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Experiments on the thermodynamic properties of magnetized solid He' at accessible temperatures and
fields are shown to be a conveneint and powerful method of studying the nature and form of the nuclear
spin interaction in solid He . In particular, it should be possible to determine whether these properties are
described in a satisfactory way by an exchange-interaction model assumed to be proportional to the scalar
product of nuclear spin vectors of nearest-neighbor atoms of the solid. Independently of this model, it is
shown that measurements of the magnetic modification of the melting pressure, at low but readily accessible
temperatures and moderate field strengths, correspond to almost absolute measurements, of good accuracy,
of the nuclear paramagnetic susceptibility of the solid at melting. The entropy diagram of the magnetized
model solid enables one to describe with precision the isothermal magnetization and adiabatic demag-
netization processes, which should contribute to the verification of the model through their experimental
investigation. The increase in the heat capacity on magnetization is large enough to be maesured accurately
and to test the validity of the model. An interesting effect is that the thermally anomalous unmagnetized
solid becomes normal on magnetization, over a finite and low but accessible temperature range, and at
intermediate field strengths. Experimental investigations of various equilibrium thermal properites of
magnetized solid He' could thus contribute significantly toward the elucidation of the behavior of its
nuclear spin system which alone determines its thermal properties over the currently accessible low

temperatures.

1. D|TRODUCTrom

]~)NE of the outstanding problems in the theory of
the solid phases of He' refers to the behavior of

their nuclear spin systems at low and very low tempera-
tures. In the liquid phase, the nuclear spin system
achieves increasing degrees of order at low temperatures
under the inhuence of the Pauli exclusion principle and
Fermi statistics. ' ' Here, the spin system was expected
to exhibit paramagnetic behavior down to the tem-
perature of absolute zero."This prediction is well

substantiated down to the lowest temperatures reached
so far in magnetic susceptibility determinations on the
saturated and compressed liquid. ' ' In contrast with
the statistical spin ordering in the liquid phase, the
localization in coordinate space of the atoms of the solid

phases raises the problem of a different kind of spin
ordering resembling that in normal solids. One is led

to invoke here magnetic ordering, nuclear ferromagne-

tism, or antiferromagnetism. In recent experimental
work of significant importance on the low-pressure
body-centered-cubic (bcc) solid He', down to quite low

temperatures, T 20''K, Adams and his collabora-

ters, ' at the University of Florida, have succeeded in

proving that this solid must approach, at T«20m'K. , a
transition into a spin-ordered phase. The Florida work

' L. Goldstein and M. Goldstein, J. Chem. Phys. 18, 538 (1950).
' L. Goldstein, Phys. Rev. 96, 1455 (1954); 102, 1205 (1956);

112, 1465 (1958); 112, 1483 (1958).' A. L. Thomson, H. Meyer, and E. D. Adams, Phys. Rev. 128,
509 (1962).

4 W. R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley,
Physics 1, 337 (1965).' E. B.Osgood and J. M. Goodkind, Phys. Rev. Letters 18, 894
(1967).

6 M. F.Panczyk, R. A. Scribner, G. C. Straty, and E.D. Adams,
Phys. Rev. Letters 19, 1102 (1967). I should like to thank the
members of the University of Florida group for a copy of their
paper prior to publication.

is also in agreement. with the prediction that the entropy
would decrease on isothermal volume increase, dis-

cussed by us earlier' in a semiqualitative way, and

rigorously in recent work. .' The latter work is based on

the antiferromagnetic exchange coupling model, char-

acterized by a single energy parameter J, and the scalar

product of nearest-neighbor spin vectors, the Heisen-

berg model. Inasmuch as the temperature range ex-

plored by the Florida workers was the asymptotic or
high-temperature range, T&&T,=

~
J~/0, only the

(J/kT)2 term of the indicated entropy variations was

ascertained, proving the impending transformation of

the spin system. However, the sign of the exchange-

energy parameter, which determines, within the formal-

ism of the model, the ferromagnetic or antiferro-

magnetic character of the transformation, according as

J~~O, was not obtained so far. Direct experimental

investigations of the transformation across the transi-

tion temperature of about 3((J~/k), or 2m'K, according

to the value of
~
J

~
determined by the Florida group, '

appear to be beyond current technical accessibility.

However, the experimental problem raised by the

nature of the transformation can still be approached in

the paramagnetic range, T&To,,=3~ J~/k. Paramag-

netic susceptibility measurements enable one to deter-

mine the sign of J unambiguously, provided the

temperature range of these magnetic measurements is

extended below 20m'K. But in addition to the nature

of the magnetic transformation and the determination

of the exchange-energy parameter and its volume or

pressure dependence, J(V) or J(p), we wish to call

attention to the following outstanding problem.

L. Goldstein, Ann. Phys. (N. Y.) 8, 390 (1959); 14, 77 (1961);
Phys. Rev. 133, A52 (1964). See also L. Goldstein and R. L.
Mills, ibid. 128, 2479 (1962).

L. Goldstein, Phys. Rev. 159, 120 (1967).
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Assuming 'th. at both J(V) and J(p) have been obtained
what is the exact form of the interspin potential energy)
Considering, for instance, the derivative thermal
properties arising from the spin system, and exhibiting
the asymptotic 1/T' behavior, one must keep in mind
that the specific form of the spin-spin interaction a6ects
only the terms in 1/Ts and those of higher power of
1/T appearing in the theoretical representation of these
properties in the paramagnetic range. Similarly, the
specific form of the interspin coupling aGects only the
term in the paramagnetic susceptibility formula which
is beyond the so-called molecular Geld theoretical term.
The latter term, however, determines the sign of the
exchange-energy parameter J. In order to reach, with
satisfactory precision and accuracy, the specific inter-
action terms which appear only at temper'atures below
the asymptotic range, two possible ways of approach
may be considered. One may hope to investigate the
thermal and low magnetic Geld strength properties of
solid He' at very low temperatures which are currently
very difficult to obtain in this phase. Or, one may
QlagIlctlzc thc solid ill constant and uniform ficMs of
increasing though available strengths. In the latter
case, the equilibrium thermal properties, at presently
accessible temperatures, of the magnetized solid should
enable one to attack, in a promising way, the problem
of the specific form of the mutual spin-dependent
exchange interaction. Accordingly, the subject matter
of the present paper is the theoretical elaboration and
analysis of the thermal properties of the low-pressure
magnetized solid He' on the basis of the Heisenberg
exchange coupling model. The direct and quantitative
comparison of the experimentally determined properties
with those given and discussed in the present work
shouM be capable of ascertaining whether or not the
exchange-interaction model used here is valid in solid
Hc.

2. SOLID Hea IN MAGNETIC FIELDS OF
LOW OR MODERATE STRENGTH

A. Magnetic Modi6cation of the Melting Process

In the bcc modification of solid He', the exchange
coupling

V"=—2Js"s.

of two nearest-neighbor atoms i and j, of spin quantum
number —'„with spin vectors s~, in units of A, leads to the
magnetic Hamiltonian H~ in the presence of a constant
uniforn1 magnetic Geld of strength B,

Hsr gV;;—greg s; ——H.
i

The (s,j) summation refers to nearest neighbors
the i summation of the second term on the right-hand
side extends over the whole system of E atoms. The two
types of terms of II~ commute, with gp, ps; or u; being
the elementary magnetic dipole moment vector of atom

f', pp being thc Iclcvant unit moment and g thc splitting
factor. The exact high-temperature series representa-
tions of the low-field-induced paramagnetic moment,
M(J/kT, pH/kT), and exchange heat capaicty
C(J/kT, H =0) have been extended' to about six terms,
for a number of lattice structures and a number of spin
values. These result, according to statistical therIno-
dynamics, from the partition function Z(x,y) of the
HamlltoIliai1 B~~

Z(x,y) =Tr )exp( —Hsr/kT)],
thlough

M(x,y)/1' = (8/r)y) L1V-' lnZ(x, y)]
aQd

C(x)/1Vk= (8/aT)(T'(8/r)T)/E ' lnZ(xy y=o)]}. (5)

Here, in the relevant parameters,

x= (J/kT), y= (1rH/kT), (5')

J is the numerical value of the assumed antiferro-
magnetic exchange coupling energy, the negative sign
of which will be taken into account through the powers
of —1 in the exact if incomplete series representations
of the thermal properties arising with Hsr, Eq. (2). At
low field strengths H, only terms containing y, that is
H, to lowest power will appear in the Geld-dependent
thermal properties.

For our purposes it is appropriate to consider the
entropy of the assumed model of the antiferromagnetic
solid He', without and with the field. In the former case
one finds, as given earl. iers

S(x)/Nk = ln2 —3xsg (—)"1a„~e&/(p+2)]x~, (6)
nM

where the coeS.cients a„(p& have been evaluated up to
us&') recently, in several cubic structures. " From the
low-Geld-strength magnetic-moment series, or

3f(x,y)/X1 =yQ (—)-u„&»x-, y&g1
n=p

one obtains, from thermodynamics, the entropy change
on magnetization at low Geld strengths,

LS&'& (x,y)/Nk]„((t

&~L~(x y)/&~]/~(kT) }&(IH)

=:y'Ll+Z (-)"(~+1)..~ lx-], (g)

where the a &'& codhcients are now available up to
Gyp( ) for several cubic structures. "In small Gelds, the

' G. S. Rushbrooke and P. J. glood, Moi. Phys 1 25' (195S).
6, 409 (1963}.These papers contain references to the earlier
literature.I G. A. Baker, Jr., H. E. Gilbert, J. Eve, and G. S. Rushbrooke,
Phys. Letters 20, 146 (1966);22, 269 (1966);Phys. Rev. 164 800(196'I). j 4 s p
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entropy is then given by

S(x,y). &&, „«,=S(x)+S &') (x,y),

which, by (6), (7), and (8) reduces in the limit of
x —+0 to

lim S(x,y)/Sk ln2 ——',y', y«1
x-+0

the entropy of an ideal paramagnetic system at low

fields and high temperatures. With (6), (8), (9), and

(10), and the statistical thermodynamic relation

S(x,y)/Nk= (8/BT)[TE ' lnZ(x, y)j, (11)

Z&", and write, on expanding coshy in the just indicated
exact form of Z(y),

y'"
& (coshy —1)&1,

~-& (2~)!
(16)

S '!nZ(x«1, y&1)

y2 'rs

=»2+»(&+2
~

—)«"'y'* &15)
~-) (2n)!i

neglecting Z(x«1) whose lowest-order term is quad-
ratic in the very small x. Here one must have

one obtains

X-) lnz(*,y)

=ln2+3x'p (—)"[a '/(~+1)(~+2)3x"

or y must be such that

coshy& 2,
y&1.32.

(16')

+gym+ ( )na &1)xn (12)

~-& lm(y) = ln2+)y',

ll!
—) inZ&o (x y) xy2+ ( )ma &1)xn

(14)

The partition function is thus decomposed into that of

the exchange-coupled system in absence of the field

Z(x), with the spin multiplicity factor, omitted, the

partition function of the asymptotic ideal system Z(y),
and that arising from the interactions of the x and y
fields, the exchange field, and the applied external field,

Z&')(x,y). This product representation of the partition

function, to lowest order in the applied field strength,

satisfies the requirement that in the two limits, x —+ 0
and y

—+ 0, it should reduce, respectively, to that of an

ideal system of spin- —,particles, or that of the exchange-

coupled system in absence of the external field. I,et us

assume now that the two relevant parameters of the

system, x and y, can be varied independently, through

modifying J and H. It is then justified to consider the

situation where y increases and x is reduced so that the

interaction term Z&o(x,y) may still be represented as

in (14) above, while Z(y) has to be completed by addi-

tional powers in the still moderate but increasing y. Now

with x~ 0, Z(y) must reduce to (2 coshy)~, the exact

partition function of the ideal system. At small enough

x values, it is justified to retain only the first term of

the logarithm of the partition function per atom or the

negative of the free energy in units of kT, to lowest

order in the applied field strength. This can be re-

written as

&-'lnZ(x, y), (& „«g=E 'ln[Z(x)Z(y)Z&')(x, y)j, (13)

with

g-' lnZ(x) =32+ (—)"[a„&')/(n+1)(n+2) jx",

At increasing x values, the Z(x) part of the partition
function becomes important and, in addition, the inter-
action term Z&')(x,y) becomes more complicated, in-
volving increasing powers of both x and y. These latter
terms will be considered in a later section devoted to the
effect of increasingly large magnetic fields on solid He'.

The foregoing discussion of the total partition func-
tion of our system, based on the exact derivation of its
components, shows that the limiting ideal spin system
is an integral part of the magnetized system. While the
no-field antiferromagnetic component partition function
Z(x), as well as the interaction term Z&')(x,y), though
exact up to the number of terms known to date, are
described in an incomplete fashion through a finite
number of terms in their infinite-series representation,
the component ideal system partition function Z(y) can
at all times be given in its exact form. Clearly, at low
enough y values the use of limiting forms of the expan-
sion of Z(y) is fully justified.

To the approximation (15) of the partition function,
the fractional magnetic moment or polarization is

~(x,y)/Xp = (tanhy) —a&&))xy.
&&&&, v&&

(17)

The coefIicient a~"' being positive, ' the second term on
the right-hand side is an approximate measure of the
resistance which the internal antiferromagnetic x
coupling develops against the ordering eGect of the
external field. The first term on the right-hand side is
the fractional moment induced in the ideal spin- —,

component of the system at hand. In the limit y« i,
one obtains

lim M(x,y) =Xyy(1—ay&')x)
*«i. u«i

Spy/(1+ay&') x),

the latter fractional form being valid only to terms
linear in x. This is the high-temperature molecular field
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S "(,y)/Sk= ——',y'P (—)"(n+1)a„"x", (21)

where S(x) was given above LEq. (6)j; the middle
terms have been defined through Eq. (20), and S"&(x,y)
is seen to be S&'(x,y) defined by (8) augmented by i~y'.

We are now prepared to discuss the modi6cations of
various thermal properties of antiferromagnetic solid
He' on magnetization in low and moderate fields, in the
paramagnetic region. At the present time, the measure-
ments of the changes in the melting pressure of mag-
netized solid He', as well as the changes in the tem-
perature derivatives of the melting line, should enable
one to verify experimentally the entropy decrease on
magnetization, at accessible temperatures and 6eld
strengths. To show this we have to derive the melting
pressure of the solid in the presence of a constant and
uniform magnetic 6eld, where the entropy derived
above represents with good approximation its Geld
dependence.

The consistent omission of all shape-dependent
demagnetization eBects in the magnetized solid will be
adhered to throughout the present work.

According to thermodynamics, the temperature
derivative of the melting pressure is given by

dP (x,y)/dT= (&V+) 'I S . (Tr)»rS.~(x y)—j

approximation to the induced moment, with

u "&x=a &'&J/kT
TN/T p

T~ being the molecular field theoretical approximation
of the antiferromagnetic spin ordering or Neel tem-
perature.

Another aspect of the competition between the anti-
ferromagnetic exchange coupling within the system and
the applied external 6eld clearly appears in the expres-
sion of the entropy of the magnetized system. To
the approximation of the partition function (15), one
obtains

lim S(x y)//Sk =8/BT(TS-' lnZ(x y) 7
& «f,y ~i

= Lln(2 coshy)) —y(tanhy)+a& o&y'x. (20)

The interaction between the x and y couplings is seen
to increase the entropy, the coeKcient of the interaction
term u1(') being positive, as noted already. The two
terms preceding the entropy of interaction represent
S;z(y), the entropy of the asymptotic ideal system in
presence of the external 6eld.

In relaxing the limitations on x used in Eqs. (15)—
(20), Z;s(y) can replace Z(y) in the partition function
(13), as justified above. By limiting the interaction
function Z&'&(x,y) to lowest order in y, as in (14), we
want to rewrite the total entropy of the system, to this
approximation, as

S(x,y) =S(x)+$S;z(y) —1A ln2$+S&'& (x,y),

with
hV jr (T)= Vr.M (T) V„—»r (T) (22')

standing for the volume change at melting of the
unmagnetized system, and where the subscripts L and
s refer to the liquid and solid, respectively. The very
small volume changes of these dense phases on mag-
netization are assumed to be negligible. The entropy of
the solid at melting is taken to be given by (21), all
component entropies and the parameters de6ning them
referring to melting conditions. As discussed by us
recently' the empirical exchange energy parameter J~,
at melting, may be assumed to remain constant approxi-
mately over the small temperature and melting volume
ranges relevant for the calculation of the thermal
properties. This assumption may not be as restrictive
as would appear, at first sight, because the volume
changes of the solid at melting, over the pressure or
temperature intervals of particular interest here, are
expected to be moderate. This then would tend to keep
the variations of J»r(V) within a correspondingly
limited range. An improved calculation of the entropy
of the solid at melting can be performed as soon as the
function V, , &&&(T) becomes available, together with
Vz, ~(T) at the lowest accessible temperatures. How-
ever, the loss of numerical accuracy of the calculated
thermal properties arising from these various sources
will have to be kept in mind.

On substituting S,, &s'(x,y) given by (21) into (22) and
making use of the relations (6) and (8); one obtains the
melting-pressure derivative as a sum of two terms:

with

dP»r (x,y) dP»r (x) dP»r &'& (x,y)

IT (25)

dP~(x)/dT= (~V»r) 'p'z„»i(T) S„»r(x)j —(24)

being the melting-pressure derivative of the free or
unmagnetized solid, and

dP»r "& (x,y)/d T= (—) (R/6 Vjr) Lln (coshy)
—y(tanhy)+Si'& (x,y)/Rj, (25)

being the interaction derivative (where R is the gas
constant) which is positive since the entropy changes on
magnetization and the quantity inside the square
brackets is negative, even though S(" itself, arising
from the interactions of the x and y fields, is positive.
Hence,

dP jr(x,y)/dT& dP~(x)/dT&0, (26)

the melting-pressure derivative dP»i(x)/dT of free He'
being anomalous or negative throughout the tempera-
ture range of interest here, i.e., at T„'&&T&T„, T„and
T„' being the temperatures of the melting-pressure
minimum and maximum, and the latter being at the
very low temperature of a few millidegrees, as discussed
recently. ' It is seen that both (22) and (25) carry the
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following additional approximation: The modification
of the entropy of the liquid at melting due to the
presence of the magnetic field has been neglected. This
will be justified over the relevant temperature range on
the basis of a quantitative argument to be advanced
below.

On integrating (23) between T„and T&T„, one
obtains the melting pressure difference

PM (x,y) PM (x—„,y„)= [PM (x) PM (x—„)]
+I PM (x y) PM (x y )1 (27)

with ' S,,M(T)
dTPM(x) PM(x—„)=

AV~ g p, Ex

+(T„T)ln2——[Q(x)—Q(x„)], (28)

where

Q(.)=3@./k). Z (-)-[.& /(.+1)(.+2)]s- (»)
n~0

This achieves the determination of the melting pressure
of He' at temperatures T& T„, to the stated approxi-
mation, in the presence of a small or moderate magnetic
field. The melting pressure is reduced on magnetization
as a consequence of the entropy decrease of the mag-
netized solid when compared to the free solid.

Over the ranges of T, x, and y of particular interest
here, one may, in a Grst approximation, neglect
Q&'(T„,x„,y„) in comparison with Q&'(T,x,y). The
melting-pressure decrease, in the state (x,y), is then

lim PM &'& (x,y)~«j. VWI

= —(RT/0, VM) (-',y') (1—ay&'&x), (32)

keeping only the term linear in x in the series on the
right-hand side of (31) and writing 2y' for ln (coshy), at

Equation (28) is thus the melting-pressure equation of
He' at T„'«T~T„, in absence of the magnetic field.
This melting pressure has been obtained by us recently'
through combining the numerically evaluated entropies
of the liquid and solid at melting and integrating their
difference numerically. Since an analytic expression of
Sr„M(T) valid throughout the range T„'«T&T„ is not
available at the present time, a more explicit form than
(28) of the melting line cannot be given. It should be
noted that the very small phonon entropy of the solid
has been neglected consistently both in the earlier
calculation and in the present one.

The field-dependent part of the melting pressure is,
from (25),

PM &'& (x,y) PM &'& (x„,y„)=——(R/& VM)

X[Q &'& (T,x,y) —Q
&'& (T„,x„,y„)], (30)

with

Q«&(T x,y) = T[ln(coshy)+-,'y'g (—) "&&'.o&x"]. (31)

small y. To terms linear in x, one has

(R/2h VM) (PH/k) (PB/k T)
lim PM&'&(x, y) =-

*«~, v«~ 1+a&&'&x

(1/2~v ) (xl a) (&II/kT)

1ya&&'&x

M(x—,y) H/(26 VM), (33)

where use was made of the limiting small x- and small
y-value expression of the induced magnetic moment of
the solid, Eq. (18). Now —-2M(x, y)P is the magnetic
potential energy acquired by the solid in the course of
raising the applied Geld strength from 0 to its value H,
i.e., on magnetization to this field strength. Hence, to
the stated approximation, the melting-pressure de-
crease is seen to be given by the magnetic potential-
energy density of the solid defined over the volume
change at melting hV~.

On 1&eeping both Q functions on the right-hand side
of (30) and using the indicated lowest-order x and y
approximations to these functions, one Gnds

PM&" (xy) —PM&" (x y)
= —(e/2~VM)[M(x, y) —M(*„,y„)]. (34)

To the order indicated,

M(x, y) =x(x)HV, ,M(T), M(x„,y„)=x(x„)BV„M(T„),
(35)

with the susceptibility

&&(x)= (Ep,'/V„MkT) (1—a&o&x)

—(E»'/V „MkT)/(1+ a& &'&x), (36)

to terms linear in x. The change in the melting-pressure
variation from the zero-field case, over the interval
(T,T„), is then

PM &o (x y) PM &'& (x„,y„)=——(EP/26VM)

&&[x( )V.. (T)—x(*.)V.. (T.)] (37)

Since the variations of the volume of the solid at melting
are quite small at T& T„,one may write, approximately,

PM"&(xy) —PM&'&(x y )
= —(~V,M(T.)/»VM)LX(x) —X(*.)] (37')

To the indicated approximation, the Eqs. (34) through
(37') show that the measurements of melting pressure
changes of the magnetized solid over the temperature
interval (T,T„) are equivalent to the measurements of
the changes of its induced paramagnetic moment over
that interval.

With the moment M(x,y) or the susceptibility X(x)
being decreasing functions of the temperature, the
lower T is the better it is justified to neglect the pressure
change PM &'& (x„,y„) in comparison with PM&'& (x,y). To
the approximation of neglecting PM&'& (x„,y„), the mea-
surement of the change in the melting pressure
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Pir&'&(x, y) yields an approximate value of the induced
moment M(x,y) and the associated susceptibility,
Eqs. (33) and (35). This approximate value of the
induced moment may be said to be measured in a way
which is close to being absolute. Indeed, Eq. (33) yields
M(x,y) in terms of the directly measurable melting
pressure change P~('), the volume change at melting
hV~, and the strength H of the applied external field,
both of these being directly measurable also. If P~(')
were to be measured through a pressure measuring
device, then M(x,y), defined by (33) would correspond
to an absolute, if approximate, induced paramagnetic
moment, and the same remark applies to the associated
susceptibility. Since, however, neither P~(') nor B are
measured directly, in the sense that the latter, for
instance, is not accessible to a magnetic balance, the
absolute character of the determination of M(x,y) or
X(x) is lost. It is, however, realized that the para-
magnetic moment or susceptibility of solid He at melt-
ing, and only at melting, can thusbe reached directlywith
possibly good accuracy through measurements of melt-
ing-pressure variations. The technique of measuring
small pressure changes with great accuracy, developed
and used recently by the University of Florida workers, '
could find ready application in the investigation of the
melting process of magnetized solid He'.

With the melting-pressure variations in presence of a
magnetic Geld being proportional to the variations of
the induced moment )Eq. (34)) it is seen that their
measurements can yield the sign of the exchange energy
parameter J, and determine thereby the nature of the
magnetic transformation of the solid. Indeed, consider-
ing the melting-pressure changes given by Eqs. (30) and
(31),one can write these also as

P~"'(x,y) —P~"'(x„y,)=~'~(y)+»~&o(x, y), (38)

with

dP;o(y) = —(2&'/AVi&r)[T ln(coshy)

T„ln(coshy„), (38')
and

antiferromagnetic systems the component variations
AP&a(y) and APor&'&(x, y) are of opposite sign, in the
assumed exchange-coupling model of these systems.
Accordingly, the experimental determination of the
opposing signs of AP;z(y) and AP, &r

"' (x,y) is equivalent,
within the framework of the exchange model, Eqs. (1)
and (2), to the verification of the antiferromagnetic
character of solid He'.

Measurements of the melting pressure in presence of
an applied external magnetic Geld involve the two-phase
liquid-solid system at equilibrium. Both phases are
magnetized and the entropy of the liquid will be
.decreased from its value in the absence of the field, as
is the case with the solid phase shown above. However,
within the framework of the theory of the spin system
of the liquid' at T&&To(P~), To(Por) being the char-
acteristic temperature of this system at the melting
pressure P'~, one has, '7 for the fractional induced
magnetic moment,

M (T,P~,H)/NII,

F(nM —(AH/kT)] F/n~+ (—yH/kT)]
, (»)

Fgajr (IiH/kT)—]+F[eor+(IiH/kT) j
where at the low temperatures of interest here

( nor) = n(—Pi&r) T—o(Pir)/T&)1, (pH/kT) =y&1,
(40)

and F(x) is a characteristic function of the formalism"
which need not be given here explicitly. Inasmuch as at
all Geld strengths considered here, pH&(kTO, one ob-
tains, expanding numerator and denominator in (39)
to terms linear in y,

lim M (T,Pjr,H)/Eli
pII «kTp(P~)

=(»/kT)r-F (- )/F(--)), (41)

F'(x) =dF/dx,

&P "'(,y)= —(2&'/~I' )9"'(*y)—q"'(* y)j
q"'(*,y) = T(oy') 2 (—)"~-"'x".

n=l
(38")

and using the low-temperature asymptotic series
expansion' ~" of the logarithmic derivative of F(u),
one obtains

The pressure change hP;o(y) arising from the magneti-
zation is the one which would be observed if the solid
were an ideal paramagnet. As a consequence of the
entropy decrease of the ideal system of spins, the melt-
ing pressure decreases. This decrease is then com-
pensated in part by the interaction term which is a
measure of the resistance developed by the internal
antiferromagnetic couplings against the entropy de-
crease imposed by the ordering effect of the applied
field. The infinite series in q&'&(x,y) being convergent,
the sign of q('& is that of its 6rst term which is negative,
the same as the sign of J, and hP~(') is positive. In

lim M(T,Por, H)/NIJ. =$(pH/k To)
~H «4 To(PM)

T «To(PM)

11m4
X 1—~in'(T/To)'—

360
(TITo)'—" (42)

» The expansion of M (T,H) up to (T/Tp) was first given by
E. C. Stoner, Proc. Leeds Phil. Lit. Soc. Sci. Sec. 7, 403 (1938).
Additional terms up to (T/Tp)' are to be found in the second
paper of Ref. 7.

Using now the thermodynamic relation included in the
first of Eqs. (8), one finds the entropy decrease of the
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magnetized liquid, to the above approximation,

lim DSJ., pI(T,Pjr,H)/Ek
p,H &s.k To(Pu)

T«To(P~)

= —$n (pH/kTp)'(T/Tp)

117r2

X 1+ (T/Tp)'+".
15

(43)

to be

Ppr (x2 y2) P3E(x1 yl) =&P a(yp, yl)
+hP~&'& (xp,yp, xi,yi), (47)

with

hP;z(yp, yi) = (R/& V&s) LTi In (coshyi)
—Tp ln(coshyp) j(0, (47')

and

since only the temperature-dependent part of the
induced moment (42) can contribute. At all field
strengths of interest here, as well as over the tempera-
ture range relevant here, one obtains, to lowest order
in IJ,H/kT and i&H/kTp,

ASr„t»/S(x, y)- (TITo)' (44)

To the approximation of a constant AVM, the melting-
pressure change over the temperature range (T&,Tp)
arising from the magnetization of the liquid is

APr„M (Tp,H) DPr„jr (Ti,H—)

= (1/hV~) DSr„~(T)Pir,H)dT ) (46)

whose relative magnitude is seen, with (43), to be again

the fraction (T,/Tp)' of the melting-pressure changes

arising with the magnetization of the solid at T;
(p= 1, 2), to order y'.

At the low temperatures of interest here, the correc-
tions b,PI„M can be computed to a fair degree of
accuracy and can be taken into account accordingly.
At higher temperatures, T Tp(P~), which include the
reference temperature I„' of the melting-line minimum

in absence of the 6eld, the susceptibility of the liquid

approaches its classical or ideal limit. Neglecting the
relatively small volume difference AVE in comparison
with the volumes themselves of the liquid and solid at
melting, their respective paramagnetic susceptibilities
are fairly close at or around T„.As emphasized already,
the relevant temperature range for the investigations
of the magnetic modification of the melting line js at
most at T( 0.1'K, Neglecting here, by (44), the
effects arising from the magnetization of the liquid, the
quantity to be measured should be taken, at T2& T&,

keeping only the term in y' in S(x,y), arising from

S;z(y) —ln2, in Eq. (21) above. Now Tp(P~) is about
250m'K, over the temperature range of interest here
which extends below 100 or 80m'K. Hence, the cor-
rection to the temperature derivative of the melting
pressure amounts here at most to 3 or 4% of the melt-
ing-pressure derivative due to the magnetization of the
solid, since

dhPI, M(T,H)/dT= BSr„»r(TP~,H)/hV~. (45)

hP~ &'& (xp, yp, xi,yi) = (—) (E/6 V»r)

XLq&'&(xp, y,)—q~'&(xi, yi)j, (47")

using (38), (38'), and (38"). The quantity (47) is
obtained directly through the measurements of the
melting-pressure changes between Tj and T2, in the
absence and in the presence of the field. To lowest order
in x and y, (37') becomes here

P&lf (x2 y2) PM(xl yl)
= (—)[H'V»r(T&, Tp)/26»&/[X(T, )—X(T,)j, (48)

to the approximation of an almost constant volume
V~(Ti, Tp) of the solid over the indicated temperature
range. If the volumes V~(Ti) and V~(Tp) are avail-
able, then a relation resembling (37) replaces (48).
Inasmuch as at Ty))Tp, , Tp, being the very low spin
ordering temperature of about (3J/k), the nuclear
susceptibility of solid He' is practically ideal, it is seen
again that the measurements of P~(xp, yp) P»r(xi, yi)—
are equivalent to an almost absolute measurement of
the nuclear susceptibility of the solid, in the state
(xp, yp), at Tp( Ti, at melting.

The discussion of the magnitude of the magnetic
modification in the melting pressures will be postponed
to a later'section, where the effects of increasing field
strengths will be included in the evaluation of the
various thermal properties of the magnetized solid.

%'e have shown recently' that the entropy of the
liquid at melting Sr„~p(T) can be evaluated to a fair
degree of accuracy. Hence, by (24), melting-pressure
derivative determinations can yield the entropy of the
solid at melting. Even though the predictions of this
model concerning solid He' require for their experi-
mental veri6cation the development and use of ad-
vanced cryogenic techniques, this solid offers con-
-ceptually a much simpler realization of the exchange-
coupling model than the one attributed to certain
metals or nonmetals. In the latter systems, the coupling
schemes (1) and (2) refer to electrons or ions, wherein
various additional eBects, some due to the motion of
charges, will always tend to obscure the phenomena
arising strictly with the dominant exchange-coupling
schemes. The various side effects present in the elec-
tronic and ionic cases are absent in solid He~ in thermo-
dynamic equilibrium. This should enable one to verify,
in nearly ideal conditions, whether or not the exchange
model, Eqs. (1) and (2), is valid in solid He'.
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C(x)/R=3x'Q (—)"a„&'&x", (49')

C;&(y)/R = (y/coshy)', (49)))

C&'&(x y)/R=-'ymp (—)"(n+1)(n+2)a «&x". (49"')

To lowest order in the 6eld strength, the excess heat
capacity is, combining the 6rst term of the y expansion
of C;z(y) with C"&(x,y),

C& ~& (x y)/R=-', y'P ( )"(n+—1)(n+2)a„«&x" (50).

This is positive as long as the x series is taken to be
physically usable only over the range of x values where
its convergence is uniform. In contrast with the entropy
decrease of the solid on magnetization, the heat capacity
increases. This is well known for paramagnetic systems
at pH/kT«1, or at y((1. It is associated with the fact
that the temperature rate of variation of the ordering
effect of the 6eld is positive even though this increase
of order is equivalent to a decrease of entropy. As shown
further below, the relative heat-capacity increases are
quite large even in 6elds of moderate strength and at
accessible temperatures.

Compared with the melting-pressure, entropy, and
heat-capacity modi6cations due to magnetization, the
problem of the magnetic changes of the expansion
coefBcient is of greater complexity. Namely, (8V/BT)r
or (Vn~), n„eibgnthe isobaric volume-expansion
coefficient, and V the volume of the solid, depends not
only on the exchange energy J, as the entropy, heat
capacity, and the melting pressure, but on the pressure
derivative of J also. One 6nds with the entropy (21) and
the heat capacity C(x), Eq. (49'), along the melting

B. Derivative Thermal Properties of Solid He~ in
Magnetic Fields of Moderate Strength

We saw in the previous subsection that the exchange-
coupling scheme described by Eqs. (1) and (2) leads to
de6nite predictions on the magnetic modi6cation of the
melting process of He'. Measurements of the melting
pressure in the presence and the absence of the field
enable one to obtain the paramagnetic susceptibility
of the solid at melting, and determinations of the
melting-pressure derivatives should yieM the entropy
of the solid at melting. Comparison of these measured
properties with their theoretical predictions based on
the coupling schemes (1) and (2) should show if the
latter were obeyed in solid He3 or not. Verification of
predictions based on the assumed model can also be
performed through direct measurements of derivative
thermal properties arising from the entropy, such as
heat capacity and isobaric volume-expansion coeKcient.

Using the entropy expression (21) one obtains

C(*,y) =C(*)+C;.(y)+C '&(*,y), (49)
with

line,

RM, ))= —(1/ V&&f)has &)r (x,y)/8p)r

(R—/Vw) & d lnJ&)f/dP [(LC~(x)/Rj

( )))+(++1)+ «&x~) (51)

01

a~,„=(x&)r,„(x,J')+n~, ),&'& (x,J',y),

I'„= (—) (d lnO/d ln V), (5&)

» R. C. Richardson, E. Hunt, and H. Meyer, Phys. Rev. 132,
A1326 (1965); M. G. Richards, J. Hatton, and R, Q, gizzard,
ibid. 139, A91 (1965).

where J' stands for (dJ/dp) or (dJ~/dp). In the
preceding relations, use was also made of the empirical
result' ~ that J(p) is a decreasing function of the pres-
sure or an increasing function of the volume. In the
absence of the external field, one then has

GM, ))(x,J') =—(1/V&L))
~
d ln J~/dp

~
C&k) (x), (53)

which we gave recently8 with C)s (x) expressed through
its series representation (49'). This shows that as long
as it is justi6ed to neglect the phonon contribution to
the expansion coeKcient, and over the temperature
range where the exchange expansion coeKcient n~, „-
(x,J') is larger than the phonon expansion coeKcient,
solid He' at melting and at low pressures is thermally
anomalous. That is, it has a negative volume-expansion
coefFicient or its entropy increases on isothermal
compression. We can rewrite (53) as

n~, ,(x,J') = (—)(d lnJ~/d lnV~)xrC~(x)/V»f, (54)

X& being the isothermal compressibility of the solid. The
equivalent relation for (a„/Xr), that is, (Bp/BT)T), on
the left-hand side was given and used by the Florida
workers in connection with their measurements of this
latter derivative. ' In absence of the external field, the
two subsystems of degrees of freedom of the solid, the
phonon system and the spin system, give rise, at equi-
librium, to the total entropy

S(T)O',J)=S„(T/Q~)+S,(J/kT)) J/k &T(Q~, (55)

a linear superposition of the component entropies, Q~

being the characteristic temperature of the phonon
system. In terms of the simple phonon model, one
obtains at melting or near melting

n~, „(T,O~,J~/k)
=a&Lfs)+&M, s

(—)(" /V )IC, (T/o )(dl O /dl V )
+C»),,(x) (d ln J&)r/d 1n V&Ir)]. (56)

The relevant physical characteristics of the two sub-
systems 0' and J appear in a similar way; and solid Hel,
in the representation (55) of its entropy, has the Gruen-
eisen parameter
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and the corresponding exchange parameter

I',= (d ln J/d !nV), (58)

associated with the assumed coupling scheme arising
from the spin system. These results cease to be valid in
the presence of an external uniform and constant
magnetic field. This arises from the entropy of inter-
action of the external field, or y field, and the internal
or exchange field, the x Geld. The total entropy in
presence of the external field is not a linear super-
position of the entropies of the magnetic subsystem, or
the y system, and of the exchange subsystem, the
x system.

Returning now to the expansion coefficient (52), it
is seen that this property can be strongly modified by
the external fieM. This modification is such as to change
the sign of the expansion coeS.cient. The excess ex-
pansion coefficient n»r, ~&" (x,J',y), in Eq. (52), arising
from S&'&(x,y), tends to compensate the anomalous
negative expansion coeflicient n sr~(x, J) of the free
solid in the absence of the field. To lowest order in the
Geld strength as well as in the exchange-coupling
strength, i.e., in y and x, the magnetic increase in the
expansion coefficient is, at melting, by (51) and (52),

lim n»r „&'&(x,J',y)
T large

= (R/V~)
~

d !nJ~/dp~ (»H/kT)'(J»i/kT). (59)

The normal or positive asymptotic excess expansion
coeKcient increases rapidly as 1/T' with decreasing
temperatures, while the asymptotic anomalous ex-
pansion coeKcient decreases algebraically as 1/Ts,
according to the asymptotic 1/T behavior of the free
solid exchange heat capacity C(x) [Eq. (49')j to which
it is proportional by Eq. (53). It is thus to be expected
that below some temperature, the expansion coef5cient
changes sign. It is needless to add that the preceding
discussion refers also to the temperature coeScient of
the pressure, (ap/aT)„or (aS/av)„ the isothermal
volume variations of the entropy. The technique
evolved by the Florida group' for the very-high-resolu-
tion pressure-change measurements in the free soljd
might likely be used electively in the qualitative and
quantitative investigations of the indicated variations
in the above derivative thermal properties of the low-
pressure magnetized solid He'.

Before entering into a detailed analysis of these
derivative properties, we should like to consider the
case of strong Geld magnetizations. Their representation
involves the parameter y or»H/kT to higher powers
than the second which was suflicient at low or moderate
fields.

3. SOLID He' IN MAGNETIC FIELDS QF
INCREASING STRENGTH

We saw in Sec. 2 A that an indirect approach allowed
one to derive the partition function of the exchange-

coupled solid in the presence of magnetic fields of low
or moderate strength. At these field strengths, it was
justified to take into account the relevant parameter,
(»H//kT) or y, to lowest order in those terms of the
various thermal properties which coupled the external
Geld, or y Geld, to the internal exchange interactions,
the x couplings or x field. At increasing Geld strengths,
the combinatorial problem raised by the derivation of
the partition function arising from the Hamiltonian (2)
was solved on the basis of its representation as a doubly
infinite series in ascending powers of the parameters x
and y."According to this formalism, the logarithm of
the partition function is given by

N ' lnZ(x, y) =Ar '[lnZ(x)+1nZ&'&(x, y)$, (60)

with lnZ(x) given by Eq. (14), and

& '»Z"'(xy)=Z ~(s)y"Z (—)"o."x", (61)
s 1 0

which to lowest order in y, or to order y', was included
in Eqs. (14).In the limit of y~ 0, (60) reduces to (11),
the partition function of the free exchange-coupled
solid; and in the limit x~ 0, the system is an ideal
paramagnet of spin &, whose partition function is
Z;z(y), or (2 coshy) ~, which appeared in (15) and (16)
above. It is instructive to rewrite Z;&(y) as

E 'inZ;d(y)=ln2+1n~ 1++
+=i (2e)!&J

" e(s)y"
=ln2+P

(2s)!
(62)

which defines the coeKcients n(s) in (61),subject to the
requirement of [1V '1nZ&'&(x, y)j reducing to (62), in
the limit x —+ 0, or that the coeflicients ap&'~ be equal to
unity for all s in (61). Up to s=4, one 6nds easily the
s&(s) to be, respectively, 1, (—2), 16, and (—) (16)(17).
The coefBcients u &'&, up to s=4 and n&10 have been
tabulated for the three cubic structures of spin-~~

systems by Rushbrooke, Baker, and their collabora-
tors."These need not be given here. As noted in Sec.
2 A, the series in ascending powers in x and y are
limited to y&1.3i—1.32. For larger y values, and above
all for very large y's, it is justified to require that
1V-' InZ(x, y) should reduce, in the limit x~ 0, to

ln(2 coshy) =y+ln(1+e s") y))1

the large y expansion of J&'/ ' inZ;a(y).
We have to obtain Gnally the various strong mag-

netic Geld thermal properties of solid He' to the ap-
proximation of the truncated double-series representa-
tion of the partition function, Eqs. (60)—(62). The
approximate thermal properties wiO then be evaluated
numerically in the next section over temperature and
Geld strength intervals over which their series repre-
sentations exhibit good convergence. An eventual
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direct confrontation of future experimental data with
the calculated properties becomes thereby accessible.

It is convenient to rewrite the partition function (61)
in terms of the functions

C, & i(x)=F& i(x)—1

= g (—)"a„&'&x", s)1
n=1

S—' lnZ(x, y) „&i.si ——ln(2 coshy)+S ' lnZ(x)

+2 v (s)Ly"/(2s)!3C'z" (*) (64)

With (5), one then at once obtains

M(x,y)/Xp
=(8/By)LX 'lnZ(x, y)j
=tanhy+P q (s)Ly" '/(2s —1)!)Cz&'&{x). (65)

To lowest order in the external Geld or y, or with s= 1,
this fractional moment reduces to (7), keeping only the
linear term in y in the expansion of tanhy. To lowest
order, both in x and in y, the double series in (65)
reduces to —ai"'yx, as found above $Eq. {18)j. In the
present case of the body-centered solid He', ul &'~ =4.

The strong-field entropy resulting from (64) is then

S(x,y)/Sk = (8/BT) (TED
' lnZ(x, y)j

=$S(x)/Xkj+ {LSg(y)/Ekj —ln2}
+$$"'(x,y)/Ek j. (66)

Here, S(x) and S;s(y) have been defined through Eqs.
(6) and (20), and

S"'(x,y)/&k= (—)2, ~ (s)Ly"/(»)!3C's" (*),

Ca&'&(x) = P (—)"(I+2s—1)u &'x".

enough temperatures where the entropy of the phonon
excitations may be neglected. The changes in these
temperature derivatives, defined through Eqs. (22)-
(25), under the assumption of an approximately
temperature-independent volume change at melting
hV~, will be obtained on replacing the interaction
entropy S&'&(x,y) in those equations by its strong-field
form (67). One thus finds that Eq. (23) remains valid
here also, together with (24) and (25), wherein S"'(x,y)
is to be taken from (67). On integrating desi(x, y)/dT,
as done above in connection with (23), one obtains the
strong-Geld melting-pressure difference between the
states (x,y) and (x„,y„), the latter referring to the state
of the melting-pressure minimum in absence of the
field. This state remains unchanged practically on
magnetization to all field strengths considered here.
Or, rewriting (27),

(* )—& (»)=L& (*)—& (*)j
+I:&~"(x,y) —&~"(*.,y.)j,

the change in the melting-pressure difference is, on the
indicated temperature integrations,

I'~"(»y) &~"(x.—y.) = ( )(&/~V~—)
XM"(T x y) —Q"(T.,x.,y.)j (68)

with

Q&'& (T,x,y) = T[ln(coshy)

+Z ~()Ly"/(2s)!)C.& &(x)l. (69)

Again, this result can be obtained through the thermo-
dynamic relation (8), yielding

I'~"(x y) ~~"(x—.yu)

= (—)(AVjr)-' dT [BM(x,y)/BT'jdB

The entropy S(x) of the free or unmagnetized solid will
be seen to be reduced on magnetization, as expected,
because of the ordering imposed by the applied Geld.
Formally, this reduction arises with the entropy
dehcit of the asymptotic magnetized ideal system, or
LS;q(y) —Xk 1n2$(0, which reduction is then moder-
ated by thc increasing disorder of posltlvc entropy of
interaction Si'i(x,y), of the two competing x and y
fields.

One vcriGes easily that the entropy change on
magnetization S&'& (x,y), the sum of the two y-dependent
terms on the right-hand side of (66), is identical with
what one obtains through the thermodynamic relation
given by the first of Eqs. (8), using the strong-field
moment of Eq. (65).

With the more complete entropy, Eq. (66), one is led
to an improved form of the temperature derivative of
the melting pressure of magnetized solid He', at low

= (—)(AVsr)-' PM(x, y) —M(x„,y„)jdH

= (—)(~/~V~) T L~(x y)/&u jdy

On replacing 3E(x,y)/Xp by (65) and integrating over
y, one recovers again (68). The two terms on the right-
hand side of (68) generalize the expression of the melt-
ing-pressure change given above to lowest order in y
and x LEqs. (32) and (33)j. In stronger fields, the
melting-pressure cha,nge on magnetization is thus equal
to the change in the density of the energy of magneti-
zation of the solid over the chosen temperature interval,
the density being defined over the volume change at
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melting 6VM. To lowest order in y and x, (68) and (69)
reduce to (30) and (31), respectively.

It is now a simple matter to rewrite the melting-
pressure change on magnetization over the here
relevant low-temperature range indicated above, where

it becomes justified to neglect the magnetization of the
liquid phase of the two-phase system. One has, with

(68) and (69),

PM (xslyr) PM (xllyl)

= d,P;s(y, ,y1)+CPM &"(xsyss xr,y1), (68')

APM(ys, y1) = —(R/hV M)

x LTs In(coshys) —T1 ln(coshy1)7, (69')

+PM (xs ysd; x1,yl)

=—(R/~vM) {TsZ ~(s)I:ys"/(2s)!7c's" (»)
s 1

expansion coeKcient

nM, „&'&(x,y) = (R—/VM) I d lnJM/dpI

()L "l( ) 7c'-"(*) ( )

In the region of convergence of the truncated double
series, n~, „&' &O. Or the anomalous negative expansion
coeScient of the unmagnetized solid, at low tempera-
tures, is increased on magnetization and the anomaly
is reduced and even eliminated as discussed in the
previous section to lowest order of approximation in y.
The form (73), as well as (51), of the expansion co-
eKcient clearly shows that the reduction or elimination
of the anomalous free solid derivative properties, such
as &rM, s (x) and $8p(x)/&)T7v, is accelerated at increas-

ing field strengths or at increasing y values. A more
complete discussion of these properties will be given in
the next section.

—T1Z & (s)Lyr"/(2s) 7cs"(»)}. (69")
s 1

We turn now to the heat capacity and expansion
coefiicient of solid He' in stronger fields. One finds with
the strong-f&eld entropy (66), using Eqs. (6) and (67),
along or near the melting line as well as throughout the
paramagnetic range of the low-pressure solid,

C(x,y)/Ek = PC (x)/2Vk7+ (y/coshy)'+ LC"'(x y)/1Vk7 .
(71)

Here, C(x) was given by Eq. (49'), and

C"'(,y)/&k=Z ()ry"/(2) a
s=l

Cc&'&(x)= P (—)"(n+2s)(n+2s —1)a„&'&x" (72)

is the contribution arising from the entropy of inter-
action S&o(x,y) LEq. (67)7. The second term on the
right-hand side of (71) is C;a(y) encountered already
above LEq. (49')7.

The strong-Geld isobaric volume-expansion coefBcient

is, with the corresponding entropy (66), at or near

melting,

J/%T
t4 IO 70 5.0 K5
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4. VAMOUS THERMAL PROPERTIES OF
MAGNETIZED SOLID He'

We would like to review finally some of the detailed
features of several equilibrium properties of the mag-
netized solid. One of the most important of these is the
entropy S(T), at or near melting. We give in Fig. 1 the

(S,T)-entropy diagram at a series of ield strengths
between 0 and 100 kG, and between 5 and 50m'K. The
upper abscissa refers to the x variable with J~ or J
taken to be' 0.7m'K. The increasingly large depression
of the free-solid entropy at melting (top curve) at
increasing field strengths is clearly displayed on the
diagram. The five Geld strengths of the magnetized-
solid entropy curves refer, respectively, to 20, 40, 60,
80, and 100 kG, in succession below the top no-field

entropy curve.
The quantitative evolution of two processes can be

directly read o6 this diagram. One of these refers to the

—VMo&M, „(x,y) = [cISM (x,y)/&I p7r

=R[d InJM/dp) {LCM(x)/R7

+2 & (s)Ly"/(2s) I7C' "(x))

C &'~(x)= g (—)"n(n+2s —1)a &'&x". (73)

The expansion coeNcient in absence of the field,

nM, „(x) or VMnM, ~(x), is the negative of the first term
on the right-hand side. It was given above fEq. (53)7
and derived earlier. ' The second term is the exccgg

5Q IO 20 30 40 50
T(m'K)

I'rG. 1.The entropy of solid He' at melting as a function of the
temperature (m'K) (lower scale) and the parameter J/kT (upper
scale). The top curve is the entropy of the unmagnetized solid; the
others refer, from the second curve downward, to 6eld strengths

pf 20, 40, 60, 80, and 100 ko, respectively.
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S(xg) =S(x;,y;) . (77)

If T~, the final temperature reached in this adiabatic
demagnetization process, is such that the asymptotic
large T approximation of S(x) is still justified, then,

energy or heat to be removed from the solid on iso-
thermal magnetization. This process is where H; and.

B~ are the initial- and 6nal-state Geld strengths, y, and

yy the corresponding y values, and

BQ(x,yq, y~) = TfS(x,yq) S(—x,y;)j . (75)

The relatively small values of the heat of magnetization
at the higher temperatures suggest the following
procedure. In order to explore the thermal behavior of
magnetized solid He' at low temperatures, the solid
should preferably be magnetized at higher tempera-
tures, and cooled afterwards in presence of the uniform
constant external 6eld reached in the magnetization
process. It should be noted that the presence of the
latter field does not need to interfere with the cooling
of the magnetized solid, by conduction, with a cold
paramagnetic salt which was itself cooled, in an inde-
pendent process through adiabatic demagnetization in
a separate magnetic field arrangement. Clearly, liquid
He'-He' dilution refrigerators, when capable of cooling
samples of solid He' down to the relevant temperatures
indicated here, T«80m'K, for instance, could con-
tribute signiGcantly to the experimental investigations
of magnetized solid He'.

The entropy diagram of Fig. 1 also de6nes the tem-
peratures reached on adiabatic demagnetization of the
solid from an initial state (H;,T;,p;), T;(50m'K to a
final state (Hf Tf p f), through

S(Hg, Tg,pg) =S(H;,T,,p,),
(76)

S(Hr, Tr, Vg) =S(H;,T,,V;) .
As discussed earlier' and seen above, fEq. (6)g, at the
low temperatures of interest here, the entropy S(x) of
the free solid, arising from its nuclear spin system, on
neglecting its very small phonon entropy, depends only
on the variable x, that is, J(p)/kT or J(V)/kT. In
presence of a constant and uniform external 6eld, the
entropy becomes a function of both x and y, or AH/kT,
or of T, J(V), and H, where J(V) is independent of H,
to the approximation which neglects magnetostrictive
or magnetoelastic effects. If, in addition, one neglects
the variations of J with volume or pressure, over the
melting or near-melting temperature range of Fig. 1,
T'&50m'K, by using an approximate average J value,
then the entropy diagram yields a correspondingly
approximate solution Tr(S,H;,Hr) of Eq. (76), with
S(H, T,p) or S(H, T,V) defined by (66), (67), and (6).
The diagram of Fig. 1 refers to the intermediate em-
pirical J value indicated above. In the limiting case of
vanishing Gnal Geld, Hy ~ 0, or Hy very small, one has,
to the stated approximation,

by (6),
lim S(J/k Tr)/R= ln2 ——,

' (J/k Ty)',
r~&qS/I

(78)
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FxG. 2. The magnetic change in the melting-pressure diBerence
pPsi(Tr, H) Psr(T(Tq, P)] or aP—si(T, Tr,H), in units of 10 I
atm, as a function of the temperature at various Geld strengths E1.
The reference temperature TI is 100m'K; the Geld strengths are,
starting with the top curve, 30, 40, 50, 60, 80, and 200 kG, re-
spectively. The insert gives extended ~~ arcs at 80 and 100 kG,
down to 10m'K.
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where J refers to the numerical value of the negative
exchange energy. Using the exact expression of the
entropy of the magnetized solid, given by (6), (66), and
(67), which is used in Fig. 1, one obtains, with (78),

T g(x;, y, , yg ——0)= (-', ln2) (J/k)
X(1—fS(J/kT; yH;/kT;)/R ln2j) 'is. (79)

This shows, and the entropy diagram displays it clearly,
that the smaller the initial-state entropy S(x;,y;) is in
comparison with the complete spin entropy of R ln2,
the closer one approaches the lowest temperature
allowed by the asymptotic representation of Sy, or

lim infT~-—(ss ln2) (J/k) . (80)

The asymptotic relation (79) has been obtained
earlier' in connection with the approximate 6nal
temperature reached in the adiabatic solidification
process of He', starting with the entropy SI.,~(T,) of
the liquid at melting and producing the solid of entropy
S.,si(Tq) equal to Sz„,si(T;). Here, T;(T„,where T„ is
the temperature of the melting-pressure minimum.
Clearly, the entropy S(x,,y;) of the magnetized solid
appearing in (79) and given by (66), (67), and (6)
above, has no connection with the entropy Sr„sr(T) of
the liquid at melting, in the present formalism.

Vfe turn now to the discussion of the experimentally
accessible variations in the melting-pressure change
over some relevant temperature interval, variations
arising from the magnetization of the solid at melting.
%e will neglect here the small eBect due to the mag-
netization of the liquid. This was justiGed in the pre-
vious section over the low temperatures and 6eld
strengths of interest here. %e give in Fig. 2 the vari-
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ations in the melting-pressure change between 10 and
100m'K, as defined by Eqs. (68'), (69'), and (69").The
graphs give the diGerences

&Pi&r(*2 y2 +1 y1) PM(~2 $2) PM(~1/ i)
x=J/kT, y= pH//kT, 10&T& Ti= 100m'K

at constant field strengths B, between 30 and 100 kG.
The curves refer, respectively, from the top curve
downward, to 30, 40, 50, 60, 80, and 100 kG. The two
bP~ arcs of the insert are continuations of the 80- and
100-kG-field AP~ curves. The large magnetic variations
of the melting pressure are clearly displayed by these
curves. In terms of the pressure resolution achieved by
the Florida group, ' and provided that some similar if
poorer resolution can be attained with the magnetized
solid at melting, the measurements of AP~ even at field
strengths lower than 30 kG should be feasible with good
precision even at T&20m'K, or at currently accessible
temperatures.

The measured hP~ values have to be confronted with
their theoretical values available through (68') and

(69), some of which are given in Fig. 2. At low and
moderate-field strengths, it is justified to use the y'
approximation to AP~&*'& [Kq. (69")j and to write
with (31)

+PM(+2 f2 +1 $1)

= —(R/d V~) [T2 ln (coshy2) —Ti ln (coshyi) j

The measured AP~ values can be analyzed so as to
extract from them the component AP~('), the inter-
action term on the right-hand side of (81). This term
represents the interaction between the ordering im-

posed by the external field and the opposite ordering
arising from the antiferromagnetic spin ordering. This
term contributes a positive hP~(" component which

tends to balance the negative hP;g term associated with
the asymptotic limiting ideal spin system, the square
bracket on the right-hand side of (81).It is seen that if

T2 is sufFiciently small in comparison with the reference
temperature T~, the high precision reached in the mea-
surements of hP~ leads to fairly accurate values of
hP~"' representable now by

lim aP~&'&(T,J,H) = (RT//DVii)(pH/kT)'
T ((Ty

X[ai&'& (J/kT) —@2&'& (J/kT)'+ j, (82)

where the subscript 2 of T has been omitted. This
analysis is thus capable of yielding the value of the
coefficient a2('&, characteristic of the exchange-coupling
model, at accessible temperatures. The empirical
derivation of a2(') is necessary for the determination of

whether or not the assumed exchange-coupling model
defined through (1) and (2) is valid in the low-pressure
solid He'.

As discussed in detail in Secs. 2A and 3, the hP~
measurements are equivalent at low and moderate field
strengths to the measurements of the differences in the
induced magnetic moments, as given by Eq. (34). The
numerical evaluation of the induced magnetic moment
of the solid at melting, with the indicated approximate
averaged low-temperature value of the exchange energy
parameter J, shows that at 100m'K, and even down to
about 70m'K, the solid may be said to be an ideal
paramagnet. Using (34), one obtains

»m &Pir(~2 y2 ~1 $1) Mig(yi)H/2d Vi&r
y2(1/4

M(x—2,yi)H/26Vir, (83)
with

M;~(yi) =Ep(yH/kTi),

which defines at T2, or T&Ti, the moment M(x,y)
given by Eq. (7). The experimental determination of
M(x,y) at a series of temperatures and field strengths
should again enable one to obtain the coefficient a2(') of
the series representation (7) and to compare it with its
exact theoretical value tied to the assumed exchange-
coupling model. This method of analysis or the one
based directly on the derived AP~(') values should be
justified up to y values of about 4. At larger y values one
must use the more complete formalism of the melting-
pressure changes contained in Eqs. (68'), (69'), and
(69"),with the series C s'& (x) defined by (63).However,
even up to field strengths of 100 kG, if Ti is taken to be
100 to 70m'K, the T~ term inside the curly brackets on
the right-hand side of (69") reduces to its ideal limit
of ~~T&yi', allowing one to analyze the AP~ data with
the series representation referring to T2. In principle,
there appear to be no difhculties in this more elaborate
confrontation of the melting-pressure variations with
the double-series formalism imposed by the exchange-
coupling model and the increasingly large field strengths
or large values of the y parameter. However, at these
larger field strengths, the derivation of the induced
magnetic moments M(T,J,H) from the APir values
requires the formation of the derivatives d(AP~)/dH
or d(AP»r)/dy, as shown by Kqs. (70). The formal
complexity of both the x and y dependence of the
strong-field moments imposes this elaborate approach
toward their derivation from the correspondingly
complex theoretical representation of the strong-field
DP~ values.

%e turn finally to the discussion of the two derivative
thermal properties, heat capacity and expansion co-
efhcient of the magnetized solid, the formal structure
of which has been derived and studied above, in the
previous sections. Ke give in Fig. 3 a series of heat
capacities as a function of the temperature, at a series
of field strengths C, , /R a»rt melting, including the heat
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dTb/dH) 0. (87)

It seems useful to give an analytical approximation
or estimate of the temperature of the bend-over or
inQection point of the melting-pressure line of the
magnetized solid, which we will call Tb(J,H). This
estimate results, with the limitation arising from the
assumed constancy of hV~, from a generalization of

capacity of the liquid at melting Cr„br/R. The bottom
solid heat-capacity curve is that of the free solid at
melting, and the others refer to 20-, 40-, 60-, 80-, and
100-kG field strengths, respectively. The heat capacity
of the liquid at melting was given by us recently' to a
fair degree of approximation over a wide temperature
range. Similarly the free-solid exchange heat capacity
at melting was obtained by us recently using though a
large-volume estimate of J~, the exchange energy
parameter, of 1.25m'K. As shown earlier, ' to the
approximation of a practically temperature-independent
volume change at melting, AV~, the intersection of the
solid, C, ,br(T), and liquid, Cr, ~(T), heat caPacities at
melting locates the temperature Tb of the inAection or
bend-over point of the melting-pressure line. The recent
Florida J value' of 0.7m'K may be taken, approxi-
mately, to be representative of an averaged exchange
energy over a relevant if reduced temperature interval
over which the volume and pressure variations at melt-
ing are already small or moderate. With the new and
smaller J value, the temperature of the inQection point
Tb(J) is depressed from about 10.5m'K associated with
the large-volume estimate J of 1.25m'K, to somewhat
above 7m'K with the smaller 0.7m'K J value, as noted
by the Florida workers. ' The decrease in melting pres-
sure of solid He' on magnetization was shown above to
arise from the entropy decrease resulting from the
additional order imposed by the external field. This
effect is qualitatively similar to an apparent increase of
the strength of the internal exchange field through the
increase of the parameter J.This is seen at once on the
entropy formula (6), which is a decreasing function
of J~

[as(J/kT)/a Jj,&0. (84)

The apparent increase of J is in turn equivalent to an
increase of the spin-ordering temperature. The location
of the temperature of the inQection point of the melting
pressure P~(J/kT) is the root Tb of

Cr„br(Tb) =C, ,~(J/kTb), (85)

to the approximation of a constant AV~. Since C, ,~ is
an increasing function of J, it is seen that

d Tb/d J)0,
which accounts for the above-mentioned variations of
the free solid Tb with J.With the magnetization of the
solid being equivalent, in a qualitative sense, to an
apparent increase of its exchange parameter J, (86)
requires that

J/kT
3.5 l75

.15

.05

T(mt'K)

FIG. 3. The heat capacity CL,, M/R of liquid He3 at melting, and
the heat capacities C,, M/R of solid He at melting, as a function
of the temperature (moK) E'lower scale) and the parameter J/kT
(upper scale). The lowest solid heat capacity is that of the un-
magnetized solid, the others refer, successively upward, to field
strengths of 20, 40, 60, 80, and 100 ko, respectively.

(85) to the magnetized solid. Or,

Cz M(Tb) =Cq, M(Xb yb)
=C, , br(J~/kT„IbH/kTb) . (88)

An analytic estimate of Tb(J~,H) results at once from
(88), with the help of the limiting very-low-temperature
expression of Cr„M (T), or

lim Cz, M(T)/R=yz, ~T, yr, M4 55', K ', . (89)
T &(T0,M

where To,~ is the characteristic temperature of the spin
system of the liquid at melting, discussed previously by
us. ' The asymptotic high-temperature heat capacity of
the magnetized solid at melting, resulting from Eqs.
(49) and (50), to lowest order in J~/kT and pH/kT,
i.e., to order (J~/kT)2 and (pH/kT)2, is

C, ,w/R-[3J'+ (pH)']/(k T)' J~/k T&&1, pH/k T&&1.

(90)
Hence, by (88),

Tb(J~,H) = Tb(Jbr, 0)[1+'. (I H/Jbr)']'"-(91)
with the free-solid bend-over temperature

Tb(JM, 0) = [3(J/k)'/VLM]'" , (92. )

The latter estimate yields, with J~/k of 1.25m'K, and
the indicated yl„~ value, a Tb of 10.1m'K, while the
graphical solution of the exact Eq. (85) gave earlier'
10.5—10.6m'K. With J~/k of 0.7m'K, (92) gives a
Tb of 6.86m'K, while the graphical solution is about
7.15—7.20m'K. It should be noted that while Tb(Jbr,0)'
refers to a single asymptotic approximation, the form
(91) of Tb(J jr,H) is a superposition of two such approxi-
mations. It is to be noted that while Tb(J~,O) given by
(92) yields an approximation of the exact Tb by defect,
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Ts(Jsr, H), or (91), at low field strengths, is a similar
estimate, but becomes an estimate by excess at larger
6eM strengths.

The heat-capacity curves of Fig. 3 show the locations
of the inQection points of the melting-pressure line of
magnetized solid He'. To the approximation of Cl„~
and of the approximate evaluation of the Eq. (71) of
C, ,~, these inQection points vary from about im'K, for
the unmagnetized solid, to 21m'K, at 100 kG. The very
large intrinsic values of the heat capacity of the mag-
netized solid, at accessible field strengths and tem-
peratures, should facilitate its measurements with fair
accuracy. Ultimately, accurate heat-capacity measure-
ments might be exploited toward determining some
coefficients a„"&and u„"& appearing in Eqs. (49), at low
or moderate held strengths. At larger 6eld strengths,
the correspondingly large heat capacities might become
usable in the determination of some coeKeients u„&'),

s&1, according to the heat-capacity formulas (71) and
(72). Such an analysis of the measured heat capacities
of the magnetized solid could thus contribute to aseer-
taining whether or not the assumed exchange-coupling
model represents the spin system of the solid in a
satisfactory way.

%C turn finally to the discussion of the isobaric
expansion coeilicient ns(x, y), or of the temperature
coeflicient of the pressure gap(z, y)/BTjv which is
equivalent to it. As shown in Secs. 2 and 3, one of the
effects of magnetizing solid Hc' is to yield a positive
component entropy, given by 5"&(z,y) arising from the
interaction of the x and y fields. This interaction en-

tropy is given by (21) to order y', and at larger Beld
strengths or large y values by (67). This entropy 5&'&

gives rise, in turn, to a normal or positive component of
the isobaric volume expansion coefficient as&'&(x,y) or
the associated temperature coef6cient of the pressure
[Bp&'&(z,y)/BTjv. Stated in other terms, the entropy
5&') has normal pressure and volume derivatives. At the
low temperatures, the free solid is thermally anomalous,
having a negative expansion coefficient n„(x) and a
negative temperature coefficient of

'

the pressure,

I 8 p (&)/8 Tjv, an early prediction" ' fully verified by the
Florida group, ' as mentioned above. On magnetization,
the normal magnetic expansion coeflicient n"&(x,y) will

reduce the starting anomalous or negative expansion
coefIicient of the free solid. The derivatives ns(x,y) or
the associated $8p(x,y)/BT7v, that is, err„(x,y)/Xr),
where X~ is the isothermal compressibility of the free
solid, omitting magnetoelastic CGects, given by Eqs.
(51) and (73), do not involve the asymptotic ideal spin
system. This contrasts with the entropy, melting pres-
sure, magnetic moment, and heat capacity of the
magnetized solid which all have components arising with

the asymptotic ideal spin system. This'is so because the
ideal spin system involves only in its description the
parameter y or pH/kT On the other ha.nd, the proper-
ties n„(x,y) or gap(x, y)/BTjr depend on the deriva-

tives (8lnJ/Bp)r or (8 lnJ/BV)r, written above as

total derivatives since J is not expected to vary ex-
plicitly with T. The other thermal and magnetic
properties do not involve the derivatives of J.

Before analyzing more closely the derivatives n„or
(Bp/BT)v in the magnetized solid, it seems of interest
to consider brieQy these same properties of the un-
magnetized solid, taking into account the averaged
Florida' J value, at volumes approaching those at very
low temperatures near or at melting, instead of the
estimated larger J value referring to a larger melting
volume used by us recently. s With J equal to 0.7m'K,
we find the zero of tran(x) or of $8p(z)/BT jv to be at
T~0.25'K, using a probable upper limit estimate of the
compressibility of the solid at low temperatures and at
melting. Below about 7'Qm'K, where the contributions
of the phonon system to these derivative properties may
safely be neglected, our recent estimate of

(R/V, ,sr) Id lnJ/dpI &0.3/'K (93)

corresponds, in terms of the Florida determination' of
d lnJ/d V, to a compressibility of about 5.5&&10

—'/atm.
This appears to be fully compatible with recent deter-
minations of the compressibility of solid He' along the
melting line at higher temperatures due to Straty and
Adams. "

As a consequence of the competition between n„(x)
d ."'(,y), o I:Bp(*)/BTj d I:Bp"'( y)IBTj

these derivative properties may be grouped into three
classes. At low field strengths, the magnetic components
of these derivatives stay numerically smaHer than their
free-solid component. The anomalous behavior of the
latter will not be changed qualitatively by the former,
that is on magnetization. At intermediate 6eld strengths
and low temperatures, tlic magnetic component may
become larger than the free-solid component so that
below some temperature T,~ these derivatives become
normal, to become anomalous again at T& T,~,
because of the more rapid fall with temperature of the
normal magnetic component compared with the slower
algebraic increase with temperature of the anomalous
free-solid component. Finally, at high enough 6eld
strengths, the normal magnetic component may become
so large as to ensure, with the contribution of the
phonon system, a positive as or (Bp/BT)v, at all
temperatures.

A series of expansion coeScients, including that of the
free solid (bottom curve), are given in Fig. 4. They
refer, respectively, to the following 6eM strengths: 20,
40, 60, 80, and 100 kG. The insert gives the expansion
coe5cients at 45-, 50-, and 55-kG 6eld strengths, show-

ing their positive and negative regions around their
zeros. The curves of the expansion-coefficient graph are
seen to refer to two of the three classes of expansion
coefficients considered above. To the approximation of
the present calculations, below about 30 kG, the mag-

»G. C. Strsty, thesis, University of Florida, 1967 (unpub-
lished); G. C. Straty and E. D, Adams (to be published).
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netized solid He' expansion coeKcients are anomalous

up to their zero arising from the normal phonon con-
tributions, which at 30 kG is about the same as in the
absence of the external field. Between about 30 and
100 kG, the expansion coeKcient has two zones. The
first, at low temperatures, arises from the competition
between the two component expansion coeKcients of
opposite sign discussed above in connection with (73)
and (74). The second, at higher temperatures, is due to
the compensating e6ect of the normal phonon expansion
coefficient. It would appear that only at field strengths
larger than 100 kG would the magnetized solid become
completely normal with respect to the pressure and
volume variations of its entropy. Equation (51) shows
that, at intermediate and accessible 6eld strengths, the
technique developed by the Florida group' should
enable one to analyze the change in the derivative
PP&" (x,y)/~T)y arising from the magnetization of the
low-pressure solid He' with good accuracy. Since by
(51), at moderate field strengths,

= —(R/V~) (d 1nJ/d V) (-', y')

)& Q (—)"n(n+1)a„&'&x", (94)
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FIG. 4. The approximate isobaric expansion coefhcient at melt-
ing (10 '/'K) of unmagnetized solid He' (bottom curve), and of
the magnetized solid, as a function of the temperature (m'K). The
Geld strengths refer, from the second lowest curve upward, to 20,
40, 60, 80, and f00 kG, respectively. The insert gives short arcs
of expansion coeflicients around their zeros, from left to right, at
45-, 50-, and 55-kG Geld strengths, respectively.

as noted already above, x~ being the isothermal com-
pressibility of the solid, omitting magnetoelastic e6ects,
the determination of at least the first two coeScients
u~&') and @2&'& in the x series appears to be feasible. At
the present time this approach could be also advantag-
eous, at accessible temperatures, for a verification of the
degree of validity of the exchange-coupling model used
here to describe the thermal properties of magnetized
solid He'.

In conclusion, it may be expected that experimental
investigations of magnetized solid He, at or near melt-
ing and in statistical thermodynamic equilibrium, will
be initiated in due course, at accessible temperatures
and magnetic 6eld strengths. Nuclear magnetic sus-
ceptibility determinations through measurements of
melting-pressure changes on magnetization as well as

the qualitative modi6cation of the anomalous derivative
thermal properties of the free solid on magnetization
appear to be of particular interest. As shown and dis-
cussed above, the suggested experimental studies of the
magnetized solid should contribute to the elucidation
of the nature and form of interatomic couplings in solid
He' governed by its nuclear spin system.
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