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Exact Lower Bounds for Some Equilibrium Properties of a Classical
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It is shown that the internal energy, Helmholtz free energy, and Fourier-transformed static structure
factor S(k), for a classical electron gas with uniform positive background, are all bounded below by their
Debye-Huckel values. This is true whether the equilibrium state is uniform or crystalline and whether
periodic or impenetrable-wall boundary conditions are used.

1
MONSlDKR E classical electrons in thermal equi-~ librium in the cubical' box 0&x, y, s, &I. of

volume 0=1.', uniformly filled with positive charge of
density IeIN/0= lelts.

The static structure factor for the system is defined
by

S(lt)= lim —(I P e'" "I')
N, Q-+co gN/0=r4

or, alternatively,

S(it) = lim — dr dr' '"e' t' "i(fl(r)fl(r') &,
N, Q ~to gN/0=~

where

ff(r)= Q h(r —r;)

1
(f)=— drt. dry e~f, Q= drt drsre e.~, (4)

shown is that the exact S(lt), I, and f, are bounded
below' by their Debye-Huckel values. This is con-
sistent with currently known approximate results~'
and a criterion that future calculations can be tested
against.

The demonstration of these inequalities depends to
some extent on whether periodic or impenetrable-wall
boundary conditions are chosen. Periodic boundary
conditions lead directly to a proof that does not assume
a spatially homogeneous equilibrium state, and there-
fore applies even when the electron gas crystallizes.
Because, however, periodic boundary conditions are
particularly clumsy for a classical Coulomb potential
and because the customary assumption that results
are independent of boundary conditions is not only
unproved but, in the Coulomb case, even unobvious, a
separate discussion is given in the case of impenetrable
walls.

The results in both cases follow from a judicious
choice of functions A(rt r~) and B(rr rs) in the
inequality

P=1/kiri, and U is the potential energy
The main ur ose of this a er ls to demonstrates which ln turn implies the Schwartz inequality

that for any k

S(lt))ks/(ks+ kns) kn s= 4rrrIes//keT (5)

Immediate corollaries of (5) are exact lower bounds on
the internal energy per particle I and the Helmholtz
free energy per particle f:

VVe take the vector function I to be of the form

BU 1
a(r, r )=Z t(r;) —-Vi(r;)

Br; P
(10)

I= sskttT+ lim (1/N)(U) & skeT —
—s,esker, (6)

N/O ~~

f& fo tseskn, —-

where fs is the Helmholtz free energy per particle of
an ideal gas of the same density.

Since inequalities (5)-(7) are derived as equalities
in the linear Debye-Huckel theory, what has been
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t Alfred P. Sloan Foundation Fellow.
~The generalization to an arbitrary parallelepiped will be

obvious.
~ "A demonstration convinces a reasonable man; a proof, a

stubborn one." (An approximation of a remark of M. Kac in a
recent public disputation with M. Black, while at large at Cornell. )
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' S. F. Edwards LPhil. Mag. 4, 1171 (1959)g gives a bound for a
thermodynamic potential in terms of Debye-Hiickel theory by
formulating an electron-ion problem in terms of functional
integrals. His work, however, has no evident relation to the
results demonstrated here. The Debye-Huckel form, for example,
is an upper bound in Edwards's paper. We have not been able to
derive any of the Debye-Huckel lower bounds by such functional
integration techniques.

'D. L. Bowers and E. E. Salpeter fPhys. Rev. 119, 1180
(1960)g give analytic corrections to the Debye-Hiickel internal
energy.

5 S. G. Brush, H. L. Sahlin, and E. Teller [J. Chem. Phys. 45,
2102 (1966)j give numerical calculations of the internal energy
and free energy.

s J.Coste pNucl. Fusion 5, 284 (1965)jgives an analytic calcula-
tion of the static structure factor.

'The apparently ad hoc procedure that follows is a special
application of a very general method for bounding certain cor-
relation functions. See N. D. Mermin, J. Math. Phys. 8, 1061
(1967).
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or, equivalently,

et'~ N 8
(2 (r')e "),

p ~-) Br,

We therefore have

&IRI')=- p &v(r;)((*(r,)v,".V;U&

where the function 22(r) is any twice differentiable func-
tion that either has the period of the cube of side I.,
or vanishes on the surfaces of the cube, depending on
whether we are using the periodic or impenetrable-wall
boundary conditions.

For A we choose

N=- g &q (r,)BX/Br;& (13.)

(The integration by parts leads to no surface term either
because the integrand is periodic, or because y vanishes
on the surface. ) In particular, (13) implies

N

&R~*&=-Z ((((r') VII*(r') & (14)

((2(')=(2 2")=—r w(&) 2") (&5)
p s-i gr;

Substituting (10) in (15) gives

1 N QU+- & e («) V~*(r') —V'((*(r') (16)
pi 1 gr p

The secon.d term in (16) can be written

dr~. drN P ()2(r;) (e e~v((2*(r~))
p2Q Bl'i

again, there is no surface contribution in the integra-
tion by parts, for the same reasons as earlier.

where iP(r) is any differentiable function that has the
period of the cube of side I. if we are using the periodic
boundary conditions and is unrestricted if the im-

penetrable-wall conditions are used.
Note first that for any dilferentiable (and periodic,

if the periodic boundary conditions are being used)
function X(rg r~)

1
&BX)= ——— dr2 dr)(( P X (e e~((2(r;))

pQ o

+-2 &lvv(r')I'& («)

At this point the two boundary conditions require
separate discussions.

P ey(r;),

where (())(r,) is the periodic electrostatic potential at r;
due to (a) the uniform positive background, (b) the
other 1V-I particles at r2, k/i, and (c) all the periodic
images of the other particles, i.e., particles at r2+R,
k/i for all R of the form (n), n2, n2)L, with the n; posi-
tive or negative integers.

The reason U has been described in this round-
about way rather than writing it explicitly in
terms of the appropriate pair and single particle po-
tentials is that, as is well known, the explicit series is
only conditionally convergent and must be summed in
the correct order in order to yield the correct result.
Rather than worrying about the possible hazards of
diGerentiating term by term a series so delicately con-
vergent, it is preferable to evaluate the erst term in
(18) using only properties of U that the complete
summed series must certainly satisfy.

To begin with —V;U must be the force acting on the
ith particle, and therefore

V U= —em.

Gauss's law then gives

V' U= —4mepi,

(2o)

where p; is the charge density at the site of the ith
particle;

(();=e Q Q 8(r,—r2,,—R)—en.

We thus have

V; V U= —42(.e2+ p 8(r;—r2—R)+42(.ne2,
R k&i

Furthermore, when i/ j,
v"E =v"E~

i=j (21).

where E;& is the 6eld acting on the ith particle due to the

8 The Coulomb sum problem in the context of the electron gas
is discussed in Ref. 5.

CASE 1. PERIODIC BOUNDARY CONDITIONS

For a given con6guration of the r1 rN, the potential
energy U is just
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and hence

~ ~v;. v;U=4~e 'g b(r,—r,—R), (22)
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extensions on y.
~

l . Sinceth particle and Pits eno ic
g

V .F.*= pep &(r'~..F.= —Vg' i

The choice

k=(2 /L)(n' """'(r) =g r =e' '~

uirements andthe periodicity reqis consistent wit
s 24) to

2

(25)

reduce (
N iVk

(I P e'"'"I
&—

(&,+~ s)

g the desired i-f 25) are divided b3 &$f both sides o
'

h thermodynamic limi ~eq in the t ermo18f 22 fo ethe 6rst term inTh ontribution o (
ion

e c
ntribution rom
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2. IMPENETRABLE-WAL L BOUNDARYCASE

iV

I.(.,)l &+—Z&fv (')I'(l~l'&=

22 g ee
elf—Z0 '-i o Ir, ri-m~i' Ir; r;— (26)

&I v~(r') I'+&n'I «r~) I'
2 g—]p

9) with thethe Schwartz inequahty
d (23) we Gndforms given in (12), (14, an

We again choose

(27)k arbitrary,iPr =e'',

ains valid. It can be derived as
from the explicit forml fussily, directly romearlier or, ess u

for U:
(23)

I Z &,(r,)vÃ(r, )&l~

(I Z&(')I'» „
( )I+~

i

(28)
but now pick

( ) g . f(
a

'
differentiable functional continuous i eren

d tof h b, i dthat vanishes on
'f the integrations by par s.justi y e

(28) now reduce 2 o

N

(1P)&I Z,e"" &-

N

&'&(1/~) 2 f( ')&'
i=1

(29)

d as the ensemble ave gera e of (3),mber density, de6ne as eIn terms of the mean number

we can write (29)
n(r) = (8(r));

k'I (1/2V) J'o dr n(r) f(r)j'
1 1V o dr n(r) I v f(r) I

'o «n(r)f'(r)(&'+&n')+(1/& o
(3o)

dr n(r); (31)

1
dr n(r) f'(r)&— dr n(r)=1;

a

1/2 Ofof oints within aa distance ab o p

me b independent o(3) I vfl& -'" in Q„ for some

r )—
I

dr n(r) — dr n(r)()f() EiE g

1

0,

dr n(r)(v f(r))'&
a

b2

dr n(r) . (33)

0 to the desired in-1 —33) reduce (30) o
mod namic limit, provi e5) in the thermo ynam, vi e" ""'"'"""'"'" p

of electrons in . vthe total num er o
ic limit:thermodynamic i

1
lim

N -woo gN/0 ~e
dr n(r) =0. (34)

d b the uniformis
' ' '

certainly satis6ed yThis condition is cer
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equilibrium state and the electron crystal, since both Placing thelower bound(5) for S(k) in(35) andevaluat-

are electrically neutral on a macroscopic scale. ' ing the integral leads directly to (6).
Finally (7) follows routinely from (6) by noting that

INTERNAL AND FREE ENERGIES

The inequality (6) for the internal energy e follows

from (5) and the general result":

1 4xe'
N=zknT+ P——(S(k)—I) ~zknT

20 xwo N. V -+~
N/V ~O

1 dh 47' e'
+ (S(k)- I) (35)

2 (2w)' k'

'Although it is highly implausible that an equilibrium state
violating (34) could have lower free energy than a uniform or
crystalline state, we are not aware of a proof of this.

"See, for example, D. Pines and P. Nozieres, The Theory of

f/ '=(/') (36)

replacing the right side of (36) by its lower bound for
each e', and integrating with respect to e' from zero
to the actual value of the electronic charge.

Quantum Liquids I (W. A. Benjamin, Inc. , New York, 1966),
equation on the top of p. 297 (but note that a factor of 1/0 is
missing on the right). The argument works equally well for the
classical internal energy in thermal equilibrium and does not
assume a spatially homogeneous equilibrium state. The proof is
routine for impenetrable-wall boundary conditions, following
directly from the explicit form (26) for U. The legitimacy of the
operations leading to (35) is somewhat less clear when periodic
boundary conditions are used, but the result is widely accepted.
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Effect of the Gravitational Field on the Suyerfluid Transition in He'

GUENTER AHLERS

Bell Telephone Laboratories, Murray Hill, Nm Jersey

(Received 27 December 1967)

It is shown experimentally that in a liquid helium sample of Gnite height, He II and He I coexist in
thermodynamic equilibrium over a Gnite temperature range. This is contrary to a recent theoretical predic-
tion. Observations made by noting the position of the boundary between the phases of high and low thermal
conductivity as a function of temperature are quantitatively con6rmed by high-resolution heat-capacity
measurements near the transition region. The rate of movement with temperature of the interface between
the two phases yields a slope for the transition line of 113.9+4.6 atm/'K at saturated vapor pressure, in
quantitative agreement with recent direct measurements.

INTRODUCTION
' 'T is the purpose of this paper to present experimental
'- evidence which demonstrates that in the gravita-
tional field He4 II and He4 I can exist as two phases in
equilibrium with each other, although the transition
between them is not of Q.rst order."In homogeneous
samples, the coexistence of two phases is possible only if
the transition is of erst order. However, for inhomogene-
ous samples, such as tall liquid samples, where the
pressure is not constant, it is possible in principle to
establish an equilibrium phase boundary even if the
transition between the phases is of higher order. '
Although the experimental demonstration of the exist-
ence of such a phase boundary in a system with a higher
order transition is of some interest for its own sake, the
case of the superQuid transition in helium is of par-

'G. F. Kellers, thesis, Duke University, 1960 (unpublished);
W. M. Fairbank, M. J. Buckingham, and C. F. Kellers, in Pro-
ceedAzgs of the Fifth International Conference on Low TemPerature
Physecs sad Chemistry, edited by J. R. Dillinger (University of
Wisconsin Press, Madison, Wise. , 1958), p. 50.' G. Ahlers, Phys. Rev. 164, 259 (1967).' A. B. Pippard, Elements of Classical Thermodynamics (Cam-
bridge University Press, New York, 1964), p. 155.

ticular interest at the present because it has been
predicted4 on the basis of the phenomenological theory
of superQuidity' that coexistence of He II and He' I is
impossible even in the gravitational Geld. Before pro-
ceeding to the experimental section of this paper, a brief
discussion of the classically expected effect and of the
theoretical predictions will be given.

In a liquid sample of height B, the pressure at the
bottom is larger than at the top by

hI' =pgB,

where p is the density and g the gravitational accelera-
tion. In liquid helium, the temperature derivative of the
transition pressure is negative. Therefore, it is to be
expected that the transition temperature at the bottom
(Tx~) is lower than at the liquid surface (T&,s) by

~T),=pgH(dT/dP)g aH. (2)——
4 L. V. Kiknadze, Tu. G. Mamaladze, and O. D. Cheishvili, Zh.

Eksperim. iTeor. Fiz. , Pis'ma v Redaktsiyn3, 305 (1966) (English
transl. : Soviet Phys. —JETP Letters 3, 197 (1966)j.

V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksperim. i Teor.
Fiz. 34, 1240 (1958), /English transl. :Soviet Phys. —JETP 34, 858
(1958)j.


