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The single-particle positron wave function in a solid may be calculated by a new technique which is
entirely free of any theoretical assumptions by virtue of its use of experimental x-ray form factors to con-
struct the potential. The results obtained accordingly form an excellent starting point for a systematic
treatment of many-body eGects in electron-positron annihilation processes. The positron wave function,
which has the full crystal symmetry, is used together with pseudopotential wave functions for the valence
electrons to compute the angular distribution of annihilation radiation from Al and Si for several crystal
orientations. Agreement with experiment is excellent. The angular distribution from Al is found to be
practically isotropic, despite the angular variation of the positron wave function. The substantial anisotropy
in Si is reproduced within experimental error. Use of a constant positron wave function somewhat reduces
the agreement. The calculated curves are little aGected, however, by appreciable changes in the
pseudopotential coefficients, indicating that positron annihilation is an insensitive probe of semiconductor
band structures. The validity of using pseudopotential electron wave functions in the present context is
discussed. The approximation is found to be excellent for most of the angular distribution because the
positron is largely excluded from the core, where pseudo-wave-functions are incorrect, Accordingly, unlike
positron lifetimes, the angular distribution can be well explained by an independent-particle model, even
when it displays considerable anisotropy.

I. INTRODUCTION

t %HE annihilation of positrons in solids has been.found to be a useful probe for obtaining information
about the momentum distribution of the electrons. '
However, in contrast to photon probes, for example,
positrons perturb the system appreciably and are able
to sample effectively only the valence electrons. ''
Because of their positive charge, electrons tend to pile
up around the positron, thus disturbing their normal
spatial distribution in the solid. Such many-electron
effects are treated accurately only with great diS.-
culty. 4 7 However, while they can shorten the positron
lifetime appreciably, the electron-positron correlations
fortunately appear to inhuence the angular distribution
of the p rays much less appreciably, 4'' and for that
reason the experimental results are useful in providing
information about the solid.

Positrons are repelled by the positively charged
atomic cores, their wave functions therefore being
concentrated in the outer parts of the unit cell. This
effect, which would be present even if the positrons were
test charges without the consequent many-electron
effects, causes the positrons to annihilate predominantly
with the valence electrons. The resultant spatial

f Supported in part by the National Science Foundation under
Grant No. GP-5321 and the Advanced Research Projects Agency.' Extensive lists of references and many review articles may be
found in Proceedings of the Conference on Positron Annihilation,
edited by A. T. Stewart and L. 0. Roellig (Academic Press Inc. ,
New York, 1966).

'S. DeBenedetti, C. E. Cowan, W. R. Konneker, and H.
Primakoff, Phys. Rev. 77, 205 (1950).' R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1955).

4 S. Kahana, Phys. Rev. 129, 1622 (1963).' J. P. Carbotte and S. Kahana, Phys. Rev. 139, A213 (1965).
6 J. P. Carbottee, Phys. Rev. 144, 309 (1966).' J. CroweB, V. E.Anderson, and R. H. Ritchie, Phys. Rev. 150,

243 (1966);other references cited in Refs. 4-7.
8 S. Berko and J. S. Plaskett, Phys. Rev. 112, 1877 (1958).

171

variation of the positron wave function can also in-
huence the annihilation significantly and should be
known accurately within the limits of band theory if
the extracted information concerning the electrons is
to be reliable.

This latter aspect of the problem has not yet been
treated completely adequately. "' The present paper
suggests an approach that permits the calculation of
the positron wave function in the single-particle
approximation in a manner which is comP/etely free of
any theoretical assumptions That suc. h assumptions can,
in fact, be avoided follows from the close relationship of
the x-ray form factors to the Fourier coefficients of the
potential seen by the positron. It is, of course, just such
Fourier components with respect to reciprocal lattice
vectors that enter directly into the secular equation
that determines the energies and wave functions. More
speci6cally, the positron potential results from a part
due to the nuclei and another part resulting from the
electrons, both components being purely Coulombic in
nature. The nuclear part may be expressed in terms of
point charges situated at the lattice sites. Its Fourier
coeS.cients are easily found. The corresponding coeffi-
cients of the electron part, however, can be expressed
directly in terms of the x-ray form factor with the help
of Poisson's equation. This avoids the necessity of ever
calculating directly the electronic spatial distribution in
the construction of the secular equation. This element
of simplicity stands in sharp contrast to the situation
encountered in the calculation of electron band struc-
tures, where there exist no experimental probes that
determine the corresponding electronic part.

The solution of the resulting secular equation is
especially simple because the positron can be assumed

9 E. Daniel, J. Phys. Radium 18, 691 (1957).
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II. FORMALISM

In the independent-particle approximation, the
probability that an annihilation event will yield two
photons of total momentum p is proportional to"

incident
positron

i, beam
[Ioo]
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FIG. 1. (a) Schematic of parallel-slit apparatus. (b) Diagram
showing the relationship of K to the principal axes of a cubic
crystal.

f(p) = geqq d'r exp( —ip r/5)p+(r)/k~(r), (1)

where tP+ is the positron ground-state wave function,
gq~ is the electron wave function corresponding to wave
number k and band index l, and ei, ~ is the occupation
number for the state k, /. (eq~= j. if k/ is occupied and
0 if it is not. ) The counting rate measured by the
standard parallel-slit apparatus is proportional to

to thermalize in a time short compared to its lifetime. "
As a consequence, only the I'& (k=0) state of the
positron band structure need be considered.

The computation of the annihilation rate requires
knowledge of the electronic wave function as well.
This paper suggests that for solids with small cores,
like Al and Si, it suffices to use pseudopotential" "
wave functions for this purpose. Such wave functions
diGer from their correct counterparts only in the core
region from which the positron is essentially excluded.

Detailed application of these ideas in calculations of
the annihilation rate of positrons in Si and Al exhibit
remarkably good agreement with experiment. ' ""
In particular, the fact that the calculations are able to
reproduce excellently the Si experimental angular
distribution, which depends signi6cantly on the
crystallographic orientation of the crystal, indicates
that the present independent-particIe approach coupled
with the use of electron pseudo-wave-functions has
merit, at least for the simpler solids. More importantly,
because of its relatively few assumptions, the present
theory is likely to yield a reliable single-particle descrip-
tion of positron annihilation. As a consequence, it
represents an excel1ent starting point for a systematic
many-particle description of the process, since signifi-
cant deviations from the experimental angular dis-
tributions can be ascribed to positron-electron and
electron-electron interactions.

The details of the formalism are described in Sec. II
of the present paper. The results for Al and Si are
discussed in Secs. III and IV, respectively.

FK(e) = dp*dp. f(p* p., p.) (2)
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for p, =mco/5. The angle 0 and reciprocal lattice vector
K are defined in Fig. 1.

In order to predict the counting rate it is necessary
to have a means for calculating electron and positron
wave functions. In this section the formalism necessary
for computing f+ from the x-ray form factors will be
developed. In addition, explicit forms for f(p) in terms
of these and pseudo-wave-functions approximating the
pk~ will be exhibited. Expressions suitable for estimating
the magnitude of the core contribution will also be
noted. For simplicity the treatment will be restricted to
solids having one atom per unit cell although many of
its features apply to more complicated solids. The
extension of this treatment to the diamond structure

' G. E. Lee-Whiting, Phys. Rev. 9'7, 1557 (1955).
n D. Brust, Phys. Rev. 134, A1337 (1964).
'M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789

(1966).
~' E. Q. Kane, Phys. Rev. 146, 558 (1966).
~4%. A. Harrison, Pseldopotentials in the Theory oj Metals

(W. A. Benjamin, Inc. , New York, 1966).
'5 J. C. Erskine and J. D. McGervey, Phys. Rev. 151, 615

(1966).
'~ J. C. Erskine (private communication). We are grateful to

Dr. Erskine for making these unpublished data available, which are
in substantial agreement with those previously published in Ref.
15.
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FIG. 2. Fourier coeQicients VK of the positron potential in Al,
versus (2s/a)

~
K ~. (a=fcc cube edge, K=reciprocal lattice

vector. )

'7 P. R. Wallace, in SolÃ State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1960), Vol. 10,
pp. 1—46.
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will be given in connection with the discussion con-
cerning Si in Sec. IV.

The positron moves in the Coulomb field of the
nuclei and electrons. The corresponding potential may
be written, in atomic units, as

(3)

—to,o0
2

direction

0 0 0'Fr'r

where

is the total charge density at r, p+(r), and p (r)
representing the nuclear and electronic components,
respectively. Evidently p is always negative. Since
V(r) and p(r) are periodic, their Fourier components

VK ——v, ' d'r V(r) exp(iK. r),
va

pK
——w, ' d'r p(r) exp(iK. r)

are nonvanishing only at reciprocal lattice vectors K
and the integrals need be carried only over the unit-cell
volume v,. The transformed expressions corresponding
to Eqs. (3) and (4) are

VK ——gerpK/K',

PK pE +PE ~

Equation (5) expresses the Fourier components of the
potential very simply in terms of those for the charge
density. Since the nuclear charge Z can be expressed
as a 8 function at the origin of each cell,

pK+= Z/s. .

4
r, Qtomlc units

FIG. 3. Positron wave function in Al in arbitrary units. The
solid lines represent the wave function obtained in the present
calculation, and are extended as far out as the appropriate bound-
ary of the Wigner-Seitz cell. The dashed line corresponds to the
spherically symmetric wave function in the Wigner-Seitz approxi-
mation of Ref. 8, and is plotted to the boundary of the Wigner-
Seitz sphere.

They are easily applied to Al."However, plausibility
arguments often sufFice. For example, a graph of the
experimentally determined

i pK ) versus K generally
shows that a smooth curve can be drawn through the
data points only if the pK- all have the same sign. Since
pa

———Z/v, is just the average electron charge density,
that sign must be negative. On the other hand, the
Fourier components of the total charge density pK as
given by Eq. (6) are all positive in crystals having
inversion symmetry, because in this case one may write

, (
p =n

~

Z — d'r
)
p-(r) ) cosK r

~]
The transformed electron charge density is more

dificult to calculate from first principles, but, as already
emphasized, it is easily determined from experimental
information. The intensity of an x-ray diffraction line is
expressible as a product of the incident intensity, a
geometrical factor, the Debye-%aller factor, and

~ pK ~'."Accordingly, i pK
~

will be determined by the
measurement of an appropriate line. The determination
of the phases of the pK represents a separate problem,
which, however, is well understood and easily solved
for the vast majority of crystal structures. "In crystals
with inversion symmetry, the pK must be real and the
problem reduces to one of determining sign. The
present considerations will be restricted to this case,
since even Si possesses inversion symmetry. Unam-
biguous methods for sign determination are available.

When K=O, the expression (5) for VK becomes un-
defined. This is of no practical importance because Vp

merely adds a constant to the energy eigenvalue and
does not affect the positron wave function.

The Fourier components VK appropriate for Al,
shown in Fig. 2, are consistent with the preceding con-
clusions. These components determine the positron
wave function. Substitution of a plane-wave expansion
for the k=0 state,

P+(r) =2-'taiga& exp(iK. r),

into the Schrodinger equation yields

Q L(K' —E)8K,K.+VK K.faK. ——0.
Kt'

Here 0 represents the volume of the crystal, and the
expansion coeKcients gK are normalized so that

"See, for exampie, W. H. Zachariasen, Theory of X Ray Diffrac-
tion irs Crystals {John Wiley 8z Sons, inc. , New York, 1945l.

'9A general discussion is given by J. Bouman, International
Tables for X-Ray Crystallography (Kynoch Press, Birmingham,
1959), Vol. 2, pp. 358—359. The applications to Al and Si are
presented in detail in the Ph.D. dissertation of D. Stroud, Harvard
University {unpublished) .



402 D. STROUD AND H. EHRENREICH

0.8

O
8 68

C)
O~ 0.4

on parabola,

ectron
ola with

na. mannt-bod/
ections

FIG. 4. (a) Normalized computed and
measured angular distribution of annihi-
lation y-ray pairs in Al. The experimental
points are data by S.Berko and J.Erskine
(to be published) for Al taken at 77'K
with 0.15-mrad slit widths. The computed
curve misrepresents the contribution
from the valence electrons in the core
region because of the use of pseudopo-
tential wave functions. (b) Angular
distribution corresponding to free posi-
trons annihilating in a gas of free elec-
trons (r, =2) of approximately the den-
sity as Al ir, =2.07l. The solid curve in-
cludes no correlation effects; the dashed
curve includes the corrections described
in Ref. 4.
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aK I'= 1.The high symmetry at k=0 reduces the

number of independent coefficients aK, thus facilitating
the solution of Eq. (9) by allowing the inclusion of
many plane waves without unduly increasing the size
of the secular determinant. In the present work, for

example, 145 plane waves were included in an 11&&11
secular equation for Al. A 19)&19 secular equation
permitted consideration of 269 plane waves in Si.

Figure 3 shows the positron wave function of Al as a
function of distance from the nucleus along the three
principal cubic directions. The wave function is seen to
exhibit substantial anisotropy in the region outside the
ionic core. By contrast, in calculations employing the
Wigner-Seitz method, such as those of Berko and
Plaskett, ' whose results are also shown in the figure,
the positron wave function is required to be spherical
throughout the cell by the boundary conditions. In
addition, the amplitude closely approaches zero at the
nucleus, as is expected on physical grounds. Since the
high Fourier components K will contribute appreciably
in this spatial region, this aspect of the numerical
results illustrates that enough plane waves have been
included to obtain good convergence.

In order to evaluate f(p) as given by Eq. (1), one
also requires explicit expressions for the electron wave
functions gati, i. For the valence electrons which con-
tribute most signihcantly to the positron decay, these
will be assumed to result from the solution of a pseudo-
Hamiltonian which is characterized by a weak poten-
tial. '4 The expansion

omitted orthogonalization terms that involve the core
wave functions are expected to play a small role, since
the positron is eRectively excluded from the core region
by the Coulomb repulsion. This point will be discussed
later in more detail.

Upon substituting (8) and (10), the valence con-
tribution to Eq. (1) becomes

f"(p) =ri.w-o I 2 &K, i(p/& —G) «-I I', (ll)
K, /

where G is the reciprocal lattice vector that translates
p/5 into the first Brillouin zone. In nearly free-electron
metals like Al, containing several valence bands, it is
frequently more convenient to reexpress Eq. (11) in
terms of the extended zone scheme:

f"(p) =pm, )s o I Qbx(p/5 —G)«E I'. (12)
K

The summation over l is now replaced by one running
over those G for which p/5 —G lies within the Fermi
surface.

To estimate the contribution of the core electrons, it
is better to express Pqi(r) in terms of normalized
atomic functions Q, (r—R), labeled by quantum
numbers c= (n, 1, m) and centered on the lattice sites
R. The electron Bloch function is written in the tight-
binding form

Pk, (r) =S-'"g exp(ik R)it, (r—R),

where E is the number of unit cells in the crystal. After
decomposing the core function into a radial and+ ) ' j' ( ) spherical part p, (r) =E„i(r)F'i (r) and performing
the angular integrations, the contribution of the core

therefore, includes relatively few plane waves, Th, e electrons for crystals containing one atom per unit
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1.0

FIG. 5. Normalized computed and
measured angular distribution of annihi-
lation ~-ray pairs in Si along the $100j
and t-110] directions. The computed
curves are based on the pseudopotential
theory described in the text, and the ex-
perimental curves are those of Ref. 16.
The error bars refer to the experimental
data.
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cell becomes

f'(p) =f-t-(p)
16m'

~ g«I„t(~ p/5 —K [) I', (p/5 —K) i
',

4 K

where

I t(k) = dr r'jt(kr) R„t(r)

III. ALUMINUM

The angular distribution of photon pairs produced by
the annihilation of free zero-energy positrons in a free-
electron gas has an inverse parabolic dependence' ' '~

F(0) ~ 1—(e/Or)'

Here gr ——Skr/mc. In a nearly free-electron metal like
Al, this inverse parabola is superimposed on a smaller
but considerably broader distribution arising from the
core electrons and higher-momentum components of the
valence electron and positron wave functions. As

and j& is a spherical Bessel function.
It should be emphasized that the valence electrons'

contribution in the core region is misrepresented in
the present treatment because of the use of pseudo-
wave-functions and the consequent omission of the
terms that properly orthogonalize the valence and core
wave functions. Within this approximation the total
f(p) as introduced in Eq. (1) is given by the sum of the
valence and core contributions

f(p) =f"(p)+f'(p). (15)

It is similarly convenient to decompose the counting
rate in the same way, by rewriting Eq. (2) in the form

FK(~) =FK'(~)+FK'(0) (16)

already indicated, these contributions are calculated
only approximately or entirely neglected in the present
treatment. This distribution was observed in Al by
Berko and Plaskett. ' In the same paper they presented
an independent-particle theory in which the positron
wave function was obtained in the Wigner-Seitz
approximation using a potential arising from an Al+'
ionic core and three free valence electrons, and con-
sistently with this, a free-particle wave function for the
annihilated electron. The core electrons were treated in
the tight-binding approximation. The agreement
between the experimentally observed and theoretically
calculated angular distributions was remarkably good.

The present calculations were undertaken primarily
in order to study the effects the more reined methods
for computing positron and electron wave functions
described in the preceding section might have on the
theoretical angular distributions arising from the
parabolic region. The ground-state positron wave
function was computed using x-ray form factors as
measured by Batterman et al."The conduction-band
wave functions were taken to be the eigenfunctions of a
pseudopotential Harniltonian, and obtained by a
method closely patterned after that originally proposed
by Harrison. '4" According to this procedure, all VK,
with the exception of Vyy] and V2po are neglected, and
only the four lowest plane waves are included in the
pseudo-wave-function. The two nonvanishing coefE-
cients and the effective mass m* were chosen to repro-
duce the bands obtained by Segall using the Korringa-
Kohn —Rostoker method" Vu.i=0 023 Ry V20o= —0 O4

Ry, m*/m=1. 03. Tight-binding functions were used for
the core states. The radial functions were assumed to be
adequately represented for the present purposes by the

' B.W. Batterman, D. R. Chipman, and J. J. DeMarco, Phys.
Rev. 122, 68 (1961}.

~' W. A. Harrison, Phys. Rev. 116, 555 |',1959).
B. Segall, Phys. Rev. 124, 1797 (1961).
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Pro. 6. Calculated anisotropy
(taboo (0) —Fno (e) )/Fioo (0)of the angu-
lar distribution in Si (solid curve)
compared with experiment (dashed
curve) . (a) Pseudopotential theory
using positron wave function com-
puted as in Sec. II. (b) Same, using
constant positron wave function. The
contribution from the core electrons
has been neglected in calculating this
latter curve (cf. Ref. 27).
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results of Herman and Skillman. "'4 The integrated
angular distribution LEq. (2)j was computed for
several crystal orientations, using a variable mesh that
was densest in the region where the integrand f(p)
was most rapidly varying. The integrand was computed
for an average of 200 points (p„p„) per integral. The
resultant Ii (0) is precise to within 0.5%. The uncer-
tainty, which prevails at all angles, arises from the
rapid variation of f(p) at the Fermi surface and the
resultant difficulty in computing the contributions to
the integrals coming from this region.

The results of this calculation, displayed in Fig.
4(a) for a L100) direction, show very close agreement
with experiment which is not significantly diferent
from the theoretical results of Berko and Plaskett. '
Since the present method of calculation, in contrast to
that of Ref. 8, also yields the anisotropy of FK(0), the
angular distribution was calculated for several different
crystal orientations. The effect was found to be very
small indeed, the difference between the curves corre-
sponding to various orientations being within the
experimental uncertainty of 1% of the maximum
~ (~)

Figure 4(b) shows the angular correlation for
positron annihilation in a free-electron gas of approxi-
mately the same density as Al. The quantita, tive
similarity of the angular correlation involving the
valence electrons, which is nearly isotropic and quite
apparently influenced very little by either the exclusion
of the positron from the core or by the anisotropies of
the positron and electron wave functions, is rema, rkable
and deserves comment. Referring to the expression for
f"(p) given in Eq. (12), we note that were the electrons
truly free, bK(k) =BE,o. Because of the nearly free-
electron character of the valence electrons in Al, it is
expected that bo(k) will be much larger than the other

"F.Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, N.J., j.963) .

'4The lack of self-consistency in the treatment of the core
electrons is relatively unimportant since their contribution to the
annihilation rate is small, and in any case cannot be separated
from the contribution of the neglected higher-K components of the
valence electrons.

bK's over most of occupied k space. Despite the core
exclusion and the anisotropy experienced by the posi-
tron wave function (cf. Fig. 3), « in Al is also much
larger than the remaining aK. indeed PKyo I

aK I'(0.1.
The dominant contributions to f"(p) for p within the
Fermi surface are exhibited by rewriting Eq. (12) as

f"(p) =&~@
I bo(p/&) « I'+ 2 &~is o I bo(p/& —G—)« I'

GyW

+ Z~.is-~» I bx(p/& —K)« I'
K&0

+Qtsp(s-o
I Q bz(p/& —G)~o K I' (17)

6 EQO, G

For sufficiently small momenta p, the first term on the
right-hand side is dominant by far. The nonconstancy
and anisotropy of the positron wave function, which are
reQected principa, lly in the second term, and the
deviation of the electron wave function from its free-
electron form whose influence is described by the
third term, should have little effect if p is within the
Fermi surface. Accordingly, the free-electron and
positron description should be reasonable for the range
of p in question.

By contrast, for p outside the Fermi surface, the first
and previously dominant term in Eq. (17) drops out,
since sp/&

——0, and the rema, ining terms, which contain
the deviation from free-particle behavior, make the
entire contribution. It is to be emphasized that the
contribution of the core electrons must still be con-
sidered separately. However, it is seen from Fig. 4(a),
which illustrates the results of the pseudopotential
theory, that the terms of Eq. (17) under discussion
account for nearly half the calculated magnitude of the
tail. This theory, of course, includes only three plane
waves of nonzero K in the wave functions of the
valence electrons, and therefore does not treat accu-
rately the third term on the right-hand side of Eq.
(17).But the neglected high-K components correspond
to rapid oscillations of the valence wave functions in
the core region, and rough estimates suggest that the
magnitude of their effect is less than 10% of the core
contribution.
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TABLE I. Parameters for the three pseudopotentials discussed in the text. The last three columns indicate various valence-band
separations corresponding to the three models. All entries are in Ry.

Pseudopotential V111 F25r —X4 I'25 —L3

(1)
(2)
(3)

—0.21
—0.21
—0.21

+0.04
+0.10
+0.04

+0.08
+0.05
+0.05

+0.951
+0.953
+0.998

+0.242
+0.281
+0.265

+0.108
+0.126
+0.115

In solids like Si, where the pseudopotential coeK-
cients are considerably larger, the first term in Eq.
(17) no longer dominates to nearly the same extent as
in Al. The discussion in Sec. IV will show the non-
constancy and anisotropy of the positron and electron
wave functions to have considerable inQuence on the
angular distribution in Si.

Figure 4(b) illustrates that the effect of electron-
positron correlations on the p-ray momentum dis-
tribution in Al is no greater than that of the periodic
potential. This state of affairs is perhaps surprising, in
view of the fact that correlations are known to have a
large effect on the lifetime of positrons in Al, ' but it is
well in accord with existing many-body calculations.
The work of Kahana, 4 which includes the effects of
positron-electron correlations in free-electron metals by
means of a dynamically screened Coulomb interaction,
makes it possible to compute a momentum-dependent
enhancement factor e(P) =fME(P)/fFE(P) at several
electron densities. Here fME(p) is the many-body
momentum distribution (though it includes no band
eRects) and fFE(p) is the corresponding free-electron
function, which is constant for all p(pr. Since the
resultant e(p) can be fit very well by a simple poly-
nomial of the form e(p) =a+by'+cy4, with y= p/pr,
it is possible to perform the necessary integrals and to
obtain F(0) including correlation corrections. The
resulting curve is shown in Fig. 4(b) for r, =2, very
close to the actual Al r, of 2.07. As is evident, the only
effect of correlations on the curve is to create a very
slight bulge in the free-electron parabola. At lower
electron densities, Kahana's e(p) results in a larger
bulge. This is in accord with the experimental fact that
positron-annihilation rates in free-electron metals
deviate from the uncorrelated rates by a factor which
increases with decreasing electron density. ' ' More
recent many-body calculations, ' which include the
effects of diagrams neglected by Kahana, do not alter
this conclusion.

IV. SILICON

As already noted, solid-state eGects enter much more
significantly when positrons annihilate in a semicon-
ductor like Si than in a free-electron metal like Al
because the pseudopotential coeKcients in the former
are larger. The experimental angular distribution curves
in semiconductors exhibit marked departures from the
simple inverted parabola that characterizes the free-

electron gas, and whose existence in metals permits the
deduction of information concerning the Fermi surface.
One might therefore expect that a theory involving
electron and positron wave functions that properly
refl.ect the potential and its crystalline anisotropies
would be in better agreement with experiment than one
that deals with the electrons appropriately, but treats
the positrons in an approximation like that of Wigner
and Seitz which neglects these anisotropies.

The calculations described in this section were
carried out in fundamentally the same way as those of
Al. X-ray form factors were obtained from the data of
DeMarco and Weiss."The method for calculating the
positron wave function given in Sec. II required some
modification since Si has the diamond structure and
therefore contains two atoms per unit cell. Accordingly,
Eq. (5) for the Fourier components of the positron
potential became

VE=16s.pK' cossK b/K'.

Here b is the vector connecting the two sublattices of
the diamond structure and pK' is the Fourier component
of the charge density associated with one of the two
sublattices. The group-theoretical reduction of the
secular determinant (9) was also somewhat more

complicated. The convergence of the plane-wave
expansion for the positron wave function, Eq. (8), was
slower than in Al: It was necessary to include 269
terms as compared to 145 in Al.

The wave functions for the valence electrons in Si
were obtained as eigenfunctions of the pseudopotential
band structure of Brust. "Only the lowest three pseudo-
potential coefficients are assumed to be nonvanishing.
In Brust's scheme they take the values V»&= —0.21,
V»a =+0.04, Vs» ——+0.08 Ry. Since these are relatively
large, more plane waves than in Al are required to
describe the pseudo-wave-functions adequately. De-
pending on k, 15 to 25 are included directly, and a much
larger number is considered by perturbation theory.

The more recent calculations of Kane obtain k-de-
pendent pseudopotential coefBcients by the Heine-
Abarenkov method" and retain six as nonvanishing.
Since the valence bands, the only ones of importance
here, are substantially the same as Brust's, one would
expect Kane's theory to lead to annihilation curves very

"J. J. DeMarco and R. J. %eisa, Phys. Rev. 137, 1869 (1965)."V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
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TABLE II. Angular distribution in Si for two different crystal orientations (subscripts) and the three pseudopotentials of Table I
(superscripts) . For each pseudopotential, the numbers are normalized so that F100(0) = 1.000. The positron wave function is calculated
by the method of Sec. II. No core contribution is included. As is evident, the arbitrary changes in the electronic band structure given
in Table I have no appreciable effect on the calculated angular distribution.

tt (mrad) Roon'(8) F1oo"' (&) Ftoo1 1(e) Fno O) (e) F110")(~) %10(3)(~)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

1.000
0.995
0.978
0.895
0.730
0.518
0.319
0.171
0.090
0.058
0.043
0 ' 034
0.025

1.000
0.994
0.975
0 ' 893
0.732
0.520
0.322
0.167
0.083
0.054
0,041
0.032
0, 024

i.000
0.996
0.982
0.900
0.735
0.519
0.317
0.162
0.082
0.051
0.042
0.033
0.025

1.05S
1.047
0.960
0.829
0.683
0.546
0.370
0.153
0.072
0.050
0.040
0.034
0.028

1.062
1.048
0.957
0.827
0.684
0.547
0.367
0.145
0.067
0.048
0.039
0.032
0.026

1.054
1.054
0.964
0.830
0.683
0.547
0.369
0.141
0.065
0.047
0.039
0.033
0.027

similar to those calculated here. Indeed, subsequent
discussions will show the results to be quite insensitive
to substantial variations in the pseudopotential co-
efficients.

The core contribution was computed, as in Al, by
means of tight-binding functions for the core electrons.
For the diamond structure, the equation analogous
to (14) ls

32'
I ~

Z«cossK». 1 (I p« —K l»1- (p/~ —K) IB'
&a K

+ ) /&K»n-,'K bI„1(( p/fi —K [) F',„(p/f'1 —K) ]'} . (18)

Here v is once again the volume of the unit cell. The
core functions were taken from the tables of Herman
and Sk.illman. "

Figures 5(a) and 5(b) show the computed and the
measured FK(8) along the [100j and L110$ directions.
The two experimental curves have been normalized to
equal area, i.e., to equal total annihilation rate, and
the theoretical and experimental Frpp(0) have been set
equal. The function f"(p) was computed on a cubic
mesh of density 1/(or/4a)', where a represents the fcc
cube edge, and f'(p) was assumed spherically symmetric
and computed along the t 1001 direction. Because of
the absence of partially filled bands, f(p) experiences
no discontinuity. As a result, it is more slowly varying
and the resulting integrals are precise to four figures, a
considerable improvement over Al. The core contri-
bution F'(0) is found to be quite small and never
amounts to more than 6'P~ of the maximum value
of F(0).

The excellent agreement between theory and experi-
ment is perhaps more dramatically illustrated in Fig.
6(a), where the "anisotropy" (FIQO(if) +110(0))/+100(0)
has been plotted for both.

Because of the remarkable agreement of the one-
particle theory with experiment, several additional
calculations were undertaken in order to ascertain the

degree to which the present results are sensitive to the
positron and electron wave functions. In Fig. 6(b) the
"anisotropy" is shown for the situation corresponding
to constant positron wave function and the same
valence-electron wave functions as in Fig. 6(a). The
core contribution was neglected in this calculation. "
It is evident that the agreement between theory and
experiment is not as good as in Fig. 6(a). The qualita-
tive features of the curve are, however, reproduced,
indicating that they arise primarily from the anisotropy
of the electron wave functions.

A corresponding test of the sensitivity of the results
to the electronic wave functions was made by delib-
erately distorting the valence bands by means of
arbitrary and unphysical changes in the pseudopotential
coefficients. Two additional sets of pseudopotential
coefFicients are listed in Table I, together with the

"If the core contribution had been computed with a constant
positron wave function, its effect would have been greatly exag-
gerated because the amplitude of this wave function in the core is
far too large. The apparent inconsistency in comparing a curve
that includes a core contribution with one that does not is not
relevant to the present comparison. If the exaggerated core con-
tribution had been included in the calculation involving the con-
stant positron wave function, its effect would have been to reduce
the anisotropy because the core contribution is isotropic. The
discrepancy with experiment would thus have been rendered even
greater.
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Brust coeKcients. Some typical valence-band energies
at points of high symmetry in the Brillouin zone
referred to the band maximum at F are given in the
last three columns of the table. The 6rst of these is
characteristic of the total valence-band width and the
last two describe the energy variation of the uppermost
band along $1007 and [111)directions, respectively.
As is apparent, the changes induced by the new pseudo-
potentials are small compared to the total valence-band
width of about one rydberg. The pseudopotential
denoted in the table as (2) has the effect of broadening
the upper valence band relative to the Brust pseudo-
potential (1) without changing the total width. The
pseudopotential (3) increases the width but affects the
curvature of the upper valence band less than (2) .

It is worth noting that these changes in the pseudo-
potential coeKcients affect the conduction bands much
more markedly than they do the valence bands. This
relative insensitivity of the valence-band energies to
the pseudopotential coefficients, which was previously
noted by Cohen and Bergstresser, " is consistent with
the insensitivity of the corresponding angular-dis-
tribution curves, which reflect only the valence-band
structure.

Table II exhibits numerically the angular distribution
corresponding to an x-ray positron wave function and
the electron pseudo-wave-functions associated with the
three pseudopotentials of Table I. No core contribution
has been included, and for all three pseudopotentials
the value of F~pp(0) has been set equal to 1.000. It is
apparent that the annihilation curves corresponding to
the three pseudopotentials are practically identical,
thus con6rming that the stability of the valence-band
structure to changes in the pseudopotential coefFicients
is reflected in a similar stability of the annihilation
curves.

The insensitivity of the annihilation curves to these
quite arbitrary changes in the pseudopotential is at
first sight disappointing, since it indicates that positron-
annihilation experiments are not a fruitful source of
detailed information about the band structure of semi-
conductors. But the very precision with which the band
effects can be taken into account makes Si an excellent
subject for the study of the effects of electron-positron
correlations on the annihilation rate. Such a study

would be of particular interest in view of the fact that
nearly all such theoretical investigations have so far
concentrated on metals.

Since the experimental angular-distribution curves in
Si exhibit considerably more structure than those of
Al, the fact that they agree well with curves calculated
using pseudopotential wave functions for the valence
electrons provides much stronger evidence than do the
Al calculations that this approach is useful for a variety
of solids. The applicability of pseudopotential wave
functions is already evident in the work of Erskine and
McGervey, " in which experimental results for Si were
interpreted with some success in terms of a nearly free-
electron approximation with a single nonvanishing
pseudopotential coefFicient.

The fact that angular-correlation curves in Si are
derivable from an independent-particle theory implies
that the principal task remaining for a many-body
theory is to explain the observed annihilation rate.
Here it is relevant to compare Si with Al. Al has a
slightly lower electron density (r, = 2.07) than Si
(r,=2.01). Nonetheless, in contrast to the predictions
of theories considering positrons in an electron gas, the
annihilation rate is higher in Al than in Si by about
10%."This effect possibly results from the presence of
the band gap in Si. If the positron is considered an
external perturbation, then since there are states
available at the Fermi surface, the electrons in Al can
easily respond to it by increasing the local density of
particles with which the positron can annihilate. The
corresponding screening effect wouM be expected to be
smaller in a semiconductor like Si because there are no
available states near the Fermi surface.
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