction between the nucleus and the
electromagnetic 6eld, R is the recoil-free fraction, and
F is the total width of the excited state. The electro-
magnetic field is assumed normalized i' a volume V,
which accounts for the presence of this factor. In

ponents of the index, of refraction. The results of the
algebra are

I(z) =exp{ i(a—a*)j{cosb*cosh+(b* b) sinb* sinb

—i(b* P) sinb* cosh+i(b P) sinb cosb*

+iP (b*Xb) sinb* sinbI (3")

and

P I(z) =exp{,i(a—a*)j{ibsinb cosb*—ib* sinb* cosb

—i( b*Xb) sinb* sinb+P cosh* cosh

+(PX b) sinb cosb*+ (PXb*) sinb* cosb

+[6(P b*)+b*(P b) —P(b b*) jsinb*sinbI.

(6")

These relations are very easy to use once the index of
refraction has been calculated, and in the following
section we consider this problem.

X
(kop IsrNQ I 50

I I&tnt')(Itert&
I
50'

I kopIQrttQ)

SLQtgg EQQ+& Q
—~i+ssl'

The two possible values of p and p'( =&1) denote left
and right circular polarization. This expression for f is
then a 2)(2 matrix. The presence of magnetic 6elds or
electric 6eld gradients at the nucleus are accounted for
by the dependence of E, and E, in the denominator
on the magnetic quantum number.

The interaction K' between the nucleus and the
electromagnetic field is given by

& = —(1/c) Z J(r') 'A(r') (12)

where j(r,) is the current density of the ith nucleon
and A(r;) is the vector potential of the electromagnetic
field:

A(r ) = g (2orA'c/Vk)'"

X{a(kp)u(kp) exp(sk r,)+c.c.I. (13)

Here a(kp) is a phonon annihilation operator and
tJ(kp) is a unit polarization vector. In order to cal-
culate the matrix elements necessary for the evaluation
of (11) we make use of the multipole expansion of
Rose.' In all of the following expressions we will use the
deGnitions and phase conventions of Rose for rotations,
Clebsch-Gordan coeflicients, etc. Equation (13) can

writing Eq. (10) it has been assumed that the eigen-
states of the system can be labeled by the magnetic
quantum numbers m~ and mo of the excited and ground
states. If this is not the case (as, for example, in the
presence of a nonaxial electric 6eld gradient or when
magnetic Geld and electric field gradient lie along
different axes), then we simply introduce transforma-
tion coeKcients (IorNQ

~
Isno) between the correct eigen-

states
~
Ions) and the

~
Ioms). These complicate the

appearance of the expressions, but the procedure is
straightforward in principle. Also, in including the
recoil-free fraction, we have assumed that the incident
energy of the photon is close to resonance, i.e., that we
have a "slow" collision. This point is discussed in detail
by Trarnmell. ' Otherwise, Eq. (10) is general and allows
for a change of the sublevel of the ground state from
mo to mo' in the course of the scattering. The coherent
forward amplitude, which we need for (9), is obtained
from (10) by taking the wave vector k of the scattered
photon equal to that of the incident photon ko. In
addition, the final state mo' must be taken equal to the
initial mo, and an average over mo is performed. This
gives

t' kQVE 1

2s.ftc 2IQ+1

e M. Lax, Rev. Mod. Phys. 23, 287 (1951).
~ G. T. Trammell, Phys. Rev. 126, 1045 (1962).

' M. E. Rose, Elementary Theory of Artgttlar Momeltlm (John
%iley R Sons, Inc. , New York, 1957).
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be expanded to give [Ref. 8, Eq. (7.38)j
A(r;) = g (2m5c/Vk)'»

X{a(kP)(2m)'" Q iz(2L+1) "D)z (z)(yg0)

X (Azzz(m) +iPAzoz(e) )+c.c.f. (14)

The angles 8 and p in the rotation Dz(z„(z) are, re-

spectively, the polar and azimuthal angles of the
direction k of propagation of the 7 ray. The vectors
Azjz(m) and Azjz(e) represent the components of the
magnetic and electric 2~-pole moment operators. Expres-
sions for them in terms of vector spherical harmonics
are given on pp. 133 G. of Ref. 8. The only property of
these quantities that we shall use is that (Ref. 8,
p. 138) v.Azjz is an irreducible tensor operator of rank
1., where v is any vector. This fact, together with the
expansion (14), enables us to calculate the matrix
elements of the interaction 3C', which are necessary for
the evaluation of (11).We need

(Izmz ) (1/c) g j(r;) A(r;)
~
IompkP)

=2~ g (Sc/Vk) '»iz(2L+1)»'D)a„(z) (&80)
LM

X (Izmz ) (1/c) g j(r,) Az))z(m)+ip(1/c)

X g j(r;) AzM(e) ~Iomo). (15)

Since j AL,~ is a tensor of rank I, however, we can
write

(1/c) (Izmz ) g j(r;) AIM [ Iomp)

=(Iz )[ (1/c) g j(r;) Az, [[ Ip)C(IpLIx,' moMm1),

(16)

where C is the Clebsch-Gordan coeflicient, and the
reduced matrix element is independent of the magnetic
quantum number. This expression holds separately for
Azjz(m) and Azl(e) . For convenience we introduce the
notation

Mz, ——(Iz f[ (1/c) g j(r;) Az, (m) )[Io),

Ez=(I II (1/c) Z j(r') Az(e) II I )

Substituting in (15) gives

(I,m, I
~'

I I,m, kP)

=2or())ic/Vk)'I' g 2'(2L+1)'('D~ ( )(yg0)

X {Mz+iPEzI C(IpLIg,' mpMm() . (17)

The coeKcients 3fl, and El, represent the strengths of
the magnetic and electric 2~ poles, respectively, in-
volved in the absorption of the photon. Conservation
of parity requires that either all odd-I Ml. and even-1. El,

or all even-L Mz and odd-L Ez vanish. In the majority
of cases it is sufhcient to consider a single non-
negligible Mg, together with a non-negligible E~~, and
we will treat this situation. (For L= 1 we have a mixed
magnetic dipole-electric quadrupole transition. ) Equa-
tion (17) becomes

(I m
i
K'i Iompkp)

=2m (5c/ Vk)»' Q iz {(2L+1)"'M&D(z„( & (qWO)

XC(IpLIz, moMm() —P(2L+3)»oE~zD~ (z+» (&80)

XC(IoL+1Iz, mpMm)) I. (18)

Since

(IomokP'
I
&'

I Izm~) = &I,mz I
3."

I
Ipm()kp')*

and also

D (L) (+0) e i'(—i (L) (g)

where d&)z~(z) (8) is real, we have for (11)

f~ = —$2ÃR/(2Ip+1) j
X Q D2L+1)"Mz*d))z (z)(8) C(IoLIz, moMmz)

mPmlN

—P'(2L+3) '»E *d~ .«& &(8)

XC(IpL+1I~i moMm() X(2L+1)»oMzd))z ( &(8)

XC(IpLIz, mpMmz) P(2L+3)"E—d~ (z+»(8)

XC(IpL+1Iz, mpMmz) j(Eo,+E,—E,+pir)-z.

(19)
This expression is independent of the azimuthal angle
p, as expected for a cylindrically symmetric system.

The two quantities Ml. and E~~ can be expressed in
terms of their ratio and in terms of the partial width for
y emission of the excited nuclear state. The latter
quantity can be determined experimentally, and the
relation is derived in the Appendix. From Eq. (A2) we
have

I;=8m.kp(i Mz, i'+
i Ez z i').

Setting

pz, =Mz/([ Mz )'+ [ Ez„, [')'I'

pz+z —Ez+z/() Mz p1 J Ez+, )o)»o,

so that
I ~z I'+

I o~z I'= 1,

we obtain for (19)

f„„=—(R/2Io+1) (I' /4ko) Q P(2L+1)»'pz, *
mPm1M

Xd)(z„( ) (8)C(IpLIz& mpMmz) —p'(2L+3) '»ez„,*

X4z «+"(8)C(IpL+1Iy, moMmz) )$(2L+1)»o)o)z

Xd~~(z) (8)C (IoLIz & moMmz) —P (2L+3)»'ez+,

X&~„('+&(8)C(I,L+1I„~m,) g

X(K+E,—E,+—'il') '.
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Finally we dehne

pal+1/)iL

where b is real, so that

I) z I'=1/(1+8').
Also, if the nucleus is in a magnetic 6eld II along the
s axis, E &,

=gpIJNmpI'I, and E,=gip~miII+Ei, where

go and g~ are the g factors for the ground and excited
states, E& is the energy of the excited state relative to
the ground state in the absence of a magnetic field, and

p))( is the nuclear magneton, we find for f~ „:
J'.= —(2Io+1) '(1' /4kp) I E/(1+8') ]

X P L(2L+1) 'IPdu (0)C(IpLIi,' mpMmi)
mPm1M

p'(2L+—3) '('ge '~d~, ( +') (8)

XC(IpL+ 1Ii, mpMmi) ]((2L+1)'I'd~ (z) (8)

XC (I()LIi,' mpMmi) P(2L+—3) '('ge'~dpi„(z+') (0)

X C(IpL+1Ii, mpMmi)]

X (E„, E+ (gomp ——g mi) p,~B+-,'iF ) '. (21)

This is the expression that we will use for the cal-

culation of the index of refraction.
At this point we may recall that the assumption of

time-reversal invariance requires that the phase factor
a in Eq. (20) should be equal either to 0 or to s,P i.e.,
that pz+& and (((r, be relatively real. Examination of (21)
shows that this implies that f~ „=f», and hence that,
for the case under consideration, the index of refraction
is a symmetric matrix. From Eq. (8), the symmetry of

e implies that b, =0. An experiment which aims to
detect time-reversal noninvariance should thus be
designed to detect a nonvanishing b, . In general, the
antisymmetric part of f is proportional to sinn, so that

b„ is linear in n for small n. As we will see in the following

section, the proper design of an experiment to detect a
nonzero b, requires some care, since, in a thick absorber,
other terms in the index of refract, ion may combine to
imitate the effect of an antisymmetric term in e.

It is possible to distinguish between Faraday and time-

reversal contributions to b, because the Faraday contri-

bution is unchanged on going from M to —M, while t.he

time-reversal contribution changes sign. Assuming the
absence of quadrupole interactions, the two effects may
be separated by making measurements at a symmetric
pair of 3f=&1 lines and taking the sum and difference

of the observed effects.

IV. COMPARISON WITH EXPERIMENT

We will now apply the theory of the previous sections

to the results of a Mossbauer experiment4 performed to

test time-reversal invariance in the 90-keV M1-E2
mixed transition in ruthenium-99. In this experiment a
measurement is made of the resonant absorption of
polarized 90-keV p rays by the mo=-', —&m&=2 and
mo= —~~m&= ——,

' magnetic hyperfine components in a
magnetized absorber of ruthenium-99 in metallic iron.
The experimental arrangement, which is reproduced in
Fig. 2, is that of a conventional Mossbauer trans-
mission experiment with the exception that tmo,
individually magnetized ruthenium-iron absorbers are
used. The single line source is Doppler shifted to coincide
in energy with either of the selected pair of symmetric
Am =+1 hyperfine absorption resonances. Absorber No.
1 which is magnetized at. 90' to the propagation vector
serves to polarize linearly (by selective resonant
absorption) the radiation passing through it. The trans-
mitted radiation is in fact polarized transverse to the
direction H'. The field in the second absorber is
oriented so as to maximize the value of the b„(i.e., sinn)
term in the absorption cross section for linearly polarized
radiation. This occurs at 0=54~" and &=45'. The test
for a nonvanishing sinn is made by looking for a change
in the intensities of the two resonances with a reversal
of the magnetic field in the second absorber. Field
reversal measurements were made for various reQections
of the direction of H into adjacent quadrants. The
effect observed is obtained from

I(8) —I(s-—0)E=
I(8)+1(~ 0) '—(22)

where I(8) is the intensity of transmitted radiation
linearly polarized at 45' to the x axis, i.e.,

I(0) =TrIexpI in(0)ks]-', (1+o „) expL —int(0) ks]}.
From the relation

dye (l)(7r g) —( —) 2-ud )i( (i)(g) = ( —)i ~ &ud~ (i)(g—)

it follows that n„„(s 0) =n „~(0), or,—in matrix
notation n(s 8) =o p—n(8) ap. Hence

I(7r 0) =TrI explin—(~—0) ks]-', (1+a„)
XexpI int(s —0) ks]}

=TrIap expLin(0) ks]ap-', (1+a„)ap

XexpI —int (8) ks]ap }
=TrI expLin(8) ks]-', (1—o.„)

Xexpr int(0) k—s]},
and the effect E is given by

Tr I expI in(8) ks]a„expI —int(0) ks] }E-
Tr I expLin (8)ks] expL —in. (8) ks] }

From Eq. (5") we find

ib„sinb cosh* ib„*sinb* c—osb+i(b~X b) „sinb* sinb

cosb* cosb+(b* b) sinb* sinb
(23)

S. P. Lloyd, Phys. Rev. -81, 161 (1951).
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so that, even if 6„=0, the effect does not vanish, since
the term (b*Xb) „WO. The latter term corresponds to
the combined eGect of Faraday- rotation and absorp-
tion."To simplify the physical interpretation of (23)
we consider a thin absorber. From (8) we see that
b~ks, so we may expand the terms in (23), keeping
only those quadratic or linear in b. We find

Z=t(b„—b„*)+t(b*xb),
k—s(n+ "—n +")——',(ks)'I (n+ ~"—n ")

X(n~ '+n +') —(n+~' —n ')(n+ "+n +")I,

(24)

where e" and m' are the real and imaginary parts of the
index of refraction: n =n"+in'. In addition to the opposite
symmetry with respect to +35, there are two other basic
characteristics that differentiate between a time-
reversal effect and a Iaraday eGect. First, the time
reversal noninvariance part is linear in the thickness s,
since it is a single-nucleus effect. The Faraday rotation
term, on the other hand, depends quadratically on the
thickness because it is a product of the rotation and
absorption, each of which is linear in s. Second, the
variation with respect to the polar angle 0 subtended by
II in absorber No. 2 is markedly different for the two
eBeets.

The eGect, for linearly polarized p rays of energy Eo
may be calculated using Eqs. (8), (9), (21), and (23).

TABLE I. Parameters used in comparing
Eq. (28) with experiment.

X=3.96X10+"cm-3

kp=4. 55X10' cm '
op=0. 241 cm

r„/r =o.385
S=—1.64
8=0.08
g1= —0.189
gp= —0.249
II=500 kOe

The thickness s through which the radiation travels is
given by s =so/sin9, where so is the perpendicular thick-
ness of the sample. In order to compare our calculations
with experiment it is necessary to make a number of
corrections. The absorption and rotation must be
integrated over the line shape of the incident resonant

p rays. Broadening in the resonance lines of the ab-
sorber, the efficiency of the polarizing filter, the recoil-
free fraction of the source, and the background counts
under the 90-keV photopeaks in the detector window
must be considered. These corrections can be accounted
for empirically, to a good approximation by normaliza-
tion to the variation of the resonant absorption with
azimuthal angle P in Fig. 2. This azimuthal variation,
which was measured experimentally, 4 can be calculated
from Eq. (5"). For linearly polarized radiation making
an angle g with the projection of the magnetic field

(Fig. 1), we have in Poincare space

TRANSDUCER

SOURCE

Pt =P cos2$,

P„=Psin2&,

I'g ——0, (25)

ABSORB
NO. I

X

where 0&8(1 is the degree of polarization. This
representation follows from the discussion of the Poin-
care parameters following Eq. (4). Substituting in

Eq. (5"), we find

1(s) =exp[i(a a) 7D—cosh ~'+ 0* b
~

sinb ~'

ABSORB
NO. 2

+P sin2&Ii(b*Xb) „~ sinb ~'}

Pcos2& I2 Imbt —sinb cosb*}

Psin2&I2 Imb„sinb co—sbt}7. (26)

Na?
DETECTOR

FIG. 2. Schematic of experimental arrangement used in Ref. 4
for testing time-reversal invariance with a single line source and
two stationary Ru-Fe hyperfine absorbers. The absorbers are
magnetized along the directions indicated by H and H'.

' We again note, as mentioned in the Introduction, that we use
the term "Faraday rotation" in a general sense. The polarization
emerging from the sample is, in the case considered here, elliptical
rather than linear.

Equation (26) gives the absorption as a function of the
angle p of the linear polarization. The coefficient of the
first sin2& term vanishes in the absence of Faraday
rotation, while the coeS.cient of the second vanishes for
time-reversal invariance, i.e., for b„=-.0. In the absence
of these two effects, then, the cos2& term is the only
polarization-dependent term present and. I(s) is a
maximum or minimum for &=0' or &=90', i.e., for
polarization parallel to or perpendicular to the pro-
jection of the magnetic field. It should be noted that the
cos2& dependence on p is exact even for a thick absorber.
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Eq. (18) in (A1) gives

I'~ = (2sr) s Q dkp(5c/Vkp) I (—i)~Mr,*(2L+1)'t'
mpy

X Q Der & &*(&00)C(IpLIti mpMmr)+( —i) +'

XpE~t'(2L+3)" g D~.~'*(g0)C(IpL+1It;

m,Mm, ) j Iir Mr, (2L+1)'t' g Dsr &r & (P00)

Using the orthogonality relation for the D coefljjcients,
given in (Ref. 8, p. 74),

d kpDsr. &~'&*(F00)D»toi~& (F00)
h

0 M I~
I

M

=L4~/(2L+1) ]8~~ 8~~.,
we find

ry=gsrkp( I Mr, I g C (IpLIr, mpMmt)
mpM

+ I E~t I' Q C'(IpL+1Iri mpMmr) },
XC(IpLIt, mpMmt) +8+'pE~t(2L+3) "'

X Q DMo +' (400) C(IpL+ 1Iti mpMmt) jp (Es') ~

mpM

=8~kpf
I
Ml.'+ I Em, l'}

the required relation.

(A2)
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Time Dependence of Mossbauer Scattered Radiation*

P, THr@BERQER) J. A. MQRAGUES) t AND A. W. SUs&YAR

J3rookhaven National Laboratory, Upton, Neer York

(Received 19 February 1968)

Time distributions of resonantly scattered 14.4-keV Fe'7 p rays were measured by using as time-zero
signals the preceding 122-keV y rays. A Co" source coplated with Fe was used with two different metallic
scatterers (2.54X10 '-mm-thick 92.8% Fe" and 4.53X10 '-mm-thick 2.19%Fe") in a cylindrical geometry.
Measurements were performed at diferent relative source velocities. From the measured time spectra,
contributions due to random coincidences and to Rayleigh scattering were subtracted. A theory based on a
classical model in which the scattering nuclei are represented by randomly situated harmonic oscillators
was developed. The experimental results are compared with computed theoretical curves. Good agreement
was found in most of the cases. Discrepancies observed in two instances are discussed.

I. INTRODUCTION'

t 'lHE purpose of the present work is to measure the
time spectrum of resonantly scattered 7 rays and

to develop a theory for this process based on a classical
model. The first experimental results were reported
previously. ' lt has been shown by Lynch et aL.' that
experimental results on the time distribution of Fe"
& rays transmitted through a resonant absorber are
well described by a theory in which each Fourier
component of the incident radiation is changed in
amplitude and phase according to a complex index of
refraction. This complex index of refraction is given by
the frequency response of the resonant oscillators in
the absorber and by their number per unit volume.

*Work performed under the auspices of the U.S.Atomic Energy
Commission.

$ Fellow of The Consejo Nacional de Investigaciones Cienti-
ficas y Tdcnicas, Argentina. Permanent address: Comision Na-
cional. de Energia At6mica, Buenos Aires, Argentina.' A. W. Sunyar, J. A. Moragues, and P. Thieberger, Bull. Am.
Phys. Soc. 12, 475 (1967),' F. J. Lynch, R. E. Holland, and M. Hamermesh, Phys. Rev.
120) 513 (1960).

It can be written as'

rt =L1+r(coprs —tos+io&)t)
—

t jr le

=1+sI:r/(~ "—'+i )t) 3

Here, oro' and X are the frequency and the decay con-
stant of the oscillators in the absorber and r is a con-
stant which contains the oscillator density.

It may perhaps seem surprising that it should be
possible to describe the absorber by a macroscopic
quantity in this case, where the wavelength of the
14.4-keV radiation of Fe'7 is about three times smaller
than the minimum distance between neighboring oscil-
lators in a highly enriched Fe'7 scatterer and about ten
times smaller than the average distance in the case of a
natural-iron scatterer. This can, however, be explained
by the fact that the average contribution modifying
the incident wave at a point inside the absorber is due
to the mutually in-phase, coherently forward scattered
waves from the oscillators.

s J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Co., New York, 1941),p. 321.

4 J. Strong, Concepts of Classical Optics (W. H. Freeman and
Company, San Francisco, 1958), p. 99.


