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of the quantized version of the classical sound field. 7

Then

k'. Vttgp= (k Vi}'ps) exp[-.', P 8U}(r s)]

+-z'(P k VA U(r i))g'o (2'l)

The analysis and conclusions represented by Eqs.
(16)—(25) are still valid if (a) h U is identified with U in

Eq. (2p) with b=rrsc/rrskp and (b) the summands in
C(r», cos(r», k)) generated by k Vip's and k Vsps con-
tribute nothing to the leading term in the asymptotic
formula of Eq. (12). Statements (a) and (b) are highly
plausible st.cient conditions for the variance of H to
be small in the sense defined by Eq. (24). To avoid pos-
sible misunderstanding, we state explicitly that qo is
certainly not a product function of the type de6ned by
Eq. (15).
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We continue our investigation of the time evolution of a one-dimensional system of hard rods. At t=0
there is one particle with a specified position r' and velocity v', and the remainder are in "equilibrium. "
Since in this system collisions merely interchange velocities, the "equilibrium" velocity distribution hp(8)
need not be Maxwellian. Exact solutions are obtained for the time-dependent one-particle position-velocity
distribution function f(r r, s, e/e ). We investi—gate in particular the averaged positional part of f, viz. ,
G (r—r', t), which is the time-dependent pair correlation function whose space-time Fourier transform S(k,or)

describes coherent neutron scattering in realistic systems. It is shown that S(k,co) does not generally contain
modes corresponding to sound propagation. The exceptions are systems with discrete velocity distributions.
In the latter case the space Fourier transform x(k, t) of G(r, t) is rigorously a sum of simple damped oscilla-
tions. An exact kinetic equation for the time evolution of f is derived and investigated. Also found is an
approximate kinetic equation which, however, gives exact values of S(k,co).

I. INTRODUCTIOH

'N a previous paper' we investigated some of the non-
- equilibrium properties of a one-dimensional system

of hard rods. We were particularly interested in the
time evolution of the self-distribution f,(r, t},t/t}'). This
is the distribution function of a labeled (test) particle
of the system starting, at t=0, from the origin with a
velocity e'. The system is assumed to be in equilibrium
at t=0, subject to this restriction on the test particle.
Since in this system collisions merely interchange velo-

cities, "equilibrium" corresponds to a random distribu-
tion of particle positions (with the restriction that the
distance between the centers be larger than u, the hard

*Supported by the. U. S. Air Force OfBce of Scientific Research
under Grant Nos. AF-AFOSR-508-66 and 945-65 and by the
U. S. Atomic Energy Commission, Contract No. AT(30-1)-1480.

' J. K. Percus, Bull. Am. Phys. Soc. 10, 722 (1965); J, L.
Lebowitz and J. K. Percus, Phys. Rev. 155, 122 (1967).

rod diameter), and a velocity distribution which is a
product of individual particle velocity distributions

ho(t}), with Iso(t}) an arbitrary, positive, even function of
t} normalized to unity. When the labeled (test) particle
has itself a velocity distribution h, (t}), then its position
distribution at time t,

o.(rt}=f d e'} (rot/s'}k, (t'}, .

has the significance of. the time-dependent self-distribu-
tion function introduced by Van Hove for neutron
scattering. '

In this paper, we shall be interested in the total
one-particle distribution function of the system under
the same initial conditions as before. This function

f(r, t},t/t}) is the density of particles at position r with

'L. Van. Hove, Phys. Rev. 95, 249 (1954).
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jI, is the Fourier transform of the microscopic density
operator and the prime indicates that the average is
taken over a nonuniform ensemble. X(k,t) itself may of
course also be written as

X(k,&) = (I/&)(p&(&)p—&(0))

1
Q (&ik[ri(t) ri(o)J) (k~0)— (1 20)

lV ~, ~

the average now being taken over a uniform equilibrium
ensemble. We may thus think of the increase in the free
energy, due to the nonuniform density,

&P~=2 E f1 pC(k)&&p~»— (1.21)

as providing the restoring force for bringing the system
back to uniformity. [The term c'k'= (v')k' in Q'(k) is
essentially the reciprocal of the mass associated with
the kth normal mode. J

The damping term R(k) is much more difficult to
interpret in a way in which it can be generalized to
other systems. First we note that when k is equal to
an integral multiple of 2s/a, R(k) vanishes and X(k, t)

J. K. Percus, in The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J.L. Lebowitz (W. A. Benjamin, Inc.,
New York, 1964), p. II-61.

particular case where m=2, c~ 0, and c~=c&0, we
obtain one diffusional mode (zero frequency) and one
damped sound mode. For a continuous h, (v), e.g., a
Maxwellian distribution of velocities, there are no
simple damped oscillations in X(k,t).

Equation (1.15), which is a rigorous irreversible equa-
tion arising from reversible dynamical equations in the
thermodynamic limit, is of striking simplicity. We shall
now discuss briefly the structure of Q'(k) and R(k) to
see if an equation like (1.15) can be used as an approxi-
mation for X(k,t) in higher dimensions. First, for small
values of k,

X-'(k,0) dPP/dp= (1+na)'= (1—pa) '

where p is the pressure and P '= (v') =c' for this system,
so that

Q(k) ~Uk as k-+0,
with I the isothermal speed of sound (the mass of the
particles has been set to unity here). The form of Q'(k)
has a simple intuitive interpretation even for large k.
As shown elsewhere, '

X '(k,0) 1—pC(k)=5'PA/bpi, fop g, (1.19)

where C(k) is the direct correlation function, A is the
Helmholtz free energy in an equilibrium system con-
sidered as a function of the nonuniform density p(r)
(produced by an external potential) whose Fonrier
transform is

has a nondecaying oscillatory behavior. This is certainly
an artifact of the model [indeed, it is not true when
ho(v) is different from a 8 function]. For small k,
R(k)~c'k'a'/2D, which is to be compared with the
sound damping (-', &+f)k' obtained from hydrodynamics
in three dimensions, where g is the coeKcient of shear
viscosity and f' of bulk viscosity. '

A similar situation arises in the analysis of the self-
part of X(k,t), X,(k,t), related to incoherent neutron
scattering. For this model, with the 8-function velocity
distribution, X,(k, t) also satisfies a damped oscillator
equation with

Q, '(k)=c'k' R,(k)=c'/D (1.22)

One way of generalizing the frequency and friction
coefficients is to consider the behavior of X(k,t) [and
X,(k, t)j for short times. When the interaction potential
between the particles is continuous, all odd derivatives
of X(k,t) vanish as (~ 0. For hard-core potentials, on the
other hand, O'X(k, 0+)/Bt'&0, which together with the
general result that O'X(k, 0+)/BP= —k'(ii') can be used
to determine Q(k) [leading again to Eq. (1.16)j and
R(k). Such determination of R(k) does not, however,
lead in general to the correct asymptotic behavior of
X(k,t) for large t. Indeed, the assumption that X,(k, t)
satisfies the damped harmonic-oscillator equation (1.15)
with R, and Q, defined in (1.22) implies that the velocity
autocorrelation function @(t) has a simple exponential
decay.

The general form of the time-dependent velocity and
spatial distributions for the one-dimensional system of
hard rods is derived in Sec. II. The spatial part is then
computed explicitly for some forms of ho(v) in Sec. III.
In Sec. IV we discuss the asymptotic form of S(k,&u)

for small k and co and show that it will have hydro-
dynamical type of behavior only for the case where

ho(v) contains some 5 functions. There is thus no hydro-
dynamical regime for a one-dimensional system of hard
rods with a Maxwellian distribution of velocities. In
Sec. V we derive a kinetic equation for the time evolu-
tion of f(r,v, t), the total distribution at time t when

there was initially one particle with an arbitrary distri-
bution of position a,nd velocity and the rest had their
equilibrium distribution. Due to the initial conditions,
this equation is linear in f and has the property, since
collisions merely interchange velocities, that h(ii, t)
=J'dr f(r,v, t) is independent of time. We also consider
low density and "molecular chaos" type of approxi-
mations to Bf/Bt and show that the latter yields the
exact S(k,co).

II. FORM OF f(r, v, f/v') AND S(k,aa)

In the derivation' of f,(r,v, t/v') use was made of the
fact that f, depends on the density p and the diameter a
of the rods only through the combination I=p/(1 —pa),

L. P. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24,
419 (1963).
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i.e., the only length appearing in the problem is the
eGective interparticle distance given by p

'—a=e '.
Thus f, has the same form for 6nite a as it would have
for a=O, impenetrable point particles. When a=0, the
dynamics of the whole system is identical, except for the
relabelling of particles during a collision, to the dynamics
of an ideal gas where the particles pass each other with-
out interaction. We thus had a simple alogarithm, first
developed by Jepsen, ' for finding f, The. situation is
a bit more complicated in computing f Her.e we have
to take into account explicitly the fact that in a collision
of particles with diameter a having velocities ~ and e'

there is a jump, by displacement +u, in the locations of
the particles with these velocities. Indeed, this is the
only effect which makes the time evolution of f dif-
ferent from that of an ideal gas. For u=O, there is no
such difference and

f(r,v, t/v') =php(v)+ &(r—v't) b(v —v') .

The hard-core system is in fact most readily analyzed
by setting up a correspondence between it and the
trivial point core system. Suppose that we consider a
rigid box from 0 to L—Nu, containing N, free particles
X), ,X)v. If X(j) denotes the jth ordered particle,
then the X(j) move as a set of zero-diameter hard cores.
Now define

we have

order of X = P p(X—X,)+-,'. (2.4)

We conclude that the relation

x;=X;+a Q p(X;—X,) (2.5)

transforms the set of free particles to the set of core
center positions.

The evaluation of f(r v, t/v') is most easily performed
in Fourier k space. In taking the thermodynamic limit
it is more convenient to de6ne

f(r,v, t/v')

dIt. fp(E+-', r, v, t; R ', r, —v',-0), (2.6)
1Vhp(v')

i.e., to average over the center of mass. Since the two-
particle distribution function is given by

fp(r, v, t; r', v', t') =P (8(r—x,(t))8(r' —x;(t'))
all

Xt&(v—v;(t))b(v' —v;(t'))), (2.2)
we have

x;=X(j)+(j—g)a (2.1) f(k,v, t/v') = dr e'P"f(r,v,t/v') =
Ehp(v') ',&

in a box from 0 to L. The only eGect has been to place
an additional space between successive particles

X(e"& '&'&—*~'&P)ib(v —v;(t))8(v' —v, (0))) (2.8)

(2.2)
or by virtue of (2.5)

I
x; &

—x,=X(j+1)—X(j)+a

(and pa for each wall). The irreducible length a thus
represents a hard core, and corresponding to each dy-
namical state of the cores, x;, is a dynamical state of
the coreless X(j) and hence a state of the free particles
X;. Our only problem is that of establishing the order
or relative position of a labeled free particle X;. But
this is just one more than the number of particles to
the left of X;; hence setting

f(k v t/vl) ~ g (eik]x((&) x~ (P)]-'
1Vhp(v') ', ~.

Xexp{ika p [p(X,(t)—X,(t))—,(X,(0)—X,(0))7)
e l

X8(v—V;(t))i](v'—V;(0))). (2.9)

If wc insert the free-particle equations of motion

X;(t)-X;+V;t, V;(t) = V;
p(x) =1 for x)0

for x=o
=0 for x&0,

(2.3)
[where X;(0)=X;, V,(0) V;7, and separate the i=j
and iWj terms, and then choose i 1, j=2, Eq. (2.9)
becomes

8(v—v') (X—1)
f(kp, t/v') (e'""' exp{ika g [p(Xi X,+t(v V,))—p(—Xi—X,)7—)b(v —Vi))+ (e'"x~ x~"&-

hp(v') I=% hp(v')

Xexp{ika P [p(Xi X,+t(v V,))—p—(Xp—X.)—7) exp {ika[p(Xi—Xp+ t(v —v')) —p(Xp —Xi)7)

' D. W. Jepsen, J. Math. Phys. 6, 405 (2965).

X8(v —V&)8(v' —Vp)). (2.10)
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The expectation. with respect to particle s in (2.10) is of
the form

(exp{ika[p(y —X'.—tV.)—p($—X.)]})x„v,
= (1+i sinka[e(y —X,—tV,)—p(u —X,)]

—(1—coska) p(—(y—X.—tV,)(~—X.)))x„v,

If we assume that (V,)v, =0 and define

t(t(w)=(lw —Vl)v= dV hp(V) lw —Vl, (2 12)-

(2.11) becomes finally

i sinku
= (1)+ (y x t—V.)—v,I.—Eu

i sinka (1—coska) y —x~1+ (y—*)— It lt I
(2 13)

L Ãa — L Sa — t )(1—coska)
(I y—a—tV,

I )v,s.s (2.11)
L—Ea It follows that as E +ts with—J)t/L= p, (2.10) reduces to

h(v —v') 37
f(k v t/v')= e'p"(t)(v —Vi) exp{n[itvsinka —

I tltt(v)(1 —coska)7})x,,v,+ (B(v Vi)8—(v' —V&)et"'xt
hp(v') . hp(v')

Xexp{n[i(Xi X,—+vt) sinka —ltltt(v+(Xi —Xp)!t)(1—coska)]}

)(exp{iku[p(Xi —Xp+t(v —v')) —p(Xp —Xi)]})x,, v, , x, , v, (2.14)

or, performing the 6nal integrations, for t&0

f(k,v, t/v') = h(v —v') e'""F(nt, ka, v)

by6

X(k,t) = dr e"G(r,t)

where

+nhp(v) dX e"xF(nt, ku, X/t)

Xexp{ika[p(X/t —v') —p(v —X/t)]}, (2.15)

F(r ka v) e-s [tt(s) (1—ccskc)-is sinks] (2 16)

X(k,s) = dt e—"x(k t)

dv'f(k, v,t/v')h, (v') (2.20)

The first term in (2.15) has a very simple interpreta-
dv de g(k $' p p )hp(p 3

tion in (r,v) space where the term multiplying it(v v')—
can be written in the form Using (2.15) and (2.17),we find after some manipulations

P F;(v,t)b(r —vt —ja).

P;(v, t) is the probability that a particle starting from

the origin with velocity u will have transferred at time

t its velocity to its jth neighbor. Similarly, the second

term can be decomposed into jth neighbor pairs.

The Laplace transform of (2.15) yields

and

&(k,t) = —k

~ dv hp(v)etc(k) st—a(k)tt(s) t

[tr(k)tt'(v) ip(k)]—'

)t(k,s) = —ks

hp(v)
X

[&(k)) '(v) —iP(k)]'[s—ip(k) v+n(k)„(v)]

(2.22)

V'(k, s; v, v') =

+nhp(v)

dt e "f(k,v, t/v') = 8-(v v') A (v,s)—

dw A'(w, s)e'P ['(~") '(~~)), —(2.17)

k'
(2.23)

2(s(k) m [s—zp(k) v+n(k)tt(v)]p

where use has been made of the relation

where
A(v, s) = [s—ip(k)v+a(k)t (v)1 ' (2.18)

a(k) =n(1—coska), p(k) =k+n sinka. (2.19)

The space-time distribution G(r, t) is defined in (1.9).
ts Fourier space and Laplace time transforms are given

tt"(v) = 2ht)(v) . (224)

When hp(v) has a 8-function peak at some velocity
v= c so that tt'(v) is discontinuous at c, the denominator
in (2.22) and (2.23) is to be interpreted as the product

[ (k) '(c+)—P(k)]l: (k)l '(c—)—ip(k)].
' See note following Eq. (5.5}.
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The coherent scattering function S(k,or) is given by The more general discrete velocity distribution

1
S(k,or) =-

2%
Ct e-'"'x(k [t() ko(e) =

g g A;[tr((r+c, )+t'r(e —c;)]
j=l

(3.6)

= (1/rr) Rex(k, ior) . (2.25)

It is seen from (2.22) and (2.23) that X will have a
certain kind of semi-periodicity in k with period 2rr/(k

since n(k) and P(k) —k are periodic in k. Furthermore,
when k = 2rr j/a with j an integer (unequal to 0), n(k) =0
and X(k, t) may have no damping for some ko((r) (cf.
next section). This is almost certainly an artifact of the
one-dimensional hard-rod system where the equilibrium

x(k 0)=k'/[n'(k)+t3'(k)] (2.26)

III. EXPLICIT FORM OF S(k,o)) FOR
SPECIAL DISTRIBUTIONS

has the same properties.
The function tk((r) together with the velocity-inde-

pendent functions a(k) and P(k) determine the time
evolution of x(k, t). Physically, ntk(rr) is the rate at which
a particle with velocity v will have c'ollisions with its
neighbors when these are in equilibrium, i.e., have a
velocity distribution k(r((r) and a density at contact
n= pg((k). We have no similar direct interpretation of
n(k) and P(k). It is true that if e(s) is the Laplace trans-
form of the spatial correlation g(r), then'

(ik) = (nl p) Le '"/(~+inst)],

but there is no obvious extension of this result to three
dimensions.

z

is dealt with in Appendix A apd we only write down
here the result for the case n=2 with c1=0 and c2 ——c.
For this case there is just one diffusion mode in addition
to the oscillatory mode:

X(k t) —Re[D&(k)e-)zr(k) r+D)(k)ezzok(k) r-)z2(k) r] (3 7)

and
1 2Xl(Dl+Dlo)

S(k,or) =-
4m Xlk+o)'

(Dk+Dk )X2+z(D2tDk )(or+ork)

4'+ (or+ork}'

(D,+DzZ"-z:)4,. Z(rI, —D;)( —.,)+ . ,;.(3.8)
Xk +(or',—~2)k

ill ~2 o)2 Dl and D& are def(ned in Appendix A. S(k,or),
calculated from (3.8), is shown in Figs. 1 snd 2 with the
parameters

tk(0)=Akc=1, n=u=1, Ak=-', ,
so that

A 1 1
C=2& ~1—3~ P 2 ~

A very different kind of distribution, which was also
investigated in Ref. 1, is a very long-ranged 2 power
distribution

k ('v) =—c (c&+(r&) 3)2 (3.9)As seen from Eqs. (2.22) and (2.23), the form of X

is determined by tk((r). Before discussing some general
properties of X, we shall give here explicit expressions
and/or graphs of X for several different velocity dis-
tributions ko(n). The simplest of these is a discrete dis-
tribution where the particles can only have velocities
+c. We have

for which

tk((r) = (c'+v') '» (3 10)

For this distribution the mean kinetic energy is in6nite
but the diffusion constant which depends on ( ~

v
~ ) exists.

We 6nd

X(k,t) =X(k,0)ct[ '(k)+P'(k)]'"
X&l{«[~'(k)+P'(k)]'"} (3 11)

where K1 is the modified Bessel function which has

(3.1)k, ((r) = ,'[tr(w+c)+tr(-(r c)], —

tk((r) =max[c,
~ e(], (3.2)

and

For the Maxwellian distribution X cannot be calcu-
lated analytically. The results of numerical computation

(3 4) are given in Fig. 3. In these graphs the variables have
been chosen in the foIlowing way:

s+2n(k)c
x(k,s) =x(k,o)

[s+n(k) c]'+P'(k) c'

an exponential decay and no oscillatory character.
X(k,t) =X(k,0)e '")"(cosp(k) ct Similarly,

+[Q(k)/)tt(k)] slnP(k)ct}, (3.3)
S(k,or)=; koi . (3.12)

where X(k,0) is defined in (2.26). The corresponding (&'(k)+P'(k)]' ' ~[&'(k)+p'(k)]' '
X(k e) and coherent scattering function are given b

S(k u) = 2k c n(k)rr l[(or +c [(r (k) —P (k)]}
+4C4n'(k)P'(k)} '. (3.5)

7 E. H. Lieb and D. C. Mattis, Mathematica/ Physics in One
Dimension (Academic Press Inc. , New York, 1966), p. /.

tk(0) =1, n= a=1.

IV GENERAL FORM OF S(k,o))

The general form of S(k,or) for real three-dimensional
systems has been the subject of many experimental and
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theoretical investigations. ' Since the exact form of
S(k,pp) is unobtainable for real systems or even for any
two- or three-dimensional "model" fluids, various ap-
proximations of uncertain validity have been used in
these investigations. Of particular interest has been the
form of S(k,p~) for small values of k and pp (Ref. 4)
(k ' large compared with the "mean free path, " &p

'
large compared with the velocity relaxation time, and
pp/k fixed). The laws of macroscopic hydrodynamics are
believed to govern the behavior of these "slowly vary-
ing" components. These laws result in a damped oscil-
latory sound mode and a diffusion mode.

For the one-dimensional system of hard rods there
are no hydrodynamical equations [although the self-

(a) Analysis of liquid data: B.N. Brockhouse, Nuovo Cimento
Suppl. 9, 45 (1958); A. Rahman, K. S. Singwi, and A. Sjolander,
Phys. Rev. 122, 9 (1961);i'. 126, 997 (1962); B. A. Dasan8a-
charya and G. Venkataraman, ibid. 156, 196 (1967). (b) Computer
experiments: A. Rahman, i'. 136, A405 (1964); Phys. Rev.
Letters 19, 420 (1967). (c) Kinetic equation theory: M. Nelkin
and A. Ghatak, Phys. Rev. 135, A4 (1964); S. Yip and M. Nelkin,
ibid. 135, A1241 (1964); J. M. J. Van Leeuwen and S. Yip, ibid.
&39, A1138 (1965); R. C. Desai and M. Nelkin, Nucl. Sci. Engr.
24, 142 (1966),

distribution G, (r, t) does obey the diffusion equation in

the"hydrodynamical limit j.The form of S(k,p~) depends

very essentially, as we have seen, on the nature of the

velocity distribution hp(v). The existence of a damped

oscillatory behavior of X(k,t) appears to require 8 func-

tions in hp(v), as can be seen most readily from (2.23).
From its definition p(v) is an even, positive, convex

function of v rising monotonically from p(0) = ( W
~ )w

= 2ipD (D is the diffusion constant) to
~

v
~

as
~

v -+~ .
Hence from (2.23) (k,s) is analytic, in the complex s

plane, to the right of the curve l(v) defined by

Ims= P(k)v,

Res= —n(k)p(v) &—a(k)p(0).

Now if hp(v)=0 for some range of v, x(k,s) can be

extended to the left of / and will be analytic in the whole

s plane when cuts are made along l(v). [When hp(v)

does not vanish identically for large
~

v ~, the error made

by cutting it oG at some large velocity vo which leaves

p'(v) continuous can presumably be made arbitrarily
small for Res&0 at n(k) WO.]The existence of damped

oscillatory behavior for X(k,t) will then depend on
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whether x(k,s) has poles on l. This in turn depends on will be a sum of damped oscillators. Hence when there
whether to'(v) has any discontinuities corresponding to is a b function at v=0 and at v=&c, there will be just
a B-function peak in kp(v). one diffusive and one "sound" mode and we obtain in

~hen kp(v) consists of a sum of h functions, X(k,t) the hydrodynamical limit

n'u' A, A i [(2+A i)(1+na)' —A ixsj
(4.2)

2or (1+nu)' nc x'+n'a'Ass/4ys [xo—(1+nu)s7'+nous[x'(4+dna) —(1+na)o(4+na)]/6ys

with A~ and A2 the fraction of particles with v=0 and

and
Ai+As=1,

x=(o/kc, y=n/k.

d" Iv "ILfo(«, -";«+u, v: t)o("-v)

The form of (4.2) is very similar to that obtained from
hydrodynamics in three dimensions. ' The reasons for
the agreement of this distribution with hydrodynamical
calculations and the lack of such behavior for "smooth"
distributions are not entirely clear to us at present. The
general form (2.23) represents a weighted distribution
of frequencies and relaxation times along the curve l.
The density of zeros is determined by the shape of l,
particularly by its curvature. Now while the analytic
character of S(k,oo) depends very much on the precise
form of kp(v), it seems reasonable to expect that the
general "shape" of S(k,to) for real k and oo will only
depend on the general shape of kp(v), i.e., any kp(v) with
a maximum at v=0 and v=+c will produce a similar
shaped curve. It is perhaps possible to conjecture that
the situation might be somewhat similar in higher di-
mensions where to(~v)) is always singular at v=O and

hp(~ v ~), which is Maxwellian, has a peak at some charac-
teristic speed dependent on the temperature, thus giving
rise to the characteristic hydrodynamical peaks.

V. KINETIC EQUATION FOR f
As noted in the Introduction, the only effect of colli-

sions is to interchange the velocities of the colliding

particles. The usual BBGKY hierarchy equation de-

scribing the time evolution of the singlet distribution

f(r,v, t) will thus take on the form

Bf(r,v, t)/Bt+ vBf(r,v,t)/Br

then the right-hand side of (5.1), the collision term,
vanishes.

Following our procedure for the self-distribution func-
tion, we shall now construct a kinetic equation for f(t)
with a non-Marks. an collision operator which will give
Bf(t)/Bt in terms of f(t') for t'& t. This can be done either
by solving explicitly for fo(t) or by noting that due to our
initial condition for p [Eq. (1.3)), the nonasymptotic
part of f(t), tt(t) =f(t)—pkp(v), depends linearly on its
initial value «t(0). Thus if we define as in (1.2)

f(yi t) = f(ri, »,t)

d&1' ' ' dooi«iz(ool ' ' ' xiv& t)8(ooi yi) (5—.2)

to(Sii' ' ')Rivi 0) dypS

then

N

X 2 pi(&1 ' ' ' &N 0/yo)f, (yo, t), (53)

f(yi, t) = dy pf(yi, t/yo) f.(yo, t)

or

f(r,v, t) pkp(v) = ot(r, v,—t)

dr' dv'T(r —r', v, t/v') f,(r', v', 0)

and

dr' dv'K(r r', v, t/v'—)«t(r', v',0), (5.4)

and let the initial value of p be given by a linear super-
position of ensembles, of the type considered in (1.3),

fo(r, v; r+ a, v'.—t) o(v —v')+ fo(r, v'; r a, v:t)—T(«,v, t/v') = f(r,v, t/v') pko(v)—(5.5)

Xo(v—v') —f,(r, v; r a, v'. t)o(v' —v)—g, (5.1)

where fs(ri, vi, ro, vs. t) is the usual time-dependent two-

particle distribution function computed from the same
ensemble density as f It is seen from .(5.1) that when

fo is spatially uniform, i.e., fs depends only on
~
ro—ri ~,

'S. Yip and S. Rangsnathsn, Phys. Fluids 8 1956 {1965);
J. H. Ferziger and D. L. Feinstein, Phys. Rev. 15$, 97 {1967).

is the inverse Fourier transform of (2.15). [Ey carrying
out the passage to the thermodynamic limit in k space
for k/0, we have automatically subtracted the con-
stant pkp(v) term. ] Here f,(r,v,O) is essentially what
corresponds to the self-distribution at t=0, i.e., there

. is one particle in the Quid whose initial distribution is
given by f,(r,v,0) while the rest of the fluid is in equilib-
rium with respect to this particle. The "Green's func-
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p-z '(0)=p-'= p '{'(r—r')B(v—v')
—ho(v)C(r —r'), (5.8)

where 5 is a generalization of the usual modi6ed spatial
Ursell function and C(r) is the direct correlation func-
tion. '0

We may now write down a linear equation for v(t):

Bq(r,v,t)/Bt+v8«r, v,t)/Br= dr' dv' dt'
0

&&B(r r', t t'; v, v'—)q(—r', v', t'). {5.9)

The form of 8 may be obtained, as in Ref. 1, by taking
the Fourier space and Laplace time transforms of Eqs.
(5.6) and (5.9). Then

g(k, v,s)= dv'X(k, s;v,v')q(k, v',0)=Xv(k, v,0), (5.10)

(s ikv)v(k, v,—s) =«k, v,O)+ dv'$(k, s; v, v')g(k, v',s)

or
=«k, v,0)+$q(k, v,s), (5.11)

= s—zkv —X (5.12)

where , X, s, and v are operators in velocity space,
with

X '= T(0) ~' ' (5.13)

according to (5.6). The script letters are used to repre-
sent the Laplace transforms of the functions or opera-
tors. We can then write

$= T(0)$'+ (1—T(0))(s—ikv), (5.14)
where

Putting

$'=(s—ikv) —I '. (5.15)

$'(k, s; v,v') =(s ikv A —'(v, s)—j-
X{'(v—v')+h, (v)K(k, s; v,v')A '(v', s) (5.16)

and

g"(k,s; v, v') =A(v, s)h(v —v')

+ho(v)~(v, s)W(k, s; v,v'), (5 17)

"See, for example, Ref. 3, p. II-58.

tion" E may be found most simply in the form of an
operator or matrix in r and v space by rewriting (5.4)
in the form

n(t) = T(t)f.(o) = T(t)L~'(0)n(OH=&(t)n(0) (5 6)

with T '(0), the operator inverse to T(0), given in
(1.11). In the thermodynamic limit, the case that we
are interested in,

pT(0)=p(r —r'; v, v')= pl(r —r')8(v —v')

+p'ho(v)l:a(» —«') —lj (5 7)

where'%(k, s; v v') is de6ned by Kq. (2.17), we 6nd that
X satisfies the equation

X(k,s; v,v') =%"(k,s; v,v')

d~%(k,s; v, w)ho(u)X(k, s; ~,v'). (5 1g)

%e may now attempt to expand the collision operator$ in powers of the density (or of n):

$(k,s; v,v') =n$z(k, s; v,v')+ p(nz)
or

B(r—r', t t', v, v—')

=nB, (r r', t t'—, v,
—v')+P(nz). (5.19)

We then Gnd that the "Boltzmann" collision operator
S~ is independent of s, which means that in the time
domain 8& has a 4 function in t—t' and hence the equa-
tion corresponding to (5.9) with $~ instead of $ is
Markman. More explicitly,

$z(k,s; v v') =ho(v)L~v —v'~ (1—coska)+i(v —v') sinkuj—8(v—v') [ju(v)(1—cosh@)—iv sinkage. (5.20)

It is seen from (5.20) that $z (and this is true also
for $) vanishes when k=0, i.e., when q is spatially
homogeneous.

Since the operator (5.20) represents the instantaneous
collision or Soltzmann approximation, it can be ob-
tained in an alternative manner. To emphasize the
short-time development in (5.6), we may write it in-
stead as

'«t)/@=T(t)f. (o), (5.21)
thereby implying the kinetic equation

'~()/@=LT(t)T-'(t)jv(t) (5.22)

The kinetic operator is thus local in time but time-
dependent. If the approximation is made that the en-
semble maintains the special form of the initial en-
semble, then the transition operator may be replaced byT(0)T '(0), where T '(0) is given by (5.g) We cail this
approximate collision operator 8:

B=T(0)T '(0)—zkv. (5.23)
8 will, of course, be exact at t=0, and since gs is in-
dependent of t, we must have

B=nBz+p(n')

~1 +l.
Carrying out explicitly the time derivative of p in

(5.5), we 6nd

T(k,v, O/v') =(iPv np(v))8(v v')— —
+nho(v)f(e '" 1)v' (e'" 1)v- — —
+(e'"—1)(e "'—1)e(v'—v)(v' —v)j. (5.24)
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+le have
v

z & —2 (5.33)„, ;p;p.,(.)r„-(k,v,s)/ho(') ="+"
y„serting (5 8)

(n —ip)
dv ~(k,v, s) =c~+"(5.26)

Observing that

,C(k)j=n+p
—00

d (5 25) are inde« ididentical to
t order in +

'
h ither the kernel

rs . 5ll) mt e&The solutio 'f '

b f d without d~can nowbe oun5 20) or with(5 2 ) '
hc,tly

(5 ) ("')b"' h

—00

E uation

$8

xL —p'+ (5.34)

C2 C2S
dv v8(»»s) =,

Q

&&~s ipv j—nV(v) j (5.35)

q

( ))-(k „)=~(k,v,0)+ho

]et p ~00 lnow, in order ot determine c~ an
(5 33) obtaining

)j-( )/ o'

- k."), (5"), ~+ l,v i(p —k)v'ja( vv~s 'XLnl'

the two casp k or . '
twice and using oh )

w ere =
difjqrentiat&ng w&D&v&d&ng by &o

obtain

,p), (5.36)dL- p+ p()jXl cr+C2

(v) v we

&(kp,0)l
ipv+nIJ'(v) j—

h ( ) j gv2 ho(v)

l g(k, v,s)
gpv+np(v) jul

h ( )k Bv'

to be comPared witith

+ (v) )&(k,v,s) /ho(v) ~

dv v(k, v,s)+v(n+ilI

g(v v') [ipv n—p(v) j~(k!vv')+ikv&(v v), .~ k+kP&(k) jv) '

b arts, it follows that

+h, (v)(ni v —'v~! i—(P k—)v '
5 25) Zy integ» '"g

dv vg(kvvvs) .

which m the form

L +z(p —k)j
(k;;)l-—ts iPv+n&( —)j

gv( ho(v)85-
Hence

X g~ ~~ pvs

p) =x(ho) —In+i(P k)~
(q(k, v 0)l

(5 29) Ecg+c2s)—gPv+nP( )j
~( h (v) j

~

~

can be solved at once:

g(k, v, s)
=C1 C2

hp(v)
dv'$s ipv'+n—p()vj ',

dv'Ls —ipv'+np(v') j-' where

P~+cmsl(n ip) =(n+i- dv g(k, v,s),

d (s Ipv+np—(v)p (5.39)
II 0

can be solved for c~ aand c2 usingThe equations (5.38) ca

a be determined fromm 5.27).
fhd 1

and c2 can e e
t of spaceConsj. er the special case o e

correlations:
00 and

cy=
X(k,0) c2 ik ss

s s n'+Pm 2n

x(k,s) = dv g(k, v,s), (5.31)

with

0 ho v). (5.32)g(k, v,0)= Lk'/ n,v, = ' ( '+P')jhv(v)=X(k, 0) 0(v .

P)( +iP-ik)+ik( +a )j
k n'+P' 2n

=i(X+P)x(k,0). (5.4$)
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Then from (5.31) and (5.34),
X(k,o) (ns+PP)P»

x(k,s) =
(2nk(7, +P)+s»(n'+P')[(n i—P) (n+iP i—k)+ik(n+ik)7)

(5.42)

Choosing the full Boltzmann operator 8,

and

x= k[1—))c(k)7—p

(k,s) = (k'/2n)»,
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Since
n

p(w) = g At'ct
j=1

for 0&+&cl

m n

=w P A;+ P A;c; for c~&w&c~q

where

x(k i) Re Q D (k)etwas(k)t —xwt(p)t

m=]

for c„&zv,

the w integration in (A4) can be done to give

(A5)
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computing Figs. l—3. ancl

w„(k) =c„P(k); X (k) =p(c„)n(k) (A6)

APPENDIK

For the discrete velocity distribution

D (k)= A„k'[—(kn) Q At iP(k)7—

n

h, ((t) =g A,—,' [8((t—c,)+b((t+ c,)7,
j=l for 1&m&n, with

X[n(k) Q A; iP(k—)] ' (A'I)
j=1

with

and

cn» . c~l&c & &cl&0
Dt(k) = —Atk'[ —zP(k)7 '[n(k)At —iP(k)]-'

X(k,t) is thus a superposition of damped oscillations
and satis6es a linear diQerential equation in time.

The prototype 8-function distribution (3.8) is ob-
tained by putting At = 1, c) = c so that X)(k) =cn(k) and
wt(k) =cP(k). Another interesting case is

hp(tt) =Atb(p)+At-', [()(o—c)+()(t)+c)7, (AS)
with

For t) 0, from Eq. (3.7), and

k2t

z(k ~)
— Re dw ewute(k) p(w) ta(p) (A4)

-so that

n(k) p

(O n

)t(8) = dw hp(w) [w—t)( = P At'max[et [t)(7. (A3)
00 j=l Then

c~=0, cp ——c, and A~+As=1.

Xg=dpcn(k), wg ——0

A»=en(k) t wp=cP(k) t

x(k i) Re[Dr(k)e-»t+. D (k)et~tt »t] (A9)


