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The incoherent neutron scattering cross section of molecular gases is evaluated in terms of classical rota-

tional time correlation functions. The calculation emphasizes the Gaussian behavior of the intermediate

scattering function but also treats non-Gaussian eft'ects. Explicit expressions applicable to spherical, linear,

and symmetric molecules are given and applied to CH4, HCl, and NH3. Comparisons with exact quantum-

mechanical calculations and experimental data show the Gaussian approximation to be reasonably accurate.
In the case of CH4, the inclusion of the leading non-Gaussian term brings the agreement to within about

1% of the exact results. The present approach considerably reduces the amount of computation relative to
exact calculations; moreover, it permits a physically intuitive and potentially tractable extension to liquids

and solids.

I. INTRODUCTION

'HE dynamics of molecular gases associated with

translations, rotations, and intramolecular vibra-

tions can be observed by means of inelastic neutron

scattering. ' In computing the angular and energy dif-

ferential cross section, there is no difFiculty in treating

the sects of translations and vibrations. ' If rotation-

vibration interactions are ignored, the rotational e6ects
also can be calculated rigorously. ' ' The exact expres-

sions for scattering by rigid rotators contain a number

of summations which make actual computation quite
involved and time consuming, particularly if the mole-

cules are not spherically symmetric. For this reason the

most extensive experimental'7 and theoretical studies' '
thus far have been directed at methane, a spherical

molecule. Theoretical results for linear molecules have

been obtained by Lurie, ' but no experimental data are

available for comparison. Measurements on ammonia,

a symmetric molecule, are available, '' and recently

the cold-neutron data were analyzed by Venkataraman

and co-workers. " The symmetric-molecule computa-

tions are suKciently complicated that it seems ques-
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tionable whether similar exact calculations for the
asymmetric molecule will be attempted.

Approximate classical calculations have been con-
sidered, notably by Kreiger and Nelkin. " Although
Kreiger and Nelkin originally applied their method to
total and angular diGerential cross sections, others have
used the approximation to interpret inelastic scattering
experiments. ' In the latter application, there has been
considerable discussion of the validity of the method5 ';
recently, the nature of the approximations involved
was further clarified by Summerfield and Zweifel. "

In this paper, we propose a new method for the
analysis of neutron scattering by molecular gases. The
approach, which is based on the use of classical rota-
tional correlation functions, is considerably simpler
than the quantum-mechanical (QM) treatment, and
gives quite reasonable results when compared with
experiments and exact calculations. The correlation
functions describe the time development of the mole-
cule's angular correlations, which, as such, are appro-
priate quantities for the study of dynamical properties
of molecular reorientations. '~'

Inelastic scattering of neutrons by gases at normal
densities can be quite accurately described in terms of
the scattering from each individual molecule. The
double differential cross section per molecule is' "
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In these expressions the incident and scattered neutron
energies are Eo and E, 8 is the scattering angle, x= k—ko
and (o=E—Ep are the momentum and energy transfers,
r„(t) is the position of the i atom at time t, I is the
number of atoms per molecule, and a„h and a;„, are
the bound-atom coherent and incoherent scattering
lengths, respectively. In almost all existing calculations
it is assumed that couplings between the diGerent de-
grees of freedom can be neglected. Then

S""'(x,(0) =

XS,""'(x,&o
—sr')S, ""'(ii, &o'—&u")S,""'(ii,&o"), (5)

where the subscripts denote translational (t), rotational
(r), and vibrational (v) contributions.

The evaluation of S& and S, is well known' and re-
quires no discussion. For most inelastic scattering
experiments in which low energy (Eo 5 meV) incident
neutrons are used, it is sufFicient to replace S, by its
zero-point vibration expression. Exact QM expressions
for S„are available; in the case of spherical and linear
molecules, the intermediate scattering function can be
written as18

x,""'(ii,t) =P(2l+1)ji(i~b„)ji(ab„)Fi(cos8„„.)fi(t). (6)
l~p

This form shows clearly that the functions fi(t), to be
defined in the Appendices, are the basic quantities in
the dynamical calculation. In Sec. II we discuss the
classical time correlation functions Fi(t) to be used in
place of fi(t). A method used earlier by Sears" is ex-
tended to linear and symmetric molecules. In Sec. III
a Gaussian approximation (GA) is formulated which
enables us to compute 0 (Eo,E,e) with only a knowledge
of Fi(t). The approximation is analogous to that used
in treating monatomic liquids and gases, "~ and we can
discuss the non-Gaussian corrections in the rotational
problem in a similar way. Numerical results are pre-
sented in Sec. IV and comparison is made with experi-
mental data on methane and ammonia. The agreement
obtained is very good. Comparison is also made with
previous QM calculations for HC1. In Sec. V some con-
cluding remarks are given.

II. ROTATIONAL CORRELATION FUNCTIONS

The connection between fi (t) and the classical correla-
tion function Fi(t) has been discussed by Sears in the
case of spherical molecules. " Sears showed that F(t)

' V. F. Sears, Can. J. Phys. 44, 1279 (1966);45, 237 (1967).
'9 G. Vineyard, Phys. Rev. 110, 999 (1958); A. Rahman, K. S.
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can be deduced from f(t) provided B«T, where B is
the rotational constant (1/2I), I is the moment of
inertia, and T is the temperature. " In dimensionless
time t*= (T/I)" t, the result is

1 l
Fi(t*)= [1+2Z(1—~'t*').-"'"I'j

2l+ 1

In general F and f are expected to have the following
properties:

Fo(t)=1, for all t (g)

Fi(0)=1, for any /.

A direct comparison of Fi(t) and fi(t) is not feasible
because the latter is, in general, complex. Following
Scho6eld22 we may consider the time-displaced function
fi(t—i/2T) as the classical limit of fi(t). Comparison of
fi[t*—(~ir)j, r=B/T, with Fi(t*) shows that the
former gives a somewhat lower value at small times
and the deviation decreases with increasing t*. At t*=0
the ratio is 0.986 at r=0,026, whereas it is 0.925 at
r=0.152. It is to be expected that fi[t*—ig(~~r)] will
approach Fi(t*) in the limit of high temperature. The
same general tendency holds for higher /, but the dis-
crepancies are somewhat larger.

A similar procedure can be used to derive correlation
function Fi(t) for linear and symmetric molecules. It is
shown in Appendix A that for linear molecules the
result is

1 I'P(l+1)j-'
Fi(t) =- Ei

(-', t)!

1 I'[-,'(l —I+1)ji'[vi2 (1+~+1)]+2P—
[-'(t—~)j [l(t+ )]'

Xg n~i"min~( i—i i+2P2) (9)

where E~ is 1 or 0 depending upon whether l is even
or odd and M(u, b,x) is the Krummer's confluent hyper-
geometric function. "The prime over the summation
indicates that if / is odd, only odd values of e should be
taken, whereas if t is even, then only even values (start-
ing with 2) should be used. By direct substitution we
find that the properties in Eq. (8) are satisfied. At long
times we see that the second term in Eq. (9) vanishes,
thus Fi(t*) approaches zero (t odd) or a positive value
(t even) in the limit. The behavior of Fi(t) is shown in
Fig. 1 along with similar functions for other types of
molecules. Note that for linear molecules Fi(t) can be-
come negative, whereas the spherical-molecule result
always remains positive. In Appendix 3 an approximate
expression for Fi(t) is derived for symmetric molecules.

In the derivation it is implied that mb&2."P. Schofield, Phys. Rev. Letters 4, 239 (1960);also, in Fluctua-
tion, Relaxation and Resonance in Magnetic Systems, edited by D.
Ter Haar (Oliver and Boyd, Edinburgh, 1962), p. 207.

"Handbook of 3fathematical Functions, edited by M. Abramo-
witz and I.A. Stegun (Dover Publications, Inc. , New York, 1965).
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FIG. 1. Rotational time correlation function Fq(t~) as a func-
tion of 8= (I/T)'/'t for spherical (1), linear (2), and symmetric

(3) molecules. Curve (3) corresponds to c=0.365 and @=68'.

The result is

F1(t)= g (te) cos'P+ sr[1+g(t*)je ('/s)'"sins|t, (10)

where c= (I, I)/I„rt) i—s the angle between the nuclear

position vector and the symmetry axis, and g(ta) is

F1(t*) from Eq. (9). Depending on the value of p, the
correlation function for symmetric molecules can re-
main positive or display a negative region. As expected,
it reduces to the linear-molecule result when &=0.

III. GAUSSIAN APPROXIMATION

In order to employ the classical functions F(t) in

neutron scattering calculations, one needs to express

X,""'(x,t) in terms of the displaced time variable,
t—i/2T. The intermediate scattering function Eq. (6)
then becomes real and can be approximated by the
expression

x„""'(a,t)—p(2l+1)j)(/(, b„)j)(a,b„.)P1(cosg„„)F)(t) (11)

at suSciently high-temperatures and low-momentum

transfers (HTLK). In this case the cross section for
spherical molecules becomes a product of the mona-

tomic gas cross section and a rotational factor, I'„, (re,o));

S""'(a,&d) =S1(r(,o))I'„„.(x,o)), (12)
where

I'„„.(~,(d) =g j)(/(b, )j)(rb„.)P)(cose„„.)
l

2c„M
y 1+2P(1+c )

—1
~
1+ ~e[ I/(+ p)I /

v=1 k 1+cv 2TK J
(13)

with c„=~/1s/Iar. In Eq. (12), S, (rr,o)) is the exact QM
expression for a monatomic gas of mass M. When b„
=b, =0, I'„,. reduces to unity as expected. We have
examined the accuracy of this approximation numeri-

cally, and some results will be discussed. However, the
evaluation of Eq. (13) is still rather involved, and ex-

(~ t) —e (a&/2) w—r(t)G (~ t)

W, (t) =-;b'[1—P, (t)j,
(14)

(15)

G(rr, t) = 1++a„(t)(sb)» (16)

The GA consists of replacing G(re, t) by unity. The re-
ma)nder in Eq. (16) constitutes the non-Gaussian cor-
rections, and the coeKcients a„(t) can be found from
the series expansion. For example, one obtains

a1(t)=0, (17)

(18)~ (t) =(1/»)[-l+ P (t)-P '(t)+ P (t)j,
as (t) = —(1/162) (18/35 —(162/175)P1(t)

+ (18/35)F, (t)—(18/175)F, (t)
+L1-P (t)j'+54[1-F (t)ja (t)). (19)

The behavior of as(t) and as(t) for spherical molecules
is shown in Fig. 2. At short times one can show that
they increase like 8 and )*6, respectively, and asymp-
totically they approach the values 0.002 and p.ppp45.
The region where non-Gaussian eGects are expected to
be most significant is seen to be t* from 1 to 3. The
general behavior is not unlike that found in monatomic
liquids and gases; however, in contrast to the transla-
tion problem, the present coeScients approach finite
though small values at long times.

The GA reduces the calculation of the intermediate
scattering function to a determination of the mean-
square displacement function W (t). Our result is equiva-
lent to taking for W„(t)= s([b(t) —b(0)j'), where b is

tensions to linear and symmetric molecules are even
more complicated. It therefore becomes worthwhile to
seek a simpler approximation.

We now describe a GA for X„(rr,t) applicable to spheri-
cal, linear, and symmetric molecules. The approach
is closely analogous to that commonly employed in the
theory of neutron scattering by monatomic liquids and
gases."~ In the liquid problem the GA simplifies the
analysis and also greatly facilitates the physical in-
terpretation of the results. For molecular systems one
can anticipate similar advantages in the treatment of
rotational dynamics. In particular, we will show that,
for gaseous systems, the approximation results in a
simple and quite accurate calculational procedure re-
quiring only a knowledge of F1(t).

The GA is inherently an approximation pertaining to
the "self" part of the scattering (the v= v' terms in the
cross section), and is usually applied to the calculation
of the incoherent cross section. This is not a particularly
severe restriction in molecular studies since many of the
substances investigated contain hydrogen. We shall
therefore restrict our attention to the case of v= ~' and
will suppress the atom index v. From Eq. (11), if we
expand the spherical Bessel functions in a power series,
the intermediate scattering function is cast into the
form



266 .A. K. AGRA WAL AN D S. YIP

.908

.004
as(t0xto

The "recoil" factor e (""'»( @' ~ can be rewritten in a
more familiar form so that (22) becomes

00

5'(tt tp) =e ~/»e (~t/P—/trria(T) e
—(~'/P)tv(Oe —t~tdt (25)) )2~—

where

-,004

—.OOS

(coshtp/2T) —1
G(T) = 2 f(cp)— dhp.

p cp/2T sinhcp/2T
(26)

For a monatomic gas, f(p/) =8(tp), G(T) becomes unity
and Eq. (24) gives W(t)= (T/M)t'. For polyatomic
systems at low temperatures, G(T) can deviate con-
siderably from unity, in which case Eq. (26) should be
used.

In the present approach the mean-square displace-
ment function has contributions from translations and
rotations,

W(t) = (T/M) +tP-', b'P1 —Pi(t)]. (27)

2
t%

Fro. 2. Non-Gaussian corrections to the rotational intermediate
scattering function for a spherical molecule.

the proton position from c.m. , the expression given in
Eq. (15). In using this classical result in cross-section
calculations, it is known that some modifications are
necessary. '4 This is a familiar procedure in the treat-
ment of neutron scattering by liquids, and basically the
same arguments apply here. Suppose wt: begin with a
Gaussian form for the QM X(tt, t) tP'

The translational contribution to f(p&) is just a 8 func-
tion, and we will not discuss it any further. Denoting
the rotational contribution by f, ( )t,pwe obtain

1
g(& ) dt e tate (at—/2) y(t—)

27r— (28)

CO
00

p, (cp) = f, (td) = ;bptd' —dtco—sppt I', (t) .
(20) 2M sinhtp/2T

where 7 (t) is a complex "width" function

f(~)
~(t) =— dpp coth —(1—costpt)+p sinppt (21)

p I
and f(pt) is the spectral density related to the velocity
autocorrelation function. By using a time-displaced
variable, one obtains a real function y(t i/2T) which- ,
as we have seen in Sec. II, is still not a classical quantity
in the sense of Fi(t). The difference between y(t —i/2T)
and W(t) is that 7(—i/2T) does not vanish. (This is
in fact the term that accounts for recoil effects. ) Thus
(20) can be rewritten as

Using the results of Sec. II, we have for spherical
molecules

p.(~)= (g/9v'~)(I/2T)"'(~'b)'e '""" (29)

for linear molecules

P, (tp) = (I/2T) pt'b'e ™/—'T

and for symmetric molecules

(30)

p (~) —e r(P/PT—
p (~)—~e r~t/pT(t+c)trt(c —

tp)

p„(tp) =-''pLOc 'os(pIp/2T)&p'pi(tp)

+sin ttt tp'(cipi(tp)+cppp(tp)) j, (31)
where

K z

S(~,tp)=e "/pT exp —~—
2 2T

00

e & tt&/p& w &t)e
—ttt tdt (2—2)

2X

2
dte ",C(x)=

gtr p

cp ,'(I/T) (1+c)———

1/' 2I '" c
c,=-l 1+

4 k~cT 1+c)
cp )I/2Tc(1+c)j".——

(32)
,where

and

t/ p i 1 " f(tp) (coshpp/2T) —1
dpt

2TI M p tp sinhtp/2T

1 " f(pt) 1—costpt
W(t) =— dip

M p sinhco/ 2T

(23)

(24)

&'See, for example, Rahman, Singwi, and Sjolander, Ref. 19;
and M. Rosenbaum and P. F. Zweifel, Phys. Rev. 137, 3271
(1965).

» See Schofield, Ref. 22; also, P. A. Kgelsta6 and P. Schofield,
Nucl. Sci. Kng. 12, 260 (1962).

Equations (29) and (30) are essentially the results
quoted by Schofield. "Note that (31) reduces to (30)
when tj/ =0.

It is possible, from Eq. (11), to apply the GA to the
interference terms (vW v') as well. Since these are most
important for small K near the elastic peak, as can be
seen from Table II, we can obtain a reasonable estimate
of the effect with this procedure. However, the approxi-

"P. Schofield, Brookhaven National Laboratory Report No.
719, 1962, Vol. 1, p. R31 (unpublished).
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TAnLE I. HWHM, (ace)um/T, of S»(~,cu) for methane gas. TAsLE II. Percentage correction to the pp contribution. to cross
section of methane gas (T=295'K).

T=125'K
QM GA

0.17 0.17
0.46 0.46
0.72 0.72
0.84 0.92
0.95 1.05
1.02 1.14

T =295'K
QM GA

0.12
0.32
0.54
0.64
0.75
0.84

0.12
0.32
0.54
0.68
0.80
0.90

mation breaks down for I(:b&1, as can be seen from the
second frequency moment of S""'.

T 0.0 0.1 0.2 0.3 0.4

1 14.5 14.0 9.8 0.2 —2.0
2 8.3 7.8 6.0 3.6 1.0
3 1.5 1.4 1.1 0.7 0.3
4 0.9 0.8 0.8 0.8 0.7
5 1.9 1.9 1.8 1.8 1.6
6 3.8 3.8 3.6 3.5 3.2
8 6.3 6.2 6.2 6.1 5.9

10 2.5 2.5 2.4 2.4 2.3

0.6

2.1—1.4—0.4
0.6
1.3
2.5
5.3
2.1

1.0

—1.9—1.4—0.5
0.6
0.8
1.9
4.0
1.7

IV. RESULTS AND COMPARISON
WITH EXPERIMENTS

The incoherent scattering law, s' Eq. (25), has been
calculated for methane at T= 125 and 295'K, and com-

pared with exact QM results. It is found that the GA
generally underestimates S» by less than 5'pq in the
range of momentum and energy transfers of experi-
mental interest. Since the general shape of S» is the
same, the comparison is best presented in terms of the

I I I I I I I I I I I I I I

48 48 8~304

I-
36z.
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TIME OF FLIGHT (y sec/m)

(H)

I400 600 IOOO
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I I I I I I I I I I I
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200 600 IOOO. l400 200 600 IOOO l400
TIME OF Fl IGHT (gsec/m) TIME OF FLIGHT (y sec/m)

(c) (~)

Fxo. 3. Time-of-fbght spectra of neutrons scattered by methane gas at T=295'K at various scattering angles 8. Experimental points
are given as closed circles and theoretical results are shown as solid (Gaussian approximation) and dashed )including non-Gaussian
term a&(I)g lines, respectively. Calculated spectra have been averaged over an incident spectrum (mean energy 4.87 meV is indicated by
the arrow) and are area-normalized.

"The physical and neutronic properties used are taken from G. Herzberg, Molecular Spectra aid Molecular Structure, Spectra of Dia-
tomic M'olecules (D. Van Nostrand Co., Inc. , New York, 1950),2nd ed. , Vol. 1;and D.J.Hughes and J.A. Harvey, Brookhaven National
I.aboratory Report No. 325, 1958, 2nd ed. {unpublished) (see also supplements 1960, 1964, 1965).
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FlG. 4. Time-of-Sight spectra of neutrons scattered by ammonia gas at T=295 K at various scattering angles 8. Experimental points
are given as closed circles and the Gaussian approximation is shown by the solid line. Exact results are indicated by crosses. Theoretical
spectra are computed for incident energy of 4.87 meV, indicated by the arrow, and are area-normalized.

half-width at half-maximum (HWHM) at constant g.
The various values are shown in Table I. Ke have also
examined the HTLK approximation at T= 295'K.
Although the HTLK widths are also reasonable, this
approximation results in greater deviations in the in-
tensities of S».

In most calculations of neutron spectra of hydrogen-
ous substances, it is conventional to consider only the
incoherent scattering due to the hydrogens. Since the
expressions for all the contributions in the case of
methane are known, ' it is of interest to estimate the
uncertainties introduced by this assumption. In Table
II we show the percentage corrections due to all the
other terms in Eq. (1) at various z, and e= ~/T values.
The correction is seen to be most important in the region
of the elastic peak, and is generally quite small in the IJ:

range of 2-5 A '. Similar estimates for HC1 show that
the contribution from the chlorine atom is about 10-
20% near the elastic peak and decreases rapidly away
from this region. Even though we have not studied the
corrections in the case of ammonia, the same type of
behavior is expected.

Using Eqs. (1), (25)—(27), and the correlation func-
tions Fq(t) shown in Pig. 1, we have computed the dif-
ferential cross sections for spherical, linear, and sym-

metric molecules. In order to be compared with experi-
mental data, the results have to be transformed to time-
of-Qight cross sections:

(33)

where f is the time-of-Qight and m is the neutron mass.
Comparisons with the methane and ammonia measure-
ments' are shown in Figs. 3 and 4, respectively. The
theoretical spectra consist of only the hydrogen con-

tribution to the cross section. They are area-normalized
with respect to the experimental points, and have been
averaged over an incident spectrum. ' The e6ect of the
incident spectrum is found to be quite small.

The observed discrepancy in the GA results with

experiment is partly due to non-Gaussian effects. %e
expect the major contribution to come from the a, (t)
term in Eq. (16). The inclusion of this correction, if

F2(t) is known, does not impose any computational

problem. The dashed curves in Fig. 3 show the results

obtained when the a2(t) is included; these agree with

the exact QM calculations" to within about 1%.The

'8 These are essentially the results of Venkataraman and co-
workers (Ref. 11) except that for methane gas we have extended
their calculations to include summations over initial and 6nal
rotational states up to quantum number 20.
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effects of the non-Gaussian correction in shifting the
inelastic peak and changing the elastic-peak intensity
are clearly observed in this case.

Even though the non-Gaussian effects for ammonia
gas have not been calculated, a trend similar to the
methane problem is expected. It can be seen from the
comparison of GA with the QM results" in Fig. 4 that
this is indeed the case. Since some discrepancy still
remains between the exact calculation and experiment,
the accuracy of our approximate results is considered
to be quite good. In this connection we should also note
that the theoretical results include only the contribution
from the hydrogen atoms.

The spectral density p„(~) introduced in Sec. III is
also a useful quantity because it can be obtained, in
principle, directly from the experimental data. Webb'
has extracted such a frequency spectrum from his
measurement on ammonia gas. Applying Eq. (31), we
find a value of P=~/T=0. 50 for the peak position in
p„(co) which is in agreement with experiment. At higher
frequencies our result shows a slower decay than the
expressions suggested by others, ' but the decay is still
more rapid than the experimental extrapolation values.

The numerical results for linear molecule (HCl) are
compared, on an absolute scale, with the spectra com-
puted by t.uric' in Fig. 5. Here both GA and exact
calculations include the contribution due to the chlorine
atom but not the interference term. The non-Gaussian
effects to the cross section have been treated, as in the
methane case, by including the am(t) term. The results
thus obtained are almost indistinguishable from the
exact QM calculation at 8=20'. At 8=45' the non-
Gaussian effects cause only a decrease in the elastic-
peak intensity.

Note that a typical calculation of o (EO,E,8) on an
IBM 360/65 computer, for a set of (E0,8) values, and
any molecule, requires about 15—20 sec. For symmetric
molecules the time-saving factor is about 200—300 rela-
tive to an exact calculation.

7. REMARKS

In this paper we have examined the use of classical
rotational correlation functions in the analysis of in-
elastic neutron scattering experiments. This approach
has distinct interpretive and calculational advantages
over a QM treatment. It is evident that the GA and
the modiication to include a non-Gaussian correction
represent a considerable computational simplification.
From the results and comparisons presented in Sec. IV
we see that the procedure is quite accurate for calcula-
tions of the double differential cross section. The fact
that neutron data inherently have a band-type struc-
ture suggests that perhaps it is more physical to in-
terpret the measurements in terms of the time behavior
of molecular reorientations rather than the stationary
energy levels and transition matrix elements. Indeed,
our calculations show that it is not necessary to consider
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FIG. S. Absolute neutron scattering cross section of HCl gas
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2' A. K. Agrawal and S. Yip, in Proceedings of the SymPosiem on
Molecllar Dynamics and Structure of Solids (National Bureau of
Standards, Washington, D. C., to be published).

'0 A. K. Agrawal and S. Yip, J. Chem. Phys. 46, 1999 (1967).» G. Venkataraman, B. A. Dasannacharya, and K. R. Rao,
Phys. Rev. 161, 133 (1967).

explicitly the discrete nature of the rotational levels in
order to explain the data, and that a classical description
of the molecular motions gives quite good results.

Note that since the correlation-function approach is
equally applicable to liquids and solids, one therefore
has a systematic means of studying rotational phe-
nomena in a bulk medium. By comparing a free-rotation
calculation with the measured spectrum one can hope to
delineate the effects of angular-dependent forces. For
condensed systems it has not been feasible to directly
calculate F&(t); however, they can be obtained from
optical measurements. Gordon has shown that Fi(t)
and F2(/) can be obtained from the I"ourier transforms
of infrared and Raman band shapes, and that the short-
and long-time behavior can be separately analyzed. "
For example, one can discuss the onset of intermolecular
torque effects at short times and rotational diffusion
processes at long times. Recently several attempts have
been made to correlate optical and neutron spectra of
liquid and solid methane. "'~"The initial resu1. ts are
quite encouraging, but additional work is still needed
to fully establish the utility of this procedure.
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Finally we remark that our GA is similar to the
Kreiger-Nelkin (KN) calculation only to the extent
that the intermediate scattering function in both cases
has a Gaussian dependence on a. The essential difference
lies in the treatment of W, (t). The KN procedure is
equivalent to taking the Grst term. in a power-series
expansion of W„(t). This approximation is reasonable at
large momentum transfers, but is not expected to hold
in the region of the experiments considered here. The
failure of KN approximation at low incident energies
is therefore to be attributed to its treatment of time
dependence and not to the classical nature of the
calculation.
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APPENDIX A

We will derive, following a method used by Sears, "
an expression for the classical time correlation function
F~(t) for linear molecules. The scattering law, consider-

ing only translational and rotational motions, is given by

J t J+m-' 1 I'(-,'(t—m+1))1'(-,'()+m+1))= ~lm
0 s [-; (t—m)]!P, (3+m)]!0 0

if 1+m is even,

=0 otherwise.

(A6)

A test of the classical approximation is obtained by
computing

P (2J+.1)o BJ(J+1 ) / T-.
J=O

For T/8=40 the exact result is 40.128, whereas the
classical result is 40. The discrepancy becomes larger as
temperature decreases. Combining Eqs. (A3), (A5), and
(A6) and using the approximate form for Pq (T), we get

00 l

S((&o)—:—p 2Je B~'~r p' a-
T J=O tn

X [8(~ 28m—J)+5(co+28mJ)], (A7)

denotes a Clebsch-Gordan coefficient. The classical
Fq(t) is obtained by approximating the summation over
J' and integrating over J in the following way. For
8«T, the most important contribution to S~(~) comes
from values of J very much larger than unity. Thus,
Pq(T) ~ (8/T)e ~'I and the square of the Clebsch-
Gordan coefEcient is approximated by' "

where

and

S(~ M) = S,(x, (o—co')S„(x,(o')d(o',

S,(x,M) =g(2t+1)jP(~b)S&((o)
l=o

1
s, (M) =— f, (t)e '"'dt. -

27r

(A1)

(A2)

(A3)

where the prime indicates that the summation over m
is carried out for all odd values to / if l is odd, and for
all even values (starting with 0) if t is even. Equations
(A1), (A2), and (A7) can be combined to give an
expression for S(x,&o) as a summation over J involving
terms like S~(x, oo+28mJ). The summation over J is
then replaced by an integral, and the result is expressed
in the form of (A1) from which one can identify
S„o'(~,&u). This procedure reduces S~(co) to its classical
limit S)(a)):

For spherical molecules we have

(2J+1)(2J'+1)
f((t) =P' Pg(T)e'"B' B&'&

) (A4)—
2l+1

where P~(T) is the Boltzmann's distribution function
and the prime over summation indicates that the sum

over J' runs from
~
J—

t~ to J+l. In this case, Sears
has obtained an expression for F~(t), the classical time
correlation function.

For a linear molecule, f&(t) is given by' '

l I ].
Sg(oo) =a(oE)5(oo)+2 Q' ——a(m~(o~ e "I'"' (A8)

m Tm2

where El is unity if / is even and zero otherwise. The
prime over the summation means sum over all odd m's
when t is odd and over all even m's (starting with 2)
when t is even. Our result for S~ (oo) is in agreement with
the expression noted by Shimizu. ' An expression for
F&(t) is obtained by taking the Fourier transform of
S~(&o). Thus we get

f~(t) =p'(2J+1)PJ (T)e"&B~ B~'&
J'-2

(A5)
0 0 0

l m 2' !
Pi(t)=~to@+2E'a~ P(—)' (mt*)», (Ag)

m g)=o (2p) !
where

Jl J2 jl'3

m1 m2 m3-

'2 M. E. Rose, Elementary Theory of Angu4r Momentum (Jo»
Wiley 8z Sons, Inc. , New York, 1957).

»M. A. Preston, Physics of the Nucleus (Addison-Wesley
Publishing Co., Inc., Reading, Mass. , 1962).
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where t*= (T/I)"'t. The summation over P can be
expressed in terms of Krummer's conQuent hyper-
geometric function M(a, b,x) "as J 1 J+1 ' J 1 J+1

l

Ft(t) = a)QE)+ 2 P'

atone

'"'/2M ( 1—1 12)32t*2) (A10)

In the following we give the f(rst few Ft(t) for a linear
molecule:

K1E+1Z —1E 1—
1 J—1-'

(83)
J 1 J—1 ' J
Z' 1 K+1 K —1 K—1

F,(t) =M(—-' —,
' -', t'2).-"'/',

F (t) 1+2M( 1 1 2tQ2)e —282

Combining Eqs. (A3), (81), and (83), we have

(A12) g)((Q) =P (2I+1)Pzz (T)

F (t) QM( 1 1 lttt2)e —t 2/2

+5M( 1 1 QqP2)e —Qt*t/2 (A13)
and

F3(t) =9/64+(2o/64)M( —
Qt Qt2t*')e '"'

+ (35/64) M(—-,'-'„St*2)e "". (A14)

Note that Ft(t) as given by (A10) have the properties
given in Eq. (8).

APPENDIX 8
An expression for Ft(t) for symmetric molecules can

also be obtained by following the method described in
Appendix A. The mathematics is more complicated
because the energy levels now depend on the projection
quantum number E. For this reason we restrict our
derivation only to F1(t).

The QM correlation function ft(t) can be written

ft(t) = Z(2J+1)FIK(T)

(t—lz —z l)!
Qt ei(BZK It ' )It—K

J'Z' (t+ lE—E'l)!

( ( c ( c
&&I —,

' sin2y al ~—-Z +&I ~+-It
I

( i I i I i
1- J c i J c+- b ~——-A I+& ~+
2 I I i I I i
1-( J c ( J c+- hl ~—-+-z +sl ~+—-z

l

2 ( I I (( I I
(+ 12cos2qb l)l (Q ——l+/')l (0+— l. (84)Ii & I i

An expression for S (3(,Q)) can be obtained by substituting
(84) into (A2) and combining it with (A1). The result
is a sum over / with each term involving a sum over J
and E. The latter sums are next replaced by integrals;
after some manipulation, the classical limit of SI(a&) is
obtained as

s)(te) = (I/2T) cos't)t
l

a&
l P1(o&)

+»n'Pic)PI(~)+c2P2( )3 (85)
l J' where

X l &3 '(cos4) l' t (81)
K E'—E E'

where the prime over the summation indicates that J'
runs from

l
J tl to J+t and —

(t is the angle made by
the rotating vector with the symmetry axis. In the
classical limit (B«T),FIK (T) takes the following form:

P ((Q) e Ittt/2T-

P2(~)= I~le '"'"'"+'C'(c3~),

2
C(2:)= e "dt

(86)
p&K(T) ( c/~g)1 2(/IT) —3/2e —(3/2IT) It—(t/2IT)K2 (82)

c1 ,' (2I/IIc T)'/'(1+——c/—1+c),

c2=-'(I/T) (1+c) "',
c3——$I/2Tc (1+c)]'i'.

where c= (I, I)/I, . We will make u—se of the fact that
a large contribution to ft(t) comes from large J Lbe-
cause of the factor (2J'+1)] but small K values. The
nine Clebsch-Gordan coefficients occurring in f1(t) will
be replaced by their asymptotic values. For example,

Now, F1(t) is obtained by a Fourier transform of SI((Q).
%e ind1 J

F1(t)=g(t) cos'ttt+21 sin2tPe '( /I) "/ L1+g(t)g, (87)

J 1 J ' J 1 J ' J
=0,

K 0 K E 1 K+1 IC —1 E 1—
J 1 J+1 ' J 1 J—1 '

xo z Ko z
1
2

where g(t) is the classical correlation function for a
linear molecule and is given by Eq. (A11).


