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O'. The estimated contribution of these two sources
of error, (a) and (b) above, is indicated by error bars
on the experimental points in Figs. 6—11.

The remaining deviation of the experimental points
from the theoretical curves in Figs. 6—11 is thought to
be due to the lack of generation of we11-defined longi-
tudinal and transverse sound-wave modes throughout
the volume of the sample due to unfavorable geometry. "
In situations where the ratio of sample diameter to
sound wavelength is relatively small (DjX was about
7 for longitudinal waves and 17 for transverse waves
in the KTaOs sample) it is found that, if one is trying
to generate pure longitudinal waves along the axis
of the sample, there is a considerable amount of radial
motion perpendicular to the propagation axis in addition
to the desired axial motion. In the case of transverse
waves it is the polarization axis of the wave that varies
in direction as you move over a cross section of the

sample which is perpendicular to the propagation
direction of the wave. Since in the derivation of Eqs.
(2) it was assumed that only pure longitudinal or
transverse waves were present, this acoustic-mode
conversion can be expected to cause deviations of the
experimental results from theory.

It is believed, however, that the agreement shown
in Figs. 6—11 is sufficiently good that the nature of the
coupling between the acoustic phonons and the nuclear
spins in KTa03 is understood and, in fact, occurs
through the quadrupolar interaction.
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The splitting of vibronic levels in the presence of a magnetic field is determined in terms of a few param-
eters for an octahedral complex in the limit of Zeeman interaction (A) small compared to vibronic splitting,
(B) comparable to vibronic interaction, and (C) large compared to vibronic interaction. The relative
density of phonon states controls the size of the vibronic splitting in crystals, and is inAuential in deter-
mining whether case A, B, or C above applies. Data for cubic Cs2UBr6 show that vibronic levels are split
according to the parent electronic level, illustrating case C, because the vibronic splitting is much smaller
than that which would have occurred for a local-mode or free-ion complex. The free UBr62 belongs to
case A; the reduction to case C is due to the eGect of the phonon relative density of states. The vibronic
Zeeman effect is thus a tool for learning about the relative density of phonon states, particularly in localized
modes. Similar conclusions apply to vibronic shifts, so that for nonlocalized phonons the vibronic spectra
should reQect the density of states of the phonons without the necessity of correction for vibronic shifts or
splittings. For case A, particularly applicable to the free-ion complex, the Zeeman splitting of a vibronic
level is isotropic and consists of three equally spaced levels with a g value that is one-half that of the parent
electronic state. Some general relations between vibronic level differences are derived which are independent
of particular models and values of matrix elements.

I. INTRODUCTION

ECAUSE the octahedral complexes UCls' and
UBr6~ in crystals have tighter binding within

the complex than between the complex and neighbor-
ing ions, the vibronic spectrum of these ions in crystals
shows that they behave in some respects as molecules
(i.e., with somewhat localized motion), in that with low
resolution, or at not too low a temperature even at high
resolution, there are broad bands (about 30-cm ' width)
which correspond to excitation or de-excitation of one

*This vrork eras supported in part by the U.S. Army Research
Qfhce, Durhar. n,

quantum of an odd (Nrtgerade) mode of the complex. ' '
These bands obey the single-complex-ion vibronic selec-
tion rules in that F4„modes are essentially absent for
vibronic transitions between the ground F1, and ex-
cited F2, electronic states, and F5 modes are essentially
absent for vibronic transitions to excited F1, electronic
states. In addition to the two internal F4„modes of the
molecular ion, a third F4 band appears at lower energy
corresponding roughly to the vibration of the complex

R. A. Satten, D. J. Young, and D. M. Gruen, J. Chem. Phys.
33, ii40 (1960).' S.A. Pollack and R. A. Satten, J. Chem. Phys. 36, 804 (1962).

3 R. A. Satten, C. L. Schreiber, and E. Y. Wong, J.Chem. Phys.
42, 162 (1965).
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TABLE I. Zeeman effect of vibronic lines and corresponding pure electronic transitions (where known) for trigonal Cs&UC16 and cubic
CsuUBrzin a field of 270X10' and 25.6X10' G, respectively. The zero-phonon lines are denoted by (e) . Lines are measured to &0.2 cm '.

Electronic
state

Cs2UC16

(cm-~) Pol.
Electronic

state

Cs2UB6
V

(cm ')

e)

F4 or F5

F4

(e)

21 872. 7
21 871.3

21 866.0
21 864.6

21 865 ' 2
21 864.0

21 861.0
21 859.5

21 860.6
21 859.3

21 855.9
21 854.5

21 818.8
21 817.2

20 729. 1
20 726.2

20 533.0
20 530.0

20 512.0
20 509.4

20 511.8
20 509.2

20 507.3
20 504.5

18 875.0
18 872. 1

18 834. 1
18 831.1

0.6

0.6

0.5

0.6

0.5

0.6

0.7

1.2

1.3

1.2

1.2

1.3

~F4

(e)

F5

18 306.0
18 304.7
18 303.0

18 259.7
18 258.2
18 256.7

17 110.5
17 108.1
17 105.7

17 000.5
16 998.1
16 995.6

16 985.1
16 982.6
16 980.0

16 970.9
16 968.4
16 965.7

16 961.1
16 958.9
16 956.4

15 430.8
15 429.8
15 428. 7

15 427. 7
15 426. 7
15 425.6

12 660.7
12 659.3
12 657.8.
12 656.2
12 654.8

9 066.5
9 065.3
9 064.3

9 063.1
9 062. 1
9 061.0

1.0
1.3

1.2
1.2

1.9
1.9

1.9
2.0

2.0
2. 1

2.0
2. 1

1.7
2.0

0.8
0.9

0.8
0.9

1.1
1.2
1.3
1.1

1.0
0.8

0.8
0.9

~ Two lines coincide.

against the positive ions. The three F4„bands also
appear in the far infrared, ' whereas the F5„ internal
vibration does not appear, which is in agreement with
0=0 infrared selection rules.

At high resolution and low temperature, thin crystals
of Cs2UC16, Cs2UBr6, and other crystals having UC16'

4 R. A. Satten and O. M. Stafsudd, Optica/ I'roperties of Ions in
Crystals, edited by H. M. Crosswhite and H. W. Moos (Inter-
science Publishers, Inc., New York, 1967), p. 423.

50. M. Stafsudd, Ph.D. dissertation, UCLA, 1967 (unpub-
lished); also available as AKC Research and Development Report
UCLA-34P103-3, from the Clearinghouse for Federal Scientific
and Technical Information, National Bureau of Standards, U.S.
Dept. of Commerce, Springfield, Va.

or UBr6' complexes show a 6ne structure'' in the
"internal" vibronic bands as well as the low-lying band.
It has already been noted' that the fine structure can-
not be explained on the basis of a single-complex-ion
model, nor can the region around one point in the
Brillouin zone such as k=0 provide enough structure,
as often 10 to 20 lines appear within the 20-40 cm '
wide bands. ' In fact, vibronic selection rules'~ in the
trigonal crystal Cs2UC16 show vibronic lines in which

'D. R. Johnston, Ph.D. dissertation, UCLA, 1967 (unpub-
lished) .

7 R. A. Satten, J. Chem. Phys. 40, 1200 (1964).
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TABLE II. Functions used, classi6ed according to irreducible representation and row for the group 0. Normal coordinates in vibronic
eigenfunctions stand for the corresponding vibrational eigenfunctions with one quantum of excitation, all other modes being assumed
in the n =0 vibrational state.

V.. U P P' p' Ql'+2Q2Q8 qI —2q2ga giga g3g5 g2g6 (3) ($1QI+$2Q3+$8Q2)

(3) '"(4IQI+4'2Q2 6 3Q8)

F3p=j:
p=2:

(2) ( Vaa+ Va—2) Vl Sl Sl Sl 2 (Q2 +Qa ) 2 (q2 +qa ) g2ga+gaga

I 2o Va Sa Sa' sa (3) '"(Ql' —Q2Q3) (3) "'(ql'+gaga) (3) "'(2qg4+qaqa+qaqa)

p= 1:
p=2:

(2) '"(AQ2+AQ8) (6) "'(24»QI —AQ2+$3Q8)

(6) (2lPIQI $2Q3 $8Q2) (2) ($2Q3 @3Q2)

r, p=i:
p 2

p= 3:

VI6 fl qa q4 A (2) "'93Q2 AQ3) (2) (Aqa 4'aqa) (2) "'(6 2Q8+AQ2)

VII f2 ga qa 42 (2) 'i'(AQ3 —AQI) (2) '"(6 Iqa 6 aql) (2) '"{68QI O'IQ2)

VI I fa qa qa @8 (2) "'QIQ2 —AQI) (2) '"4 aqa
—6»qa) —(2) '"(61Q8+62QI)

r, p=1:
p=2:
p=3 ~

(2) '"(Vga —Va 2) Wl TI 2I' 6 Ql i I 2(Qa' —Qa') 2 (qa' —qa )

W2 T2 T2 t2 Q2 f2 Q1Q3

Tg T3' t3 Q3 $3 Q&Qg

p=~: (2) "'(AQ2 —AQa) (2) "'(6 aq
—43qa)

p 34

p =2: —(2) I Q'IQ3+tpaQI) (2) (plqa+akaql)

(2)»' (Ittl)Q&+$2Q&) (2)»2 (y&q3+@,qg)

( ) "'(&3Q3+@~Q2)

(2)
—

Ila(@3QI+yIQ,)

(2) "'(eaQI-4»Q8)

the contributing phonons can be identified as coming,
for example, from the k, axis or the vertical edge of the
hexagonal Brillouin zone' ' as well as from other regions
in other examples.

Although the vibronic Zeeman eGect is useful in
assigning phonons to regions of the Brillouin zone by
use of selection rules, 6 our attention is here directed
to the splitting of vibronic lines in a magnetic field.

II. EXPERIMENTAL RESULTS

The essential experimental fact is that within ex-
perimental error vibronic levels belonging to the same
electronic level have the same splitting in all cases
observed, and this is the same as the electronic level
splitting when the latter is observable. The data come
from Cs~UC16 and Cs2UBr6 ~ Similar results have been
obtained for rare earths in anhydrous trichlorides. The
results are shown in Table I for a magnetic field of
25.6X10' G. for CsgUBr6 and 2 70X10' 6 for Cs2UCl6 ~

Most of the vibronic levels in Table I are from the
low-lying optical branches involving largely the motion
of the complex against the positive ions. The absence
of much Zeeman data on the optical branches which
reQect mostly the "internal" modes of the complex is
due to the crowded nature of the fine structure in

' E. Cohen and H. W. Moos, Phys. Rev. 161, 258 (1967); 161,
26S (I967) .

D. R. Johnston, R. A. Sat ten, and E. Y. Wong, Optical
Properties of Iorls irI Crystals, edited by H. M. Crosswhite and H.
W. Moos (Interscience Publishers, Inc. , New York, 1967),p. 429.

these bands and the difhculty of resolving Zeeman
lines under such crowded conditions.

In the next sections we consider theoretically the
splitting of vibronic levels under a variety of condi-
tions.

III. FREE-ION VIBRONIC SPLITTING IN ZERO
MAGNETIC FIELD

Since the unperturbed systems are the vibrations of
the XI4 6 molecule in the harmonic approximation and
the central ion in the ligand or crystalline field V, at
equilibrium positions, the perturbing vibronic Hamil-
tonian V,„arises from the diGerence between the crys-
talline field at general positions of the atoms and at
equilibrium. ""Thus V„=6V, is expanded in powers
of the displacements of the atoms from equilibrium,
which in turn can be expressed in terms of normal
coordinates.

Ke are concerned with vibronic levels involving one
quantum of an odd vibration since they permit electric
dipole vibronic transitions within the f" configuration.
For this reason, in considering vibronic splittings we
need only keep terms of second degree in the normal
coordinates. The terms which can appear have a form
allowed by symmetry. For the free ion the vibronic
Hamiltonian can be divided into a sum of terms involv-
ing F5„modes and F4„modes which can be considered

J. H. Uan Uleck, J. Chem. Phys. 7, /2 (1939).
11 R. A. Satten, J. Chem. Phys. 29, 658 (1958);308 590 (&959)~
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separately. Since there is only one threefold degenerate
r,„vibration, the Hamiltonian is the simplest in this
case. It has the form

V- = ~(Q2'+2Q2Q3) +2I V2(Q2'+Q3') 3

+V2(Q12 Q2Q3) /(3) 1/2

+2LWl(Q3 Q2 )j W2Q2Ql+W3QlQ3) (I)
where U, V2, V2, W2, W2, W3 are functions of f electron
coordinates of the central ion which transforms accord-
ing to the particular row and representation defined in
Table II. A word of explanation is in order concerning
our choice of normal coordinates Qq, Q, , Q, , which trans-
form according to t, ( —$+ig) (2) 'I' (—$—iq) (2)
respectively, where $, q, t in turn transform like ys,
xs, xy, respectively. The reason for our choice instead
of normal coordinates transforming as $, q, f is that
atomic wave functions are usually expressed in terms
of a JM basis or linear combination of these states in
an octahedral field. In particular, we have obtained'
numerous electronic wave functions generated by simul-
taneous diagonalization of the Coulomb interaction be-
tween f electrons, spin-orbit, and 4th and 6th degree
octahedral potential. The electronic basis functions,
therefore, already define the particular irreducible repre-
sentations. There are independent advantages to these
particular bases as each row also turns out to span C4~

irreducible representations and hence are appropriate
when the magnetic field is along one of the fourfold
axes. With regard. to the electronic parts of V.„U, V;,
lV, , particular expressions can be worked out for special
models, such as the point-charge model, but there is
value in obtaining results which are independent of
special models.

The interesting electronic states are the threefold
degenerate F4, or F5, since there is no first-order Zeeman
eRect in F3 states. The electron-vibration interaction
V., splits the ninefold degenerate vibronic level into
four levels according to one of the following direct
product decompositions: I'3, X I'3 = I'2„+I'3„+I'3 +I'3„
or I'3,XI'3 =I"q +I'3 +I'3 +I'3„. For I'q, ground elec-
tronic states, as in UC16' and UBr6' complexes, the
splitting leads to no further structure in the spectrum
since only transitions to the I'4 vibronic state are
allowed '

Using the vibronic eigenfunctions in Table II, we
obtain the following result for the first-order vibronic

I'5~I'4, I'2~1'g. (4)

The energy-level corrections (2) introduced by V,„
for F5„modes all have an implicit mass dependence
of 1/M since in transforming V,„expressed in terms of
displacements of the atoms (halides in our example)
to normal coordinates, using mass-weighted coordinates
as an intermediate step, one obtains for a typical I"5„
mode, as shown in Fig. 1:

corrections to the energy of a I'4 electronic state with
one quantum of I'5„vibration:

&(I'.) =(3&/2 ) (~. I
U

I ~)
—2(3)-'"(5/(o) (y2 I V2

I Q2)

—(&/~) (e3 I W2
I e2), (2a)

~(1'3) =-'2 (&/~) (43 I
U

I 4x) —2(3) "2(&/~) (42 I
V2 I 42)

+(&/») (e3 I W2
I 42), (2b)

~(1'3) = l(&/~) (42 I
~

I 0 ) +(3) "2N/ ) (4 I V 14 )

—(&/») (A I
w2 I e2), (2c)

&(I'3) = 2 5/~) (4i I
~

I 4i) + (3) "2(&/~) (42 I V2 I 0'2)

+(&/2~) (e3 I
W2

I e2) (2d)

Note that since U belongs to I'~, the terms involving
U produce only a uniform shift in all levels and the
three independent energy separations are determined
by two independent matrix elements. Thus we obtain
a relation between the level separations which is inde-
pendent of the detailed nature of the interaction. It
follows from Eqs. (2) that

~(1' ) —&(I' ) =ll:&(I' ) —&(I' )j
= (&/~) (03 I

Wi I 02) . (3)

The sum of the energy levels (2), each weighted by
its degeneracy, equals (45/2) (5/co) (P& I

U
I p&), a fact

which one can also readily predict from the fact that
the diagonal sum of the matrix of V,„, in a nine-dimen-
sional basis of simple product states of vibrational and
electronic wave functions, totals this amount.

The electronic matrix elements in (2) can be replaced
by others, as given in the Appendix. Results for a I'5

electronic state are obtainable from (2) and (3) by
the following correspondence:

r,~r„

FIG. 1. Atomic displacements
corresponding to the normal coor-
dinate QI of the I'5„mode of the Q
XF'6 molecule.

05 EZ3 ———-', (M '~2) Q2,

~Z3=-,'(M- ~ )Q„

AZ2 ———-', (M '")Qg,

AZ3 ——-,'(M "')Qg,

where the subscripts label the atoms as shown in Fig. 1
and M is the mass of the halide atom.

VVe estimate the order of magnitude of the vi-
bronic splitting in a free ion to be of the order of
V,„V,(hR/r)2, where hR is of the order of a vibra-
tion amplitude and r is the Sf radius. For UC42 we
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have' V,~10' cm ' and (DR/r)'~3X10 ', where we
have used I'5 modes to estimate (AR)2 f4/8M46 and
Lenander's" value for (r') =47&(10 "cm . Thus V,„~3
cm '; it depends in any actual case, of course, on the
particular electronic level and mode.

There are two sets of F4„modes of the XY6 molecule,
which adds more terms to the Hamiltonian and leads
to the diagonalization of a 2)&2 matrix to obtain the
vibronic eigenvalues.

Suppose q~, q~, q3 are one set of degenerate F4„modes
of frequency co and q4, q&, q6 are a second set of fre-
quency co', where the bases each transform as spherical
harmonics YM, Y», Y», respectively. The Hamiltonian
has the form

Vs@ ~(ql 2q2q8) +2~1(q3 +q2 ) +~2(ql +q2q8) (3)

+2I1(q2 q8 ) +2 2qlq3+T3qlq2

+~'(q4' —2q5q6) +2~1'(q6'+q5')

+(3) '"~2'(q4'+q5q6)

+-2T1' (q5' q6') +T2 q4q—6+T3 q4q5

+p('qlq4 q2q6 q3q5) +~1(q2q5+q8q6)

+ (3) ' 'S2(2qlq4+q2q6+q8q5)

+ ~1 (q2q5 q3q6) + ~2 (q8q4+ qlq6) +~3 (qlq5+ q2q4)

+f1(q2q6 q8q5) f2(qlq6 q8q4) f8(q2q4 qlq5) p (6)

where the coeKcients of the q's are functions of the
central ion electrons (Sf for IJ4+) and transform as
defined in Table II. The terms in f, do not aRect the
vibronic energies in 6rst order for either F4 or F5 elec-
tronic states, since the symmetric products CI'472 and
CI'57' do not contain I'4. The f, affect the energies in
second and higher order and are important only if
there are close-lying electronic states.

The resulting 2)&2 matrices are as follows. The diag-
onal matrix elements for F& electronic states appear as
in (2), with the exception that P, must replace P, and
U, V;, 8'; are replaced by I', 5;, T;, respectively, in

(V,„)11 and by I", S,', T,', in (V,„)22. For I'4 electronic
states the resulting expressions just obtained must be
changed by the correspondence (4). The off-diagonal
elements ( V,„)12= ( V„)21 are as follows for I'4 electronic
states:

Cl(4 I pl&) —2(3) '"(4
I It)

-(~ l~ l~.)7~(' ')-"', (7)
Cl (4 I p I e ) —2(3) "'(0

I I & )

+2(&8 I ~1 I &2)7~(~~') '", (7b)

I': Cl« I p! ~.)+(»-'"(~.
l "l~.)

+l (&8 I ~1
I @ ) 7&(~~') "', (7c)

Cl(+ I p I 4 )+(3) "'(+
I I 4 )

—l(A I
~1

I
A)7&(~~') '" (7d)

"J.C. Lenander, Phys. Rev. 13Q, 1033 (1963}.

For F5 electronic states one makes the changes given
in (4).

It can be shown that relations between vibronic level
separations, which are independent of the details of
the vibronic interaction, also arise in the coupling with
F4„modes. In particular, for F4 electronic states the
vibronic energies satisfy

&(I'4) —~(l'5) = 3C&(l'8) —~(l'1) 7

for the 14„modes of frequency co, and.

~'(I ) -~'(I.) =lC~'(I.) -~'(I.) 7 (9)

for the F4 modes of frequency co'. A set of relations
similar to (8) a,nd (9) hold for I'5 electronic states,
with the same correspondence (4) as before. These
are formally the same relations as found between vi-
bronic states involving 15„modes. We emphasize the
fact that the vibronic energy differences arising from
each of the F4„modes satisfy the same type of relation
rather than the sum or average of corresponding prime
and unprime energy levels satisfying such relations as
one might have expected. We point out, however, that
since the F4„modes do not have the simple mass de-
pendence of the F5„modes, there is no simple Inass
dependence implicit in the vibronic energy levels or
their differences (8) or (9).

Case A: Zeeman Interaction SmaQ Comyared to
Vibronic Interaction

Applied to UC16' or UBr6' complexes, the situation
that the Zeeman interaction is small compared to the
vibronic interaction can only occur for the isolated
complex ion or to very localized modes of the complex
in some host crystal, not in an undoped crystal such
as pure Cs2UBr6. The situation in pure crystals will
be further discussed in a later section.

If the Zeeman interaction is small compared to the
separation of the vibronic levels, then we need con-
sider only the matrix of V„within the threefold de-
generate F4„vibronic states for transitions from the
ground F» state, and also F5 vibronic states in other
situations.

The g values for the electronic state can be defined
with the aid of an effective Hamiltonian gPS H, em-

ploying effective spin-1 matrices:

(41 I ~.
I 41) =0,

(42 I S. I A) = —(48 I S, I A) = X

for F4 electronic states, and a similar set of relations
for F5 electronic states, obtained by the replacement
of P, for g, .

It follows from the F4 vibronic eigenfunctions in
Table II (and also for I'5 vibronic states), built from
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either F4 or F5 electronic states and one quantum of a
F4„vibration, that the vibronic g value is one-half of
the parent electronic state g value:

1
gvibr = gg. (10)

Similarly for F5„vibrations we Gnd

gv&br =
g g)

g.;b, = (1'4n=2
I
O'.

I
1'3~=2)

2 ($3Q1 tt2Q2 I gSg I $3Q2 QlQ2)

=k(A I g~. I 43) = —2g,

where the relative sign in (10) or (11) refers to whether
or not the state labeled p=2 is raised or lowered in a
magnetic Geld, which can be detected with circular
polarization. The splitting of a pure electronic state
is (in the vibronic state) shared equally by the I'4 and
F5 vibronic states, as evident from the wave functions
in Table II, as the following particular example demon-
strates for F4 electronic states and F5 vibrations:

of symmetry for F5 electronic states and F5 modes.
The symmetry of the Hamiltonian is reduced to C4&.

The following correlation table is useful in simplifying
the matrices:

O~ F5 p= T is a basis
F5 p=2 is a basis
F5 p=3 1S R bRSlS

F4 p= T 1S R bRSlS

F4 p=2 is a basis
F4 p=3 is a basis
F3 p= T is a basis
F3 p=2 is a basis
Fy 1s R basis

for F2 of C4
for F4
for F3
for F~
for F4
for F3
for F2
for F~
for Fy.

Thus, the matrices are all 2&2 except F~, which is 3&3.
Thus for C4& symmetry the V,„interaction is diagonal

in a basis of vibronic states belonging to our previous
choice for the rows of an irreducible representation of
0& and these diagonal elements are, in fact, already
given by (2) with the replacements (4) . Thus we need
specify in detail only the matrix elements of the mag-
netic interaction. The resulting matrices are as follows:
For F4 of C4.

where we have used the convention in Table II of
representing the vibrational wave function with one
quantum of vibration by its normal coordinate and
omitting all other vibrational wave functions in their
m =0 quantum state. These results, although illustrated
for the Z component of the effective-spin operator are,
nevertheless, independent of relative orientation of
molecule and field, i.e., the splitting into three equally
spaced levels is isotropic.

The —', g results should be particularly interesting in
paramagnetic resonance at kT~hco since the condition
of case A, Zeeman splitting small compared to vibronic
splitting, is easier to achieve than for optical experi-
ments which require higher magnetic Gelds.

Fol F3 Of C4:

(~(1'3)+k(AH) 2(gP&)—

2(gP&—) &(1"4)+k(gP&))

For F2 of C4.

(~(l.) g~~ )
! !

(12)

(13)

Case 3:Zeeman Interaction Comparable to
Vibronic Interaction

When the magnetic Geld is increased beyond case A,
the symmetry is lowered, the splitting of the F4 vi-
bronic states becomes nonuniform and anisotropic due
to matrix elements of the magnetic interaction between
vibronic levels belonging to different OI, irreducible
representations, and also new lines can appear in the
spectrum due to such mixing. The size of the matrices
which must be considered varies from 9&(9 to 2X2
or 3&3, depending on the magnetic Geld orientation
relative to the molecule. Thus, for freely rotating mole-
cules, the Zeeman spectrum may consist of broad lines
which result from averages of the levels over all orien-
tations of the molecule relative to the field. Local
modes in a solid may provide molecules in fixed orienta-
tions resulting in sharp lines. We illustrate the matrices
appropriate to a magnetic field along a fourfold axis

Fol Fy of C4.'

gPB/V3 egg gg/%33t—

goa/K3

v2gpH/3/3—0

Case C: Vibronic Interaction Small Compared to
Zeeman Interaction —Crystals

In this case, one Grst diagonalizes the Zeeman en-
ergy in a basis of degenerate electronic states and adds
the vibronic interaction to vibronic states already non-

The matrices can be readily solved for the eigen-
values. The limiting case A can be readily obtained
from these matrices by neglecting the off-diagonal ma-
trix elements. The limiting case C can be obtained by
allowing each E(1') to approach zero.
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degenerate as a small perturbation. For vanishingly
small vibronic interaction each vibronic line will there-
fore split with the same g value as the parent electronic
level:

the same, namely a. The secular equation is

a —z a ". a 'I

gvlbr =g) (16) Bet =0.

and the splitting is isotropic.
Case C is of importance in crystals even for those

consisting of molecules or complex ions which, when
free, would be case A. An example is Cs2UBr6, which is
cubic and has octahedral UBr6' complexes, and even
though the estimate of V„splitting for the molecule
is case A, as discussed above, the experimental situa-
tion follows (16) within experimental error. Pr'+ and
Nd'+ in anhydrous trichloride hosts also satisfy (16),
as shown by Cohen and Moos. The reason in Cs2UBr6
and to some extent in the rare earths (in which U,„ is
smaller owing to smaller U, ) can be traced back to an
effective reduction in V.„ in the crystal for the type of
vibronic spectral line observed, which is one of the fine
structure lines due to peaks in the density of phonon
states referred to in the Introduction. This fine struc-
ture is the only type of line in which one can hope
to see the vibronic Zeeman splitting, as it is unlikely
to be observed in a broad band.

The reduction of V., splitting can be accounted for
in a simple way. Suppose a vibronic line to be due to
E' phonons in an optical branch, each of which are
presumed to be in a Rat region of the phonon dispersion
E versus k. It is reasonable to assume that the E'
phonon modes have a range of k vectors such that the
unit cell eigenvectors are essentially the same for all E'
modes. This would in a sense account for the independ-
ence of the phonon energy 8 of k over this range. It
is also reasonable to suppose that only the atoms within
a Wigner-Seitz unit cell about a paramagnetic ion con-
tribute to the electron-vibration interaction V„between
that ion and its neighbors. The electronic energy bands
for 4f or Sf electronic states in lanthanide or a,ctinide
salts can be presumed to be extremely Rat in E versus
k, so that we shall use the single-ion description of
atomic states, just as if it were an impurity in its own
lattice. Then vibronic states (built from linear combi-
nations of products of electronic wave functions for the
ion and vibrational wave functions for the lattice in a
way analogous to the free ion in Table Il) belonging
to the same row of a particular irreducible representa-
tion will all have the same V.„matrix elements between
any pair of such vibronic states, because the motion
in the unit cell containing our paramagnetic ion is the
same for each of the Ã' modes.

Call this matrix element a. But iz=at/N, where at
is the size of the interaction if the quantum of vibra-
tional energy were localized within the unit cell, and
N is the number of unit cells and also the total number
of k vectors in the optical branch. We must diagonalize
the X'XS' matrix, each matrix element of which is

It is easy to show by adding columns that the eigen-
values of (17) are

E=N'a= (N'/N) at

(N' —1)-fold.

This is what we wished to prove. Note that for a
perfectly Rat 8 versus k throughout the entire Brillouin
zone, E'=X and E=oj as expected. For a pure un-
doped crystal it is easy to see how N'/N would be
small enough to reduce V,. from case A to case C.
However, for localized modes obtained by doping para-
magnetic ions in the proper host, one might expect to
find the vibronic Zeeman effect to no longer reRect the
Zeeman splitting of the parent electronic level but to
be modified from it in a way in which one could learn
about the density of states. In any case, it provides a
test for the existence of localized modes.

An important consequence of the reduction factor
produced by the relative density of states N'/N is
that, when localized modes are not present, the vi-
bronic shifts as well as splittings are negligible, so that
the peaks in the vibronic spectrum should directly re-
Rect the peaks in the phonon density of states without
appreciable modification by vibronic energy shifts and
split tings.

On the other hand. , an example" of the inRuence of
localized modes on the electronic energy spectrum is
that of the shift in the pure electronic level of a Nd'+
or Pr'+ ion in I aF3 doped with H ions replacing F .
Actually the difference in shift when H was replaced
by D was observed due to the electron-vibration inter-
action and the difference in zero-point amplitude be-
tween H and D, which is large partly because of the
relatively large percentage change in mass, and partly
because the vibrations are localized.

APPENDIX

The following matrix-element relations are a conse-
quence of symmetry:

(@.I
JUt

I @s) = —(es I
JUt I e.)

= (4i I
IUs I 4s)

@ G. D. Jones and R. A. Satten, Phys. Rev. 147', 566 (1966).
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(~ I
w. l~.) =-(~. l w. lo.)

=—(Al w~IA)
= —g, lw. lp, )

=(Pal w~
I A)

= (A I wa! 6),
2 (e~ I U~ I e2) = (@2 I U2

I e~)

=(~ IU I~)
= (3)-'"(~

I U.
I ~ )

=(3)-'"(~
I

U
I ~),

k(A I U~ I 6) = (6 I Ug
I A)

=—(3) '"(|t
I

U IA)
= —(~) "'(A

I
Ui

I A),

where the various functions transform as in Table II,
and of course, similar relations hold for any other
functions transforming in the same way.

The following vibrational matrix elements are useful

(Q.*=Q.):
(Q I

Q'! Q) =3~/2,

2 2 3 2 3 2 3 3

2 2 3

= (Q~ I
Q~'

I Q2)

=&co)

3 2 2 2 3 3

2 2 2

= (Q2 I
Q~'

I Q2)

3 2 3

=(Q IQ'IQ)=0
(Q~ I Q~ I

0) = (o
I Q~ I Q~)

= (Q2 I Q2 I 0)

=(Q
I Q I o)

= (o I Q, I Q )

=(o
I Q. I Q.)

= (5/2(a) '12,

(Q. I Q. I o) =(Q. I Q. I
o)

= (o I Q2 I Q~)

=(OI Q I Q) =o,

(oo
I Q Q !oo)= (0 I Q I 0)

=6/24)q

where normal coordinates in place of wave functions
stand for the corresponding vibrational eigenfunction
with one quantum of excitation, all other modes being
assumed in the m=0 vibrational state, which is some-
times indicated explicitly by a zero. A similar conven-
tion holds for the following F4„vibrational modes
(q2*= —q3):

(q~ I
e'

I q~) =~&/»

(q2 I q2qa I q~) = (q3 I Aqa I q3)

=(q lq'lq)

(q3 I q2'
I q2) = (q2 I qP! qa)

= (q2 I
q2'

I qm)

= (e I
q~'

I q2)

= (q3 I
q2'

I qa)

=(q
I
q'

I q) =o

(q lq! o)=(olq lq)
= (q2 I q2 I

o)

=—(o I q~ I q~)

= —(o I qa I q2)

= (5/2(u) "I',

(q2 I q3 I o) = (q3 I q~ I o)

=(ol q, I q)

=(o
I q I q) =o,

(00 I q,q, I oo) = —a/2~

=-(o
I q I

0).


