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Continuum Theory of Thomson Scattering*
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The theory of incoherent {Thomson) scattering of electromagnetic waves by thermal fluctuations in a
plasma is rederived using continuum equations instead of kinetic theory. Because of the inherent simplicity
of this approach, it is possible to extend the theory by including the eBect of density Quctuations of the
neutral molecules upon the scattering. The following results are obtained from the continuum theory:
(1) The total predicted scattered power is exactly the same as in the previous kinetic theories. (2) The
frequency spectrum of the scattered signal when neutral Quctuations are neglected agrees very well with
the spectrum obtained using kinetic theory {with the Bhatnagar-Gross-Krook model for collisions) when-
ever );„,the ion-neutral mean free path, is smaller than ) 0, the wave number of the incident signal. (3) The
major difference in the spectrum when the neutral Quctuations are included is the addition of two resonances
shifted from the signal frequency by &kU, where k =47r/Xo, and U is the neutral sound speed. For a weakly
ionized gas, these resonances are found to be signincant whenever );„&r'~940 with r the ratio of the electron
density to the neutral-atom density.

I. INTRODUCTION

'N this paper the theory of incoherent (Thomson)
- - scattering by thermal Quctuations in a plasma is
rederived using continuum equations instead of kinetic
theory. Aside from the fact that continuum equations
are inherently simpler than kinetic equations, the
principal motivation for this work is the fact that in a
partly ionized gas with no magnetic field there can be
three types of waves involving density Quctuations of
the electrons. The scattering from two of these, the
high-frequency electron and the low-frequency ion
acoustic waves, are adequately treated by prior
theories' ' which consider fluctuations of the electrons
and ions but assume a constant neutral molecule
density. However, scattering from the third wave
(which, though called a neutral acoustic wave, still
involves electron-density fluctuations) can only be
treated by using a three-Quid model. Such a calculation,
while extremely difficult in the kinetic-theory approach,
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can be made fairly easily using continuum (or hydro-
dynamic) equations for the plasma.

Very simple collisionless hydrodynamic equations
have been used previously by Cohen'4 to calculate the
Thomson-scattering spectrum from the electron and ion
acoustic waves. Since no damping mechanism is
included in his equations, the frequency spectrum of the
scattered signal in his work is a sum of b functions; but
his expressions for the scattered power (assuming
isothermal motion) are in exact agreement with those
found using kinetic theory. In Sec. II we present a more
complete two-fluid theory (appropriate for a weakly
ionized gas) and show that (1) the total predicted
scattered power is exactly the same (without the need
for an isothermal assumption) as in the previous kinetic
theories; (2) the predicted frequency spectrum agrees
very well with results obtained by Dougherty and
Farley" " using the Boltzmann equation with the
Bhatnagar-Gross-Krook (BGK) model" for collisions
with neutrals provided that the ion-neutral mean free
path 1;„is less than P e, the incident wavelength. (For
larger mean free paths, where Landau damping is im-
portant, the continuum equations are no longer valid,
so the disagreement is not surprising. )

In Sec. III we explicitly include the eGect upon the
Thomson scattering of density fluctuations of the neu-
tral molecules by using a three-Quid theory. From the
analysis we find that in comparison with the two-Quid
results (1) the total scattered power is unchanged; (2)
the major difference in the spectrum is the addition of
two resonances shifted from the signal frequency by
&kU„, where k=47r/Xe and U„ is the neutral sound
speed. This resonant scattering from the neutral
acoustic wave is found to be a large e6ect provided
that Xo satisfies the two conditions

~0))XD and )0))r '~9sn
y

"J.P. Dougherty, J. Fluid Mech. 16, 126 (1963)."P.L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94,
511 (1954).
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Fjo. 1. Wave number versus fre-
quency for electron, ion, and neutral
acoustic waves in a plasma. The
curves are solid over the frequency
range where they involve electron
density fluctuations.
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where X& is the Debye length, and r=E«/1Vs„ is the
ratio of the electron and neutral number densities.

The physical basis for this result is that the scattering
is produced only by fluctuations of the elec/roe-number
density. However, the first condition in (1.1) assures
that the electrons follow any fluctuations in the ion
density, while the second is needed for the ions to
follow any fluctuations in the neutral density. "Hence,
when the first condition is violated, scattering is pro-
duced just by the electron acoustic waves; when owly

the first condition is satisfied, scattering is from the ion
and the electron acoustic waves; and when both condi-
tions are met, scattering is from all three waves. (Note
that we assume in this discussion that X~&r ')'9;„as
is typically the case for a weakly ionized gas. )

Our results can also be understood in terms of the
wave-number-versus-frequency plot for the electron,
ion, and neutral acoustic waves shown in Fig. 1. The
curves in the figure are solid lines for frequencies where
the waves involve fluctuations of the electron density
and dashed lines where they do not. The conditions
used in this plot are the frequency analog to Eq. (1.1);
that is, electron-density fluctuations are coupled to
those of the ions for ~(co; and ion-density fluctuations
are coupled to those of the neutrals for co(r'I'v;„, where
v;„ is the ion-neutral collision frequency for momentum
transfer and ~; is the ion plasma frequency.

Thomson scattering is produced mainly by those
electron-density fluctuations with wave numbers of
order k=4'-/Xs. Hence we can tell whether any wave
produces Thomson scattering simply by observing
whether its wave-number plot is solid in the vicinity of
k. For large k's, like k~ in the figure, scattering is only

' See, for example, B. S. TanenbauID and D, Mjntzer, Phys.
Fluids 5, 1226 (1962).

from the electron wave; for smaller values like k2, the
ion waves also produce scattering; while for very small
values like k3, scattering is produced by all three waves.

The shape of the spectrum can also be inferred to a
large extent from the figure, since radiation scattered
by an electron-density fluctuation is concentrated at the
frequencies oro+co, where co, the Doppler shift of the
scattering, equals the frequency of the acoustic wave
producing the scattering. The degree of attenuation is
also of importance, ' however, since an undamped wave
produces a sharp resonance, while a damped wave
produces a smeared out spectrum. Hence from the
figure it is clear that scattering from the electron wave
has a Doppler shift of order co„with ~, the electron
plasma frequency; and similarly, the Doppler shift
when there is scattering from the neutral acoustic wave
is at the frequency kU„. The Doppler shift in the
scattering from the ion wave is not quite so simple, but
one can easily see that for values of k near k2 it is of
order V2kU;, while for smaller values of k or larger
values of v;„ the shift is smaller. (In fact, for k U;/v, „«1,
the Doppler shift can be shown to be of order
4k'U, s/v;„. )

II. TWO-FLUID THEORY

The method that we use to calculate the scattering
the electron-density fluctuations follows that of
from Dougherty and Farley, ' who show from the Born
scattering formula" and Nyquist's theorem" that the
differential cross section for backscattering with no

"F.Villars and V. F. Weisskopf, Proc. IRK 43, 1232 (1955).
"H. Nyquist, Phys. Rev. 32, 110 (1952); see also H. B. Callen

and T. A. Welton, ibid. 83, 34 (1951);and 8, 9, t allen and R, F.
green, ibjd. 86, 702 (1952),
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f = k KTpge/osFs ~ (2 2)

where I, and F, are both assumed proportional to
e""' "

&, k=2 cd/pcis twice the incident wave number,
~ is Boltzmann's constant, and Tp is the ambient tem-
perature (assumed equal for all species).

To find y', Dougherty and Farley use kinetic equa-
tions for the electrons and ions plus the Maxwell
equation (for VXH=O)

0= BD/r)t+ J, (2.3)

with D the displacement current and J the current
density. However, when the gas density is suSciently
high, one can obtain a much simpler expression for y' by
replacing the kinetic equations with a set of mass,
momentum, and energy equations for each species of
charged particles. Such transport equations have been
derived recently for a binary mixture by Goldman and
Sirovich. " These authors use the inherently simpler
form for the species transport equations that one
obtains by dehning each species' pressure tensor,
temperature, and heat-low vector relative to u, rather
than to the mean velocity of the gas as a whole, and
neglecting external forces as well as certain quadratic
terms in the calculation of the traceless pressure tensors,
heat-flow vectors, and collision integrals (for non. -

Maxwell molecules). As they point out, one result of
this is the loss of the thermodifI'usion eGect; but this is
small except under extreme conditions. Granting that
there may be small errors due to these approximations,
if we nevertheless apply their equations to small-
amplitude disturbances of electrons or singly charged
ions (with equal ambient-number density) in a weakly
ionized gas with u =0 and T„=Tp, we 6nd, to 6rst
order in the fluctuating quantities,

ps+psV'us=0 ) (2.4)

u, —(q./m. )E+ (VP,)/p, F,/m, —(rto,/p, )—
X/V'u, +rsV(V u,)j=—i,„u„(2.5)

(3/3) (p /P )0
Eoav, „'(T, To) . (2.6)— —

The terms on the left here are similar to the linearized
Xavier-Stokes equations, while the extra terms on the
right are the contributions due to momentum and

"E.Goldmo, n and L. Sirovich, Phys. Fluids 10, 1928 (1967).

magnetic field is given by

a p(pd p+ op)did = Re(Xor,sy'/srpd) dko . (2.1)

In this equation o-b is the power scattered through 180
per unit incident power per unit volume per unit fre-

quency, r, is the classical electron radius (es/4srepmc'

in mks units), Eo is the ambient electron-number

density, and y', the normalized response of the electron-
fluid velocity u, to a longitudinal oscillating force I",
applied to the electrons, is given by

TABLE I. Viscosity and thermal-conductivity constants.

Interparticle force I R

Hard spheres 0 0.6
Maxwell, E/r' —1 0.775
Coulomb, E/r' —4 0.6

de Cs Ce &rs

1.6 1.2 2.10 1.50 1~ 2
1.78 1.55 2.28 1.50 1.55
1.6 1.2 2.10 1.50 1.2

energy transfer by collisions between the charged.

particles and the neutrals. Note that s takes on the
values e (for electrons) and i (for ions), while ss denotes
neutrals. Also, p„q„sss„p„and T, are the mass density,

charge, mass, pressure, and temperature, respectively,
for species s; E is the electric-6eld strength; F, is the
force whose response we are calculating (F,=O here);
i,„and v,„'=2rps.r, /(m, +sss„) are, respectively, the
effective collision frequencies for momentum and

energy transfer with the neutrals; and gp, and ) p„ the

viscosity and thermal conductivity for charged particles
in a weakly ionized gas, are given by

p8
'/ps

ds&sn
Pp, =

48$ CsVaa

(2 7)

d;= 1+R,
c;=R+ss,

=3Ce 2)

dg= 2R )

(2.8)

with so= —4/(p —1), R=3(is+6)As(p)/20Ai(p), and

Ai(p) a nondimensional cross section which has been
tabulated for a number of cases." Values of these
constants for some typical force laws are shown in
Table I.

We now assume that p, =p,p+p, P =P o+P,', and

T,= Tp+T, ', with the fluctuating quantities p, ', p, ', and
T,' (along with F„u„and E) all proportional to
e'&"' ~ &. In addition, since we have specified longi-
tudinal disturbances, F„u„and E are all in the x
direction. LTransverse fluctuations, from Eq. (2.4),
involve no density changes and therefore no scatter-
ing. j With these assumptions, we find from Eqs. (2.3)
and (2.4) that

and

8=iiYoe(N; —I,)/(ceo

pe =pepllk/cd.

(2.9)

(2.10)

Similarly, from the energy equation (2.6) we find, after

'4 Slightly diGerent values for c; and c, are given in E.L. Walker,
Ph. D. thesis, Case Institute of Technology, 1967 (unpublished)."S. Chapman and T. G. Covrling, The 3IIathematical Theory of
N'orl;UrIiform Gases (Cambridge University Press, London, 1952),
2nd ed. , p. 172. Values of A~(p) for p = —2 are from B.S.Tanen-
baum, Plasma Physics (McGraw-Hill Book Co., New York, 1967),
pp. 332—335.

with d. and c, constants (of order 1 or 2) which depend
on the interparticle force law and the mass ratio
between the electrons or ions and the neutrals. For
interparticle forces of the form K/r" with all species
temperatures equal and nz;=m„) we 6nd'4 from Ref. 23
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using the identity p,=p,~T,/rrb„ that

p, '= p, 'V,'6„ (2.11)

where V,= (zTp/m, )'I' is the thermal velocity, and

1+i(5'/3o, ) Sk'VP
o.,= v, '+ . (2.12)

1+ i(pp/o, ) 2c.v.

Note as an aside that for Thomson scattering 0-, is
constant, so that, as or approaches 0, 6,=1 and Eq.
(2.11) reduces to the isothermal law, while as pp ~ pp,

6.=5/3 and Eq. (2.11) reduces to the adiabatic law
[for particles with no internal degrees of freedom, as is
assumed in the derivation of Eq. (2.6)7.

Equations (2.9)—(2.11) enable us to eliminate the
pressure and E field terms in Eq. (2.5), so that (after
multiplication by i&p/k'V, ') the x components of these
two momentum equations reduce to

around the lower half-plane. All the poles of the inte-
grand should be in the upper half-plane" except the one
at co=0, and the integrand for large + is proportional
to co ', so that there is no contribution from the infinite
semicircle. Hence, from the theory of residues we have

ob(Mp+M)dpi= Immi Res((a =0)

=Xpr. (o+1)/(2~+1) (2.16)

in exact agreement with the kinetic-theory result.
There are other calculations which also agree very

closely with Dougherty and Farley's results. For
example, when the collision frequency is high, in the
limit of very seal/ Debye length (n~ pp), Eq. (2.15)
reduces to

o b(ppp+pp)ka&= —Im[sprgd8;/n0;(s;+s. )7 ~
u. (n'+ s,)—o'u, =iF.(a/m. k'VP

—n'u, +u, (o.'+s,) =0, (2.13) %pre tP,d0;

where n= (BD) ', the Debye length Xr ——(zTppp/Spe')'",
and

s,=6,+2i0,[$,+2(3d,g,) '7 20,')— (2.14)

with 8,=&o/v2k V, and P,= v. /%2k V,. Note that,
because of the large mass difference, 8;))e„although

f,. From Eq. (2.13) one can easily 6nd the ratio
u,/F„and from that ratio and Eqs. (2.1) and (2.2), we
find that the cross section is given by

o b(pi p+ pp) dpp= —Im
Eprg(cP+s, )

dpp. (2.15)
X'CO CP Ss 2'0 SsS8

IB. S. Tanenbaum, P/asma Physics (McGraw-Hill Book Co.,
New York, 1967), p. 253.

Equation (2.15), while relatively complicated, can
be used very easily to calculate the spectra shown in
Fig. 2. These are seen to be in very close agreement with
the calculations obtained from the Boltzmann equation
(with the BGK model for collisions) by Dougherty and
Farley" over the range of conditions Q,)1) where the
continuum equations have some validity, but would
tend to diverge markedly for lower values of P;. (Note
that f, is about p times the ratio of the wavelength
producing the scattering to the mean free path for an
ion. ) In these curves, we let g,=—,'piP; as is done in the
calculations in Ref. 12. However, calculations using
iP, =P~/2. 8 (the value which one obtains by assuming
hardsphere collisions" ) show no noticeable difference
except at very high frequencies where the power is very
small. In addition, we let o,= 12.7, c,=d, = 1, c;=d;= 2,
and m;/m, =31)&1836; but, again, as long as n'»1, the
results are not sensitive to the exact values of these
constants.

The total scattered power is easily found by inte-
grating Eq. (2.15) over a contour closed by a semicircle

Conversely, in the limit of very large Debye length
(n-+ 0), the spectrum reduces to

o b (pop+ pp) d(o = Im [1Kpr, 'd0, /7r—0,s,7 ~
2XprP f,d0,

P,»1. (2.18)
s (1+40,+7+(40.'))

Except for the terms in braces here (which merely
reduce the already negligibly small cross sections for
very large 0's), these spectra agree exactly with the
kinetic-theory results. Note that in the limit as P —+ m,
these spectra are 8 functions centered at coo. This is
because the characteristic Doppler shift for the scatter-
ing from a wave with phase velocity V» is of order
k V~h, but for a collision-damped electron or ion acoustic
wave, Vph —+ 0.

To calculate the value of the spectrum at zero
Doppler shift, note that for small co, s,= 1+ippP, +O(pp'),
with

p, = (2/3a. ,)+( 2v/ Vk,)g,+2(3 , pd, )t'7. (2.19)

'7 For arbitrary a we assume this to be true on physical grounds,
since any other singularity arises only if e (xi+a,)+s;s,=O. This
condition is the dispersion equation for longitudinal waves (with
k real) in the plasma. Hence, it is satisfied by a complex co in the
lower half-plane only if there is a plasma wave that grows ex-
ponentially in time (a result which we do not expect here). More-
over, in the limits when n approaches 0 or ~, we can show that the
conditions for another singularity (s,=O for n=O and s,+2:;=0
for a= ~) cannot be met by an co in the lower half-plane. The
proof is simple. For co =x—iy (with x and y real and y positive) the
conditions lead to an equation of the form

PI—2x'+iP2x =0,
with P1 and P2 both real and positive definite. Since this equation
cannot be satisfied by any real x, there are no solutions in the
lower half-plane.
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5.0

FxG. 2. Normalized Thomson-scat-
ter cross sections versus frequency
(8;=co/02k V;) for the two-Quid con-
tinuum theory (solid curves) and for
the kinetic theory of Ref. 12 (circles).
The curves are for P;=10, 3, and 1,
with p; =~fn/42k V;.
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Hence, after a bit of algebra, one easily finds that

%or,'
o'p(&op)(Ao= [P'+ (1+n ')'P, jd(u. (2.20)

pr(2+n —')'

Of the three terms in our expression for P, the first
comes from the damping terms in the energy equation,
the second from the momentum-transfer term, and the
last from the viscosity term. For high collision fre-
quencies, when the momentum-transfer term dominates,
and p,—%2',/k, V„Eq. (2.20) again agrees exactly with
the kinetic-theory result" of Ref. 12.

In summary, we find that continuum equations suit-
able for electrons and ions in a weakly ionized gas can be
used to calculate Thomson scattering. Moreover, for
If,)1 there is excellent agreement in all respects with a
previous kinetic-theory calculation of the spectrum of
the scattered radiation. Hence one has some confidence
that the new results calculated in the next section with
a three-Quid theory should also be valid when the mean
free paths are relatively small.

III. THREE-FLUID THEORY

In order to find the effect of thermal Ructuations of
the neutral-molecule density upon the Thomson scat-
tering from a plasma, one must use a set of coupled
equations for the electrons, ions, and neutrals. In a full
three-fluid theory, one would have three sets of mass,
momentum, and energy equations like Kqs. (2.4)—(2.6),
but with additional heat-Row and pressure-tensor terms
on the left and the collisional transfer terms for momen-
tum and energy on the right given, respectively, by

—P v„(n,—n, ) and —P N „xv„'(r, r,), (3.1)—
"Note that Eq. (19) of Ref. 12 has a misprint, and should have

the factor (1+5'k')' not (1+8'k').

with t summed over all species. However, when all these

coupling terms are used, the resulting expression for y'

becomes extremely complicated. Therefore, to simplify
the analysis, while still retaining most of the physically
important terms, we make the following assumptions:

(1) that collisions between charged particles are so
infrequent that they can be neglected; hence the
collisional transfer terms for momentum for the charged
particles reduce to —v, „(n,—n„); and (2) that the
energy equation for each species can be replaced by an
equation of the form

p/ VP /Q (3.2)

instead of the more general result p, '=P, A„p,' that
one obtains with no approximation. In (3.2) we also
assume that the charged-particle density Quctuations

causing the scattering are isothermal, so that A.=6,= 1,
and that the neutral-molecule density fluctuations do

not depend signi6cantly on the energy collisional

transfer terms, so that Lafter an analysis similar to the
one leading to Eqs. (2.11) and (2.12)$ we find

1+i(5pp/3o „)
&n=

1+i(ca/o. ) 2c v;
(3.3)

Note that c„is a constant (again of order 1 or 2) that is

given by c =pp„V,'/gp v;„and is tabulated for some

typical force laws in Table I (assuming UP= V„' and,
somewhat artificially, that the interparticle force be-
tween an ion and a neutral is the same as between two

neutrals).
With these simplifications we find that when we

consider the response of the plasma to an electron
perturbation proportional to e'&"'—~', the three momen-
tum equations reduce )after using Kqs. (2.9) and (2.10)



220 B. SAM UEL TANENBAUM

and multiplying by i&a/k'V, 'j to

N.{n'+s.') n'—I; i)—.N =iroF, /m, k'V e,
—n'm +I (n'+s ')—iP u =0 (3 4)

ir—),N, A'—$,e;+s„'N„=0,

where r =No./&o„, $,= 28,f„and s,' is similar to s, as
given in Eq. (2.14) except that here, for the charged
particles, 6,'= 1 because of the isothermal assumption,
while for the neutrals,

s.'= &-'+ ' (6+4)+(4 8'/3&.4') —28. (3 5)

The constant d satisQes d„=pe /rie v; =c V '/V;2;
hence, generally d„and c„are equal.

Equation (3.4) is easily solved to find a new value for
e,/F„and from that ratio and Eqs. {2.1) and (2.2) we
6nd that the three-Quid cross section for backscatter is

&s(&o+to)pro

n'+s, '+ Tr
(3 6)

n'(z. '+s )+s,'s +T,

Tt=r&P/s ',
T2=rL~'(k.+4)'+5's*'+4"s' j/»-' (3.7.)

Before discussing the numerical calculations based upon
Eq. (3.6), there are several points worth noting about
this result.

(1) In the limit when r —+0 (very low ionization),
Tr and T2 approach zero and (3.6) reduces to the two-
Quid isothermal result )Eq. (2.15) with 6,= 1j.

(2) As ro approaches zero, Tt and Tr are both propor-
tional to oP. Hence, if we follow the same procedures
used in the last section, we 6nd that the total scattered
power is again given by Eq. (2.16). In addition, o p((ap)

is still given by an expression like Eq. (2.20) except that

the values for p, and p, no longer include the (generally
negligible) Qrst term in Eq. (2.19), again due to the
isothermal assumption in this section.

(3) The extra terms Tr and Tm are both inversely
proportional to s„'; hence they tend to become im-

portant at the neutral acoustic resonance when the real
part of s„' goes to zero. Simple analytic expressions for
the cross section near this resonance are dificult to
obtain in general, but can be found for some special
cases. As an example (which is applicable for a typical
back-scatter experiment from the lower ionosphere),
we Qnd that for nm»1, $,2»1, and re',&&1, the spectrum
is virtually identical to the two-Quid result except for
frequencies very close to the resonance (8,'=-', ), where

with Cr= (88,2/3d )+(5/3c„). For r$,2((Cr (or nPP((1)
the term in parentheses equals 1, and (3.8) reduces to
the two-Quid result LEq. (2.17)j.However, for r(;2»Cq
(or rf;2»1), there is a large neutral acoustic resonance.
This eBect can be seen in Fig. 3, where the spectrum
Lcaiculated numerically from Eq. (3.5)j is plotted for
P;= 10 and r = 10 ', 10-', and 10-', along with the two-
Quid calculation. All constants are the same as in Fig. 2

and we also let c„=d„=2.When rPP=0.1, the reso-
nance is absent; for rg,m= 1, it is clearly present; and for

Ylp; = 101) 1t ls very pronounced. In addition) the good
agreement between these curves and the earlier two-
Quid calculation away from the resonance suggests that
the assumptions used to slIDpllfy the three-Quid theory
do not a6ect the results very seriously.

IV. XHSCUSSION

Aside from demonstrating that one can reproduce the
Thomson-scattering spectrum for a plasma with P,)1

by using continuum equations rather than kinetic

Ol EO

L

O

2.0

l.0
lo-'

e = IR.7
~l= co= ~n& R

Ce & cle = l

FAl = Nq= 5! (l858j e
l0, We=i

FIG. 3. Normalized Thomson-scat-
ter cross sections versus frequency
(8;=au/V2kV;) for the two-Quid con-
tinuum theory (solid curves}, for the
kinetic theory of Ref. 12 (circ1es}, and
for the three-Quid theory (dotted
curves). The curves are for r=10 ',
10 ', aud 10~, with r =No, /So, .
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theory, the major new result in this paper is the calcu-
lation of the neutral acoustic resonance in the spectrum
for rf,s) 1. If this effect can be observed experimentally,
it would provide an additional diagnostic tool for
studying plasmas. Since the resonance has a Doppler
shift of kU„, this provides a direct measure of the neu-
tral sound speed. In addition, the relative amplitude of
the resonance involves the percent ionization and the
ion-neutral collision frequency. The latter can also (for

P,))1) be determined from the value of the spectrum
at coo. Hence, in principle at least, one can determine

both parameters from the values of the spectrum at eo
and at a)0&kU .
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The trial function pi,&0 is a useful approximation to the lowest eigenstate of IJ with momentum kk in
the theory of a uniform system of interacting bosons. The closeness of the approximation can be tested by
studying the variance of H with respect to plrf0. The leading term in the variance at long wavelengths
(k«2'.p'/') is found to vanish when $0 is given the asymptotic properties implied by the identi6cation of
the elementary excitations described by pz&0 with the phonons in the quantized version of the classical
sound 6eld.

'HE trial function
~

k)= pgfp[ES(k) j '" is recog-
nized as a useful approximation to the lowest

eigenstate of H with momentum Ak' ' in the theory of
a uniform system of interacting bosons. The closeness
of the approximation in the long-wavelength limit can
be studied by computing the variance of H with re-
spect to

~
k) and examining the behavior of this quan-

tity as a function of k. We use the following nota-
tion: lto is the exact normalized ground-state wave func-
tion of the E-partIcle system in a box of volume 0
(number density p=E/0). The energy eigenvalue is
Ep. g(r) and S(k) are the radial distribution function and
the liquid structure function generated by gp. ' ps
=+Pe's'~' is the Fourier transform of the density
operator. ep(k) =k'k'/2zlS(k) is the Bijl-Feynman for-
mula for the energy of an elementary excitation.
S(oo,k) is the dynamic form factor. o
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Our problem is to extract physical information from
the quantity

(k i (H—Ep—ep(k))'
i k)

= [1/1VS(k)](0
~ p s(a—Ep —ep(k)) ps

~
0) (1)

(zo —ep(k))'S(oo, k)doo.
S(k) 0

The exact relation

(&—Eo—eo(k))pro = (k'k'/2zzz —ep(k)) pziPo

A2—Q e'"'~ik vy, f, (2)
m j

has the consequence

(1/N) (0
~ p s(H —Ep—ep) p&

~
0)= —(k'k'/2nz)

X[QS(k)—1/QS(k) j'+(k'/m)' k V zfp

X/k Vzfo+(E —1)e's'"Pk Vsfpjdrz, p, ...zz. (3)


