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It is shown that infinite-component field theories provide a useful alternative to the Bethe-Salpeter equa-
tion as a fully relativistic treatment of composite systems. Scattering amplitudes obtained by models of this
type satisfy both Mandelstam analyticity and conspiracy requirements. Current algebras are saturated with
a combination of discrete and continuous spectra. Most of the paper is devoted to a special example, for which
it is found that the mass spectrum has a discrete part (bound states) and a continuous part (scattering states);
that the metric in physical Hilbert space is positive definite; and that vertex functions and scattering ampli-
tudes are analytic functions of s and t, with singularities at the same locations as in local field theory. The
role of "spacelike solutions" is studied in detail, with some surprising results.

some of the diseases are far from being merely formal;
for example, the positivity of the metric of the physical
Hilbert space is closely related to the reality of coupling
constants and to the positivity of the imaginary part
of the forward scattering amplitude, and spacelike
solutions tend to produce unphysical left-hand cuts in
the scattering amplitudes.

I. INTRODUCTION

'HE real motivation for this work is to demonstrate
the usefulness of infinite-multiplet techniques in

the context of recent developments in elementary
particle physics. For example, it is easy to find exact
representations of current algebra, with either one-
particle intermediary states, two-particle states, or
both. Regge poles and Lorentz poles fit in exceedingly
well, and conspiracy theory is generalized to nonzero
momentum transfer and unequal masses. The same
simple Feynman rules that predict physically reason-
able form factors and scattering amplitudes in the
Born approximation, also apply to the coupling be-
tween Reggeons or between conspiracies. The ampli-
tudes satisfy both Mandelstam analyticity and l-plane
analyticity, which allows one to study the analytic
properties in s and 3 of a scattering amplitude with

Regge poles or conspiracies. The possibility of in-

corporating a relativistic version of SU(6) is always
open.

However, the ultimate relevance of all this remains
doubtful if the theory is plagued by any of the so-called
diseases of inlnite-component field theory. Con-

sequently, most of this paper is perforce devoted to an
investigation of pathologies, real and imagined.

Two common attitudes are: that the diseases are so
malign that all infinite-component 6eld theories are
going to die; or that the so-called diseases are irrelevant
because the theory is used only to construct representa-
tions of current algebra, and one does not have to take
the whole formal machinery of 6eld theory seriously.
This paper argues against the first point of view on the
grounds that all the diseases are gradually being
cured. ' It argues against the second viewpoint because

Summary

* Supported in part by the National Science Foundation.
' When our methods are confronted with other approaches, it is

only fair to remember that the so-called diseases of infinite-
component field theory come into evidence just because the
theory is technically manageable. Some of the more conventional
approaches to current algebra, for example, can be said to avoid
problems by concerning themselves with a small set of matrix
elements of the comxnutators. Similarly, amplitudes represented
by means of Regge representations are not usually rejected on the
basis that they fail to satisfy a Mandelstam representation. The
Bethe-Salpeter equation in the ladder approximation is an ex-

ample of an infinite-component field equation —and a very sick
one at that, if the conclusions of Predazzi and others are correct
Lsee E. Predazzi, Nuovo Cimento 40, 913 (1965), and other refer-
ences quoted thereinj —and yet it is used as a guide, not only near
threshold where it derives legitimacy from being a good approxi-
mation to the Schrodinger equation, but also near s= 0, where it
surely has no relevance to any real physical problem.
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Section II is a brief review of the main ideas on which
this paper is based, for the convenience of readers who
are unfamiliar with our previous papers.

In Sec. III, we study a particular in6nite-component
field equation. The mass spectrum (Sec. III 3) consists
of a hydrogenlike spectrum of single-particle states, a
right-hand continuum of two-particle scattering states,
and a left-hand continuum of "exchange states. " We
argue that a two-particle interpretation is possible, and
determine the masses mi and m2 of the two constituents.
It turns out that most equations previously discussed
in the literature are special limiting cases, for example,
m& ——m&

——, which explains why those equations led to
form factors with unorthodox singularities. In the
general case, with arbitrary constituent masses, all the
singularities of the form factors —in the erst Born ap-
proximation —are recognized as being completely con-
ventional (Sec. III C). The nonrelativistic limit is in-
vestigated in Sec. III D. The metric in Hilbert space
is calculated and found to be positive for the bound
states as well as for the scattering states (Sec. III E).

Section IV is an investigation of the analytic pro-
perties of amplitudes in the first Born approximation.
The vertex function is studied as an analytic function
of two complex variables (Sec. IV A). All singularities
are the conventional ones that are found in ordinary
Q.eld theory, associated with the ordinary Feynman
diagram of Fig. 5. This, of course, is strong support for
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the two-particle interpretation, including the values
of the constituent masses. Results for "Compton"
scattering are similar (Sec. III 8). The singularities are
the familiar 2-point, 3-point, and 4-point Landau
singularities found in ordinary 6eld theory, associated
with the diagrams of Fig. 9.The distinguished boundary
is found to coincide with the support of the Mandelstam
double-spectral function for the box diagram, except
for an extra, disjoint piece. This extra contribution to
the Mandelstam representation contributes a fixed
left-hand cut in s in the amplitude 2 (s,t). It is associated
with the spacelike solutions, but not so intimately as
expected (see below).

In Sec. V, we express the scattering amplitude by
means of an integral representation of the type that
occurs in conspiracy theory. This allows a more detailed
investigation of the connection between the fixed left-
hand cut and the spacelike solutions (Sec. V A). A very
surprising result is that the left-hand cut persists in
some models that have no spacelike solutions (Sec.V 3).
It is easy to construct models without spacelike solu-

tions, but it may turn out to be harder to expurgate the
left-hand cut. The connection with conspiracy theory,
generalized to nonzero momentum transfer and unequal
masses, is pointed out (Sec. V C). The theory also in-

cludes a scheme for couplings between several Reggeons
or conspiracies.

In Sec.VI A it is pointed out that most of the so-called

diseases of in6nite-component field theory are peculiar
to specific models, and, for the most part, curable. The
only difficulty that remains, the left-hand cut, is dis-

cussed in Sec.VI C. Finally, we point out that all models
of this type provide exact representations of current
algebras, with both one- and two-particle states.

II. SYNOPSIS

Ke present here a concise summary of the ideas on

which our recent work is based. By means of the present

paper we hope to demonstrate their physical content.

(i) Physical states are described by a subset of a set
of wave functions P,(x), where the argument is the

spacetime coordinate, and 0 stands for one or more

discrete indices. The theory is trivial unless 0- includes

the spin indices j and j„and it is conventional if j is

bounded. Our main interest is in the case when j is un-

bounded and 0. takes an in6nite set of values. The dis-

crete index can be replaced by a set of continuous

variables, and these are susceptible to interpretation as
internal variables. It is not necessary, in principle, for

any group other than the Poincare group to be intro-

duced; however, it is technically convenient to let

f,(x) span a Hilbert space K on which is realized an

irreducible representation of a group S that includes

the spin part of the homogeneous Lorentz group as a

'- This interpretation has been developed by T. Takabayasi in a
series of papers. See, for example, the review article in Progr.
Theoret. Phys. (Kyoto) 34, 124 (1965).

subgroup. It is not necessary that this representation
be unitary, but it turns out that the physical interpreta-
tion requires it to be "almost" unitary —this is to
ensure that the physical Poincare group be unitarily
represented. ' It needs to be emphasized that the larger
group S is not an invariance group, though a subgroup
of S may play that role.

(ii) Out of the Hilbert space R of wave functions

P (x) a subset is selected by means of a wave equation.
The most obvious content of the wave equation is the
establishment of a mass spectrum, and this must be
required to be reasonable. It is possible that the wave
equation has the specification of a mass spectrum as its
sole purpose and that the theory should be developed in
a phenomenological direction. Even so, it is useful to
consider its place in a Lagrangian field theory, tern-
porarily at least, in order that we may profit from the
concise statements of fundamental physical insight
that are contained in the Lagrangian formulation. In
this context it is natural to require that the wave
equation be a differential equation of low order. ' Other
physical requirements must also be met; some obvious
ones are discussed in this paper.

(iii) If one chooses, as we do in this paper, to develop
the Lagrangian approach, then the following directions
are possible: First, one notes that the physical metric,
with respect to which the stationary states are or-
thogonal and the energy is a Hermitian operator, is
uniquely given. This metric must be used to define
physical probability and may be called the probability
metric. The physical states form a Hilbert space X„
that is distinct from the mathematical Hilbert space
K . To every physical operator 0„ in BC„ there cor-
responds an operator 0 in GC, so that the matrix
elements of 0„ in the physical metric are equal to the
matrix elements of 0 in. the mathematical metric. (As
an example, we recall that if 0„is the dipole operator of
the nonrelativistic hydrogen atom, then 0 is a genera-
tor of the group S '; this fact affords a great simplifica-
tion in practical calculations~ and tends to unify the
methods of atomic and elementary particle physics. )
Set,.oed, Feynman rules may be developed to calculate
amplitudes for scattering of the physical states repre-
sented by the solutions of the wave equation by external
sources, or by each other. This gives rise to Feynman
rules for the coupling of Reggeons. ' Third, second quan-

'In the case of fermions it may be convenient to start with a
pair of conjugate, nonunitary representations. See C. Fronsdal
and R. White, Phys. Rev. 163, 1835 (1967).

4 This point of view has been stressed by A. O. Barut. See, for
example, Lectures irt Theoretica/ Physics (Gordon and Breach
Science Publishers, Inc. , New York, 1968), Vol. X B, and further
references given therein.

5We first became interested in wave equations because they
provide a method for assigning diferent masses to the states of
in6nite multiplets without running afoul of gauge invariance.
From this point of view one must insist that the wave equation
contain a Qnite number of derivatives only.

e C. Fronsdal, Phys. Rev. 156, 1665 (1967).
7 A. Barut and H. Kleinert, Phys. Rev. 160, 1j.49 (j.967).

C. Fronsdal, Phys. Rev. 168, 1845 (1968).
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tization may be carried out. Notwithstanding, the
(possibly) formal nature of the canonical commutation
rules; this provides very nontrivial solutions of current
algebra. In the case of a purely discrete mass spectrum
the algebra is saturated with one-particle states, but
many-particle contributions are included in general.

(iv) Couplings of the physical states to external
sources are taken to be "local."' That means that
the scalar, vector, densities that are coupled
to the external fields are of the form Pi,"( x)0, iP;(x),
ip, (x)0, &tp (x), , where the operators 0, 0&,
are independent of x and contain at most a finite num-
ber of derivatives with respect to x. The form factors
given by local couplings have been shown to have a
qualitatively correct momentum dependence. " " In
the case of the nonrelativistic hydrogen atom the exact
interaction (including all multipoles) with a transverse
external electromagnetic 6eld is of this form. ' It should
be noted that the physical application of local couplings
requires rules for the evaluation of matrix elements.
That is, one has to specify the physical states aed the
physical metric with respect to which these are or-
thogonal. This can be done without invoking the
Lagrangian formalism, but in any case, it must be
done. The physical metric is not the same as the
mathematical metric, unless the mass spectrum has
inhnite degeneracy. ' "

(v) The identification of the "physical states"—the
solutions of the wave equation —with actual physical
systems, depends on the nature of the mass spectrum
and on other details of the model. It is obvious that if
the positive part of the spectrum of (mass)' contains a
continuum, then this must be associated with states of
two or more particles. The nonrelativistic hydrogen
atom is a good example of the economy that may be
achieved by including discrete states and continua in a
single irreducible representation. ' The mass spectrum
of a two-particle system contains information about the
mass of each of the two constituents, and their elec-
tromagnetic properties can be inferred from the form
factors of the bound states.

III. SOLUBLE TWO-PARTICLE DYNAMICS

A. Model

The example chosen for detailed study is, we believe,
one of the simplest ones that is susceptible to detailed
and realistic physical interpretation. The space K of
wave functions iP, (x) carries a unitary irreducible repre-
sentation of the group SO(4, 1). The representation is

' C. Fronsdal, Phys. Rev. 156, 1653 (1967).' C. Fronsdal, in Proceedings of the Third Coral Cables Conference
on Symmetry PrinciPles at High Energy, edited by B. Kursunoglu,
A. Perlmutter, and L Sakmar (W. H. Freeman and Co. , San
Francisco, Calif. , 1966), p. 48.

"G. Cocho, C. Fronsdal, Harun Ar-Rashid, and R. VVhite,
Phys. Rev. Letters 17, 275 (1966).

"A. O. Barut and H. Kleinert, Phys. Rev. 156, 1546 (1967)."E.Abers, I. T. Grodsky, and R. E. Norton, Phys. Rev. 159,
1222 (1967).

the same that was used for treating the nonrelativistic
hydrogen atom. '4 's s It is the analog for SO(4, 1), of the
representation of SO($,1) used by Majorana in his
Geld equation of 1932."In addition to the ten generators
5 ~, g, b=0, 1, 2, 3, 4, there exists, in this particular
representation, a set of covariant matrices, F, a=0, 1,
2, 3, 4, that transform among themselves like the corn-
ponents of a five-vector. The complete set of 15 constant
operators generate a unitary irreducible representation
of SO(4,2)."

The most general second-order differential equation
that is linear in the generators of SO(4,2) can be reduced
to the form

L(iclicix)P(x) =0,
L,(p) = pr+ (p —p)I',+-;s (p —&)

(III1)

(III2)

B. Mass Syectrum

Equation (III1) is easily solved by Nambu's method. "
Introduce the unit vector —spurion" —A., and the opera-
tor e by

~.=()-" (I-Ip., p -~~, (III4)

(IIIS)@=esp'—(p' —p)s, ~=).1'..
"I.A. Malkin and V. I. Man'ko, Zh. Kksperim. i Teor. Fiz.

Pis'ma v Redaktsiyu 2, 230 (1965) /English transl. : Soviet
Phys. —JETP Letters 2, 146 (1965)g."A. O. Barut and H. Kleinert, Phys. Rev. 156, 1541 (196'7).i' E. Majorana, Nuovo Cimento 9, 335 (1932)."The matrix elements of all the generators have been given,
e.g. , in Ref. 6. The fact that this irreducible representation of
SO(4,1) can be extended to SO(4,2) was pointed out in Ref. 14.
The Irrst suggestion that SO(4,2) could be useful was made by
Y. Dothan, M. Gell-Mann, and Y. Ne'ernan, Phys. Letters 17,
148 (1965)."The complete separation of the representation space into two
disjoint halves is arti6cial. It would be better to choose an irreduci-
ble representation of SO(4,2) in which the spectrum of Fo is
symmetric about zero. Another way to avoid the doubling is in-
troduced in Sec. VI C,' Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. 37, 368
(1966); 38, 368 (1966)."A. O. Barut and H. Kleinert, Phys. Rev. 157, 1180 (1967).2' T. Takabayasi, University of Nagoya Report, 1967
(unpublished).

"The spurion is analogous to the "kinetic spurion" introduced
into broken SU(6) theory by several people. For every value of the
four-vector p„, X is a direction in 5-space. The existence of a
distinguished direction represents breaking of O(4, 1) symmetry.
The degeneracy group is that subgroup of O(4, 1) that leaves X
invariant; it is isomorphic to O(4) if X is "timelike" and to O(3,1)
if ) is "spacelike. "See also Ref. 6, last section.

Here n, P, y, and e' are constants, Pl' is the Lorentz-
invariant vector product, and F4 is Lorentz invariant.
This equation is asymmetrical with respect to the sign
of the energy, so we hasten to remedy that by doubling
the representation space" and interpreting o. as a two-
by-two matrix:

(III3)

Special cases of this equation are Nambu's erst equa-
tion, " the Schrodinger equation for the nonrelativistic
hydrogen atom, ' and several examples studied by Barut
and Kleinert, "Takabayasi" and others.
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FIG. 1. The (unphysical) spectrum given by Eq. (1117). The
discrete states are at e= I, 2, 3, - ~; the solid lines are the two
continua.

If Q) 0, then the five-vector X, is "timelike, "X,'=+1;
in this case the eigenvalues of the operator e are the
same as those of I's (the positive integers) or —I'p,

according to the sign of ps. If Q(0, then the spurion is
"spacelike" and purely imaginary; the spectrum of e
is the same as that of iI'4, the entire imaginary axis.
The wave equation in momentum space now takes the
form

(III6)
or

This spectrum is plotted in Figs. 1 and 2.
In Fig. 1 it is assumed that the values of n and P are

such that the denominator has real zeros—otherwise no
physical interpretation seems possible. The discrete
states are indicated by crosses on the dashed curve,
the continua by solid curves. We note that the zeros
of the denominator are accumulation points of discrete
states. The appearance of an accumulation point on the
high side is normal in the presence of long-range forces,
but the other accumulation point is unphysical. We
therefore choose the values of n, P, and q in such a way
that p'= y is a zero of the denominator.

Putting

The discrete states are the most obvious ones; they
are one-particle states (bound states). The timeline
continuum, represented by the solid lower right-hand
curve in Fig. 3, can only be interpreted as many-particle
states. We attempt a two-particle interpretation. This
identification of the timelike continuum with two-
particle scattering states is justified by the analogous
formulation of the Schrodinger theory of the non-
relativistic hydrogen atom. '

If our system consists of two particles, in bound or
scattering states, then the wave equation is a kind of
Bethe-Salpeter equation, " and the wave operator 1.(p)
is the inverse of the two-particle Green's function. The
latter is related to the two-particle scattering amplitude.
The solutions of the wave equation are related to the
singularities of the scattering amplitude; thus the
discrete states correspond to poles, and the timelike
continuum corresponds to the right-hand physical
region. The two-particle scattering amplitudes of con-
ventional 6eld theory have a left-hand physical region
as well, and this provides an interpretation of the left-
hand continuum. In fact, consider the two scattering
diagrams of Fig. 4, where the two internal lines represent
particles with masses m~ and m2. The first diagram
illustrates the right-hand physical region, s) (m&+ms)',
of the two-particle Green's function; it is the domain
of s covered when the momenta of the intermediary
particles are real and on the mass shell. The second
diagram illustrates, in the same way, the left-hand
physical region s((mt —ms)'. "

These arguments are not meant to justify the exist-
ence of the spacelike solutions —that is a question that
must be decided by detailed examination of the scatter-
ing amplitudes (Secs. IV and V). The only conclusion
that we wish to draw here is that the endpoints of 0'he

two continua are to be identified with the true and the
false thresholds; that is, the two constituent masses are

9

y=m ', p=m m+,

n'=(7 —p)'/q=(m+ —m )',
we obtain the simpler formula

p' —m '
e'= —-'e4

p —m+

(1118)

(III9)

(III10)

.~X
I

FIG. 2. Limiting cases of Fig. 1. On the left, the spectrum of
Nambu's first equation (Ref. 19);on the right, the spectrum of the
nonre. ativistic hydrogen atom. The Nambu equation describes
finite-energy bound states of two infinitely heavy quarks.

In the limit —m ' —+~ this reduces to the spectrum of
Nambu's first equation, " illustrated in Fig. 2. In order
to obtain an ascending mass spectrum it is necessary
to take m '(m+2. This case is illustrated in Fig. 3. We
attempt to show that this mass spectrum is reasonable
by giving a coherent physical interpretation of each of
its parts.

23 lt has recently been shown that the Bethe-Salpeter equation
for two scalar particles interacting through the exchange of a
massless scalar particle, in the ladder approximation, is equivalent
to an infinite-component field equation not much more complicated
than the one studied here. E. Kyrakopoulos (private communica-
tion); C. Fronsdal and Y.-C. Yang (to be published).' The Bethe-Salpeter equation, in the limit of zero coupling,
between the two particles is (pr' —m&')(pq' —m2')|p(prp2)=0. It
has solutions with E~E2)0, (pr+pm)')(m&+ms)' and other
solutions with E~E2(0, (pi+p2)'((mi —m2)'.
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C. Form Factors

Let A (x) be an external unquantized scalar field and
let the interaction density be the simplest one possible:

gIt'(x)4 (x)~ (*) (III12)

The form factors can easily be calculated by the same
method as in the case of nonrelativistic hydrogen. ~' In
particular, the form factor of the lowest state is'

Z„(I)=2(~,)~+ 1)- , &= (P,—P) (III13)

where X&X is the hyperbolic cosine defined by the
spurions of the initial and the final states:

Thus
),) =).(p,)).(p).

Fir(t) = (1—I/M') —',
M = Smie'/(4+ e4) .

(III14)

(III15)

As usual, one obtains form factors that fall off with
increasing momentum transfer. More important than
this is their singularity structure.

The function Jiii(I) is singular at Xik= —1. It may
easily be verified that all the transition form factors
have the same property. Let Pis and P' be the masses of
the initial and final states and introduce

x= (P'—mrs —ms')/2mims,

ki ——(pi' —mi' —ms')/2mims,

ks ——(I—2mi')/2mi'.

Then the point 'A~X= —1 corresponds to

(III16)

ks = —xki+ (1—ki') '"(1—x')"' (11117)

The form factor Ii„,„(t) is singular at this point, and
at this point only.

Consider the ordinary Feynman diagram of Fig. 5.
The corresponding Feynman amplitude has an anoma-

determined by

m+= mt+ms, m =mt —ms. (III11)

Strong support for this is found in the structure of the
form factors.

mI

ma

FIG. 4. Illustration of the right-hand and the left-hand continu-
ous physical regions of the two-particle Green's function. If the
internMdiary particles are on the mass shell, then s) (mi+m&)'
in the iirst configuration and s((mi —mi)' in the second.

ious threshold singularity at precisely the value of t
given by Eq. (III17)." There is a double infinity of
transition form factors, each one singular for a dif-
ferent value of t, and all of them match; that is, the
simple "Born term" delned by (III12) places all the
singularities exactly where they should be according to
ordinary field theory or S-matrix theory. "

%'e feel that this result confirms the correctness of
two basic postulates:

(i) the identification of the right-hand and left-hand
continua in terms of two-particle states, because it is
this identification that furnishes the values of the two
masses m~ and m2, and shows the relevance of the
Feynman diagram of Fig. 5; and

(ii) the choice of local interactions, as exemplified by
(III12), without which the form factors could not have
been predicted.

One small puzzle remains: The singularity of the
companion diagram to Fig. 5, in which the roles of m~

and m2 are exchanged, does not appear in the model.
Thus it appears that only one of the two constituent
particles interacts with the external field —the heaviest
or the lightest, according to the sign of the parameter P.
This is not unphysical, it merely means that only one
particle is charged, but we should have liked to be able
to treat the case of two charged particles as well.

D. H-Atom

It is instructive to investigate the nonrelativistic
limit, that is, the solutions of Eq. (III1) in the neigh-
borhood of the ionization point. Putting p'= (m~+E)'
and p=0, one gets, to lowest order in E,
—rst(I'e —I'4) —(ct'/2Ii) (I's+ I'4) —tree')iP =0, (III18)

9

I

ITl+2
I

I
I

where Ii '=mi '+ms ' and e'=rse. This is the Schrod-
inger equation for a system of two particles with charges
e and e', and reduced mass p, interacting through a
Coulomb potential. ' The physical interpretation of our
system is thus

(i) ps=m+, rs= —1: hydrogen, electron-proton
scattering states;

FIG. 3. On the left, the spectrum of the model that is the
principal object of this investigation. The limiting case studied
by Takabayasi (Ref. 21) m& =m2 ~ , is a straight line through
the origin.

' R. Karplus, C. M. Sommerfield, and K. H. Wickmann, Phys.
Rev. 111, 1187 (1958); C. Fronsdal and R. E. Norton, J. Math.
Phys. 5, 100 (1964).

"Our model, like potential theory, lacks the normal threshold
singularity at t=4m1',. more about this below.
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FIG. 5. One of the diagrams
that contribute to the vertex
function in ordinary scalar
6eld theory. The external
straight lines represent the
lowest bound state of the
composite system, and the ex-
ternal lines represent the con-
stituent particles of mass mI
and m2.

(jj) po
——222+, ro ——+1: positron-proton scattering

states";
(iii) pp ———222+, 22= —1: electron-antiproton scatter-

ing states;
(iv) pp= —

222+, 2.2=+1: antihydrogen, antiproton-
positron scattering.

Using (III1) and (III21) we obtain

/tH' 2mg2222eop2

&0.
ptf 22

2 p2
(11123)

Hence all the bound states have positive metric.
In the case of scattering states there is no virial the-

orem, but a similar statement holds; namely, the ex-
pectation value of the potential vanishes. That is, in the
nonrelativistsc theory,

t(r, r—.)r
(III24)

g t(r,—r,)p pt(r, —r.)p
tends to zero in the limit as f tends to a stationary
scattering state. It seems almost obvious that, in the
relativistic case, the corresponding statement is that

-- ~O, (III25)

(III19)

has the sign of pp, as is required in a 6eld theory
quantized with commutators. For the discrete states
this is trivial; for the scattering states the proof is not
complete.

For the discrete states we shall use the virial theorem.
In the nonrelativistic limit this means that the physical
expectation value of E+q2/2p, vanishes. The non-
relativistic metric is —2.2(rp —r4), and we have'

In the nomenclature of the nonrelativistic H-atom
interpretation, the energy density is positive for
particle-particle (electron-proton) states and for anti-
particle-antiparticle states, while it is negative for
particle-antiparticle states.

Thus it is seen that quantization with commutators
is possible. A state with Po) 0 and 2.2= —1 is a "neutral"
boson, and a corresponding state with Po(0, so=+1
is its antiparticle; the relative sign of the energy density
for these states is positive. A state with po) 0 and
ro= +1 is a "charged" boson, and a corresponding state
with P,(0, 2.2

———1 is its antiparticle; again, the relative
sign of the energy density is positive. The energy density
for "charged" states is opposite in sign from that of
"neutral" states, which means that a superselection
rule must be operating between positive-energy states
with 2-2=+1 and ro —1, respectivel——y. This super-
selection rule is closely related to time-reversal in-
variance. If one considers the case m~))m2 and the
states pp) 0 (proton-electron and proton-positron
states), then the alternation of the sign of the energy
density is the same as in the Dirac theory of hydrogen.
This suggests that our model comes close to describing
a system of two fermions, rather than two bosons.

yt (r 2 r4) (E+q2/2I4—)p
=pt[g(r, —r,)+(&2/2„)(r,+r,)jr=0 (III20)

if p is a solution of (11118) with negative energy E.
Consider the relativistic wave equation in the form

(III6). In the case of the discrete states the vector X,
defined by (III4) is "timelike. " The diagonal matrix
elements of F4 vanish in a basis where I'0 is diagonal;
more generally, if M'=0, then X 'F has no diagonal
matrix elements in the basis where h. F, is diagonal.
Thus, in the frame p=0,

4'~.p,r.+(p p) r,l4 =0—(III21)

if f is a solution of the wave equation with energy pp.
This is the relativistic generalization of the virial
theorem. From (III2) we have

as f tends to a stationary scattering state. This has not

E. Metric yet been veri6ed by direct calculation, and for that
reason our proof of the positivity of the metric in the

Here we shall attempt to prove that the phys'c» case of scattering states is incomplete. From (III22),
metric, with the help of (III1) and (III25), we get

n = (~/~po)L(p) p2+p
p Htp~ —roppn f re.

2

H= Pop =Po(~/~o)L (P)—
= roL42ppro+2P 'r4j+eopo'. (III22)

IV. ANALYTIC PROPERTIES OF AMPLITUDES

A. Vertex Functions

Here we study the analytic properties of the form2 For this suggestion we are indebted to Y. Nambu private factor as a function of two variables, p' and t= (p&
—p)'.
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Consider the transition between the ground state and
an arbitrary discrete state, in a scalar external field. The
vertex function has the form'

Fi, (t)X.,(pt) X.„,(pt)x &"' -&(p), (IV1)

where X,(pt) is the spurion Lsee Eq. (1114)] for the
ground state and X is the finite tensor wave function for
the final state. The form factor is a simple generaliza-
tion of (III15)":

Pt,.(t) = —
L
—1+(ks+xki)

X(1—kts) "'(1—x') '"j ". (IV2)

The k; and x were defined by (III16); pts is the mass of
the ground state, hence ki is a fixed parameter while
k2 and x will be considered as complex variables. To
interpolate between the integer values of e, we use
Eq. (III10), or

e= rse't (1+x)/(1—x)j'is. (IV3)

Equations (IV2) and (IV3) define an analytic function
of k2 and x.

As a function of t, i.e., of k~, the form factor is singular
at the point (III17) only. This is a logarithmic branch
point except for those values of x that correspond to
integer values of e.This anomalous threshold singularity
occurs in field theory in the case of weak binding; that
is, when ks+x) 0. In field theory the form factor has a
branch point at the point k2=1 as well; this is the
normal threshold singularity at t=4m~'. As the masses
are varied, and ks+x turns negative (strong binding),
the anomalous singularity moves to an unphysical sheet,
through the normal cut that starts at k2=1.25 Our
model, like potential theory, lacks this cut, and the
anomalous threshold singularity has no escape. The
absence of the normal cut is consistent with the fact
that states of two particles, both with mass yg~, are
ignored by the model —precisely the existence of such
states accounts for the normal branch cut in ordinary
field theory; see Fig. 5.

Next, consider the form factor —de6ned by (IV2)
and (IV3)—as a function of p', or x. To begin with, we
suppose that ki' and ks' are less than 1, and ki+ks) 0.
This is true if the binding is weak and t is small —the
domain in which the physical relevance of the model is
clearest. The form factor has four singularities in the
complex x plane, at x = ~1 and at

x= I. +—=—klks& (1—kl') '"(1—ks')'" (IV4)

(a) x=+1:This is the normal threshold, at the be-
ginning of the right-hand continuum, P'=(mt+ms)'.

(b) x= —1: This is the end of the left-hand con-
tinuum, ps= (mi —ms)s. It occurs in field theory as well,
but not on the physical sheet.

(c) x=L +: We de6ne all the square roots so that
their real parts are positive in a plane cut from —~

FxG. 6. The in6nite-component diagram
associated with the scattering amplitude
A(s, t) In .contrast to Fig. 5. the internal
line here represents the composite sys-
tem. The propagator is the Green's
function (IV5), and the vertices are
given by (III12).

to —1 and from +1 to +oo. Then L,+ is a singular
point on the first sheet, but not on the second sheet.
This is, once again, the anomalous threshold sin-
gularity. As the parameters are varied such that kt+ks
turns negative, the point I.+ loops around the normal
branch point at x=+1, and the singularity moves on
to the second sheet, exactly as in ordinary local 6eld
theory. "

(d) x=L, : This singularity moves from one sheet
to another, through the left-hand cut, when k~ —k2
changes sign. The same happens in ordinary local field
theory.

To summarize: With respect to the variable t, the
discrepancy between our model and ordinary local field
theory is the absence of a branch point at 4m&'. With
respect to the variable p', the only difference is the
fact that the left-hand branch point occurs on a diGerent
Riemann sheet. The left-hand branch point is closely
related to the spacelike solutions, and the fact that
it occurs on the physical sheet is an indication that
these solutions may represent acausal behavior. How-
ever the question cannot be decided by an examination
of the form factors, because the singularity in question
occurs far from the physical region. We therefore study
a scattering amplitude where the spacelike solutions
contribute to the sum of "intermediary" states.

&. «upton Scattering

We consider an amplitude that is a close analog of
elastic Compton scattering from hydrogen. The
Feynman diagram is shown in Fig. 6; the wavy lines
represent the external, conventional, scalar 6eld A(x),
and the solid lines are states of our model. The external
lines will be taken to be in the lowest discrete state.
The vertices are given by the local interaction density
(III12), and for propagator we take the inverse of the
wave operator (III2). When the total energy is below
the ionization point, s(m+, the amplitude can be
written as a sum over the quantum number e of the
intermediary state; this is a kind of generalized partial-
wave expansion, in which the operator L '(p) is re-
placed by its eigenvalues L„'(s). The latter are given
by the diagonalized form (III6) of the wave operator;
thus

"The following expression for F&,„(t) is obtained from Eq.
(A6) of Ref. 8 by putting N= —2 and f=4. L„'(s)=

& tie' -'(s)+se'—(s p))—(IVS)
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False
threshold

"x L+
x

Normal
threshold

Bound
states

and the variables

s= (s—m '—ms')/2mlms s=P'= (Pl+P )'
y= (t—2mi')/2mi', t= (pi—ps)'.

Then
FIG. 7. Fixed singularities and cuts in the x plane. The points

L,+ are not singular if k& and k~ are in the range (IV16).

f„(s)=n!(n—1)!L '(s)

Xp i—~(),y,)P~,i—~(yys)

(IV6)

The I"s are four- and five-dimensional hyperspherical
functions; X~, 'A, and X3 are the spurions of the initial,
intermediary; and 6nal states; and"

cosQ= [(X)r) Phs) —() ihs) )[(V.,)'—1]-'t'
X [(M.s)'—1$ '". (IV7)

The number E is related to the Casimir operator of
$0(4,1). The choice of the Majorana representation
6xes E at the value —2. In this case the hyperspherical
functions reduce to elementary functions:

tp 1 n/2

n, !P i +(p) = (ps —1)
kp+1

P„ i 4(cosg) = sinn&/sing, (IV8)

and this happy circumstance allows us to sum the
series. To simplify the expressions, we put the masses
of the two scalar field quanta equal, ps'= p4, then Ark

=X3X, and

with

or

)Xy—1
A=e+L. ' sinn/,

)) i+1

e= [sing() ) i—1)(V.i+1)j '

(IV9)

A =e[ies(s—m )$ [F(1,—b; b+1; n)—
—F(1, b; —b+1; e)j, —(IV10)

where
XXg—1 XXg—1I= e'& 'b re

&) i+1 U.i+1
b = ', e'[(s m—')/(m+—' s))"'—

(IV11)

(IV12)

To simplify the analysis, we introduce the parameters

kl (pr —m, '—m2 )/2mlm2

ks ——(ps' —2mi')/2mi',

"See Ref. 8, Kqs. (II43) and (II44). Note the change in nota-
tion, n~n —&.' Let p& and p2 be the projections of )1 and )2 into the four-
space orthogonal to ); then @ is the angle between p1 and p2.

The calculation of the scattering amplitude, for the
more general case of an arbitrary spin-independent pro-
pagator, has already been reported. ' The result is"

A =g nP„ i,4(co~)f„(s),

Xr)~s ——1—(y+1)/(1 —k, s)

= —1—(y—Ls+)/(1 —ki'), (»»)
M i= V.s ———(xki+ks)(1 —g ) '"(1—k, s)—'»

cosQ = 1+(y+1)(1—x')/(x —L,+) (g—I.,—) (IV14)
=—1+(y—yr")(1—x')/(x —L,+)(x—L,+),

where
L„+=1—2k'',
Ls+ = —klks& (1—krs) ' "(1—ki') '"

y+= 1—2(kis+ks'+2xkiks)/(1 —x')
(IV15)

We begin by 6xing the parameters as follows:

0&kg&1, —1&k2&—ky. (IV16)

In order that there be no doubt about the convergence
of the series expansion (IV9) it is sufficient that x and y
lie in the ranges

L,+&x&1, y+&y& —1. (IV17)

The positions of the 6xed points L,+ and L„+ are in-
dicated in Figs. 7 and 8, together with the location
of the point y+ when x lies in (IV17).

With x fixed in (IV17) we explore the singularities in
the complex y plane. When y lies in (IV17) the variable
@ is real, and the arguments of the F functions remain
inside the unit circle, because

XyX—10(
)ir)i+1

(IV18)

XgX—1—+1
) iX+1

(IV19)

This is satisfied only at y= L„+.This point corresponds

Normal
threshold
(absent)

y+(x)
Y

Anomalous
threshold

Fza. 8. Singularities in the y plane. When x lies in
the range (IV17) only I„+is a singular point.

when x lies in (IV17). The points y+ and —1, at which
@ has square-root branch points, are not singular when
(IV18) is satisfied, because (IV9) is an even function of
P in the region of convergence of the series expansion.
The only singularities in the y plane, when x lies in
(IV17), are at in6nity and at the points where the
hypergeometric functions are singular, i.e., at
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to )~)3———1 and is our old friend, the anomalous
threshold singularity. It is a vertex singularity that
occurs in ordinary 6eld theory in the scattering ampli-
tudes that correspond to the Feynman diagrams of
Fig. 9.

We introduce a real cut in the y plane, from L„+ to
+co, and evaluate the discontinuity of (IV10) across
the cut. Ke 6x the sign,

i sing&0, y& —1

x (y)

"x

1-
L+

y ' x'(y)

L+
&

by convention; then only the 6rst hypergeometric
function is singular at y=J.„+ Wh. en ~ec~&1 and

~
arg( —I)

~
&~,"

F(1, b; 1——b; ec) = —F(1, b; b+1; 1/I)+1
+ (bsr/sinbsr) (—u) b (IV20)

On top of the cut, —I= e ' I; below, the phase is +sr.
Thus

disc(y) F= —2m-ig'

and

FIG. j.0. The shaded domain is the distinguished boundary of
the analytic function A(s, t). The right-hand portion agrees with
the support of the Mandelstam double spectral function cal-
culated from the box diagram of Fig. 9.

useful to study the analytic properties of the function
disc(y)A (x,y') in the variable x.

Close inspection of (IV21) reveals that disc(y)A is
one-valued near @=&1.The only branch points are
those at which &=0; that is, at y'=y+(x), or

(V.r—1q '
disc(y) A = srQ

—'~'ce'a'!
44+11

(IV21)
2ktks- p 1—y'y'" 1—y'~'"-

x=x+(y') = 1W( 1— !
1—

y' —1 k 2krs I 2kss I'

If b&1—that is, in the unphysical region were the
total energy is below the mass of the ground state —this
function decreases as y —&~, and we have a 6xed-x
dispersion relation:

A (x,y) dy'(y —y') —' disc(y)A (x,y') .

When b is increased to 1, the integral diverges because
of the 6xed-x bound-state pole. A subtraction can be
made and a dispersion relation that is valid up to b=2
obtained. An infinite number of subtractions must be
made in order for a 6xed-x dispersion relation to hold
in the neighborhood of the ionization point @=1.This
is obviously directly related to the existence of an
in6nite number of bound states —the Coulomb problem.
We shall not attempt to derive a Mandelstam represen-
tation under such circumstances, as it seems more
appropriate and instructive to do so in a model with a
finite number of bound states. Nevertheless, it is

P~ P~

FiG. 9. Two of the diagrams that contribute to the scattering
amplitude in ordinary scalar field theory. The interpretation is
the same as in Fig. 5.

"Higher Trarsscesdental) FNNcteorls, edited by A. Erdelyi
(McGraw-Hill Book Co., New York, 2953), p. 108.

When I„+&y'& 1, then x+(y') are both on the real line
above 1, and disc(y)A(x, y') is one-valued in the plane
cut from x+(y') to x (y'). When y'&1, x+(y') remains
larger than 1, while x (y') &—1; the x-plane must now
be cut from W(y') to +~ and from —~ to x (y'). The
two-dimensional manifold given by I.„+&y'&~ and x
on these cuts is shown shaded in Fig. 10, it is the dis-
tinguished boundary of A (s,i).

If we could have justi6ed a Mandelstam representa-
tion, " then this domain would have been the support
of the double spectral function. The portion of this
domain that lies in the upper right-hand quadrant is
precisely the support of the Mandelstam double
spectral function associated with the Feynman box
diagram shown in Fig. 9." The other portion of the
support of the double spectral function, in the upper
left-hand quadrant of Fig. 10, has no counterpart in
conventional local field theory. It corresponds to the
"spacelike solutions, " that is, to the left-hand con-
tinuum in the mass spectrum, and shows that the
scattering amplitude has a fixed left-hand cut. This
presumably corresponds to the propagation of a signal
with velocity greater than that of light, and hence a
breakdown of macrocausality. The precise reason for
the appearance of the extra domain of the double
spectral function is not hard to 6nd. As noted above, in
connection with the vertex function, our an1plitudes
lack a normal threshold in t. In ordinary field theory
the point x=x (y') is a singularity of disc(y)A(x, y')

32%e repeat: The reason we cannot derive a Mandelstam
representation is that we do not know how to handle the essential
singularity at x= I; this is due to the infinite range of the potential.

33 C. Fronsdal, R. E. Norton, and K.T.Mahanthappa, J.Math.
Phys. 4, 859 (1963).
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Fro. 22. The spectrum of Eq. (V7), the second model.

denote their values on top of the cut, then their values
below the cut are —c, —V.r, —P. Thus

A (s+ie) = sc de csc(mv)L '(s+i0)

&& L(—I)"—(—v) "3 (V2)

A (s t—e) = —sc dn csc(ev.)L„'(s—i0)

when I-„&y'&1, just as in our model, but not when
y') 1. This is possible precisely because disc(y)A(x, y')
has the normal branch point at y'=1. Since our model
lacks this branch point, there is no way for the singu-
larity at x=x (y') to disappear into another sheet as

passes 1.
The relationship between the extra portion of spectral

function support, and the absence of the normal cut in

t, is very intimate. For if we discard the unorthodox
contribution to the Mandelstam representation, then
this introduces a normal threshold in t, with a dis-

continuity that is precisely of the right type; now, the
anomalous threshold singularity vanishes into the
second sheet as kr turns negative (strong-binding case).
This follows from the fact that the dip in the boundary
of the double spectral domain disappears from the
right-hand side and reappears on the left. (The mini-

rnum occurs that x= —ks/kr. )

V. SOMMERFELD-WATSON TRANSFORMATION

A. The Problem

The preceding discussion has shown that the
"Compton" scattering amplitude has a left-hand
cut. It is not clear, however, whether this is due to the
spacelike solutions alone, to the left-hand cut of the
vertex function, or to a combination of both. Here we
shall clarify this question by an alternative approach.
At the same time, the relevance of our work to con-
spiracy theory will be explained.

The sum in (IV9) can be converted into an integral
over a hairpin contour, and this contour can be de-
formed till it essentially coincides with the imaginary
axis in the complex m plane. This involves no diKculties
or subtleties so long as x and y lie in (IV12); that is, if
s is below the ionization point and t is small and nega-
tive. The result is

A = 4c dt's csc(ve)L„—'(s)! (—I")—(—v)"j, (V1)

where u and v were defmed by (IV11). The contour of
integration crosses the real axis between —1 and +1,
and passes to the right of the poles of L„-'(s).

Let s be increased to above the normal threshold
m+', and let us calculate the values of A on the two
sides of the cut. The quantities c, VI, and @ all have
square-root branch points at the threshold; let c, XXt, P

= sc de csc(mv. )L '(s—sO)

The last expression was obtained by a change of integra-
tion variable, e —+ —e; hence the contour in (V3) goes
to the left of the poles of L „'(s i,e)—

In the model studied above we have L „'(s—t0)
=L„'(s+iO). Hence

disc(x)A = -', c de csc(nv. )L '(s+t'0)

where the contour is the difference between the contours
of (V2) and (V3); that is, it is a closed contour circling
the pole of L '(s). Thus

sinb(P+v-) XXr—1 &

disc(x)A =v.Q "'c (U5)
sinbv- V.t+1

It is easy to verify that the double spectral func-
tion disc(y) disc(x)A given by (V5) agrees with
disc(x)disc(y)A calculated from (IV21).

If we examine the left-hand cut, s&m ', in the same
way, we 6nd an almost identical result. Notice that the
discontinuities of the form factors are not enough to
produce cuts in A(s, t). In fact, the symmetry property
of our special model,

I. '(s—i0)=L '(s+ i0), (V6)

guarantees that the eGects of the branch cuts of the
vertex singularities cancel exactly. Consequently, the
sole cause of the two cuts in A(s, t) is the fact that
L„'(s) has a pole. I.et us return to (V1). When s varies
from m+' to +~ on the right-hand cut, the pole in
L„-'(s) moves alon'g the imaginary axis from rt= &ioo
to g =~ ~ se'. When s varies from m ' to —~ on the
left-hand cut, the pole in L„'(s) varies from 0 to
&-,ie'. Hence (V1) is very similar to a dispersion
representation, in which the integration domains

se )~e' correspond to the right-hand continuum and
As & ~e' corresponds to the left-hand continuum.

B. The Cure —P

We have just noted the intimate relationship be-
&ween the left-hand discontinuity of the scattering
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p' —7

(mp' —p') (p' —m ')
e'= m~m2e' (V8)

This is illustrated in Fig. 11.As before, the spectrum of
the operator st' is discrete when m '&Ps&m+s, and
negative continuous when p' lies outside these limits.
Consequently, only the crosses and the heavy line in
Fig. 11 represent solutions of the wave equation:
Equation (V7) has no spacelike solutions. The vertex
functions are the same as before, and the "Compton"
scattering amplitude is given by Eq. (V1), with

L„(S)=St'(p' —m ')(m ' p') m—&mse—4(p' 7) . —(V9)

Although L„'(s) now has two poles in the complex
e plane, the calculation of the right-hand discontinuity
presents nothing new. As p' is increased past m+' the
poles move out on the real axis (in opposite direc-
tions), describe large quarter circles, and reach the
imaginary axis. The discontinuity across the normal
cut is the sum of the residues of the two poles.

If we now continue analytically in s, along the real
axis and past the beginning of the left-hand continuum
at s=m ', the poles of I. move as shown in Fig. ].2.
Meanwhile, the contour of integration in (V1) always
remains to the right of both poles. This means that we
have something more serious than a left-hand cut;
every time the pole of L„'(s) passes by a positive
integer value of ss, we have a pole of A(s, t) for the cor-
responding value of s. The mechanism is exactly the
same as that which produces the bound-state poles:
The contour is pinched between the pole of L„'(s) and

amplitude and the poles of the propagator —more
precisely, the zeros of the wave operator L„(s) for
s(m '. Next let us see what happens in a theory where
there are no solutions for s&m '; that is, in a model in
which there are no spacelike solutions.

Retaining all the notations and de6nitions of Sec.
III, we write down the wave equation

f L~pr+(ps —p) r.)s—m,m, e4(ps —~)&p=0. (V7)

(Note the distinction between "writing down an equa-
tion" and constructing a physically interpretable model:
Ke have not veri6ed that this new equation yields a
positive-definite physical metric, and it will only be used
to study a particular aspect of the problem. ) The form
factors are completely determined by the parameters n
and P and are exactly the same as in our 6rst model.
Since the two-particle interpretation, and the correct
location of most of the singularities, resulted from the
identification n=(m+ —m )' and P=m+m, we shall
retain these values of n and P. The constant y, which will

appear in the propagator but not in the vertex func-
tions, . will now be allowed any value between m '
and m+2.

Instead of the spectrum given by Eq. (III10) and
illustrated in Fig. 3, we now have

FIG. 12. The migration
of the poles of the propaga-
tor of Eq. (V7} as s moves
to the left past s=y and
pasts=m s. (Secondmodel. }

the poles of csc(m-), and this produces a ghost. Thus
it is seen that, if the spectral curve passes through an
integer value of e for some value s„of e, then the ana-
lytic continuation of the scattering amplitude A(s, t)
has a pole at s=s„, even if the wave equation has no
solution at p'=s„. That is, avoidance of spacelike
solutions does not automatically cure the diQiculties
with which spacelike solutions are intuitively associated.

Since we do not like ghosts, let us take a special value
of p that exorcises them, namely, p=m '. In this case
(V8) reduces to

m~m2e
S2=

m4.'—p'
(V10)

The spectrum is the same as that of the nonrelativistic
hydrogen atom, and the spectral curve is illustrated in
the right-hand part of Fig. 2. The point p'=m ' is no
longer of any special significance as far as this curve is
concerned. It is, nevertheless, important, because it is
one of the two points where the spurion is "lightlike. "
The vertex functions, as well as the location of singu-
larities of the scattering amplitude, are the same as
before.

With this special value of y let us once again consider
the continuation of A(s, t), defined by (V1), below the
point s=m '. The propagator has two poles, both on
the real e axis, symmetrically placed with respect to the
origin. The point s=m 2 is not a branch point of
L„'(s), but a discontinuity develops nevertheless, be-
cause of the left-hand branch point singularity of the
vertex function. To isolate the singular part of A(s, t)
we may write (V1) as follows:

+$00

A (s,t) = ,'c-dl csc(srss)L„—'(s) $(—44)"—(—e)"g

AC —I'——
V
'

(V11)
b' sinsrb' (s—m ')(m+' —s)

where the integral contour follows the imaginary axis
and the extra term is the "pole term" that results from
that part of the original contour that looped around
the pole at

s4= b'=+)mrm2e4/(m '—p') j'"
The "background" integral has no branch point at
s=m ', but the pole term does. If "u" is the value of
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Fio. 13. A production
process with double con-
spiracy exchange. The inter-
pretation is the same as in
Fig. 6.

this variable on top of the real axis below s=m ', then

1/ "I"is its value below the real axis.
To summarize, we have found examp1. es of three

different behaviors of the scattering aInplitude con-
tinued below s=m ':

(a) In the original model, which has spacelike solu-

tions, the corresponding poles of the propagator are
the sole cause of a left-hand cut.

(b) In the second model, which has no spacelike
solutions, poles nevertheless appear at those points
where the spectral curve passes through integer values
of e.

(c) In the last model, in which there are no space-
like solutions, and in which the spectral curve is con-
fined between m=0 and e=i when s&m ', the left-
hand branch point singularity of the vertex function
gives rise to a left-hand cut of the amplitude.

Some of the possible implications of these results
are discussed in the last section. Meanwhile, we shall
comment on the relevance of our Eq. (V11) to con-

spiracy theory.

C. Consyiracy

The integral formulas for the "Compton" scattering
amplitude derived above are of the type developed by
Toiler" and others, " and are applied in conspiracy
theory. "Strictly, this theory applies to the point s=0
only, and to the case of pair-wise equal masses (which
in our case means four equal masses, pi' ——p&' ——ps' ——p4'),
though several extensions have been suggested. ""The
similarity is not superficial. Expression (IV9) is a de-
composition of the amplitude according to the O(4)
degeneracy group of the mass spectrum. When s is out-
side the interval from m ' to m+', this group is not
O(4) but O(3,1), and the sum must be replaced by an
integral that represents the decomposition of the
amplitude according to O(3,1). Conspiracy theory
makes use of the observation that when the masses are
equal and s=0, O(3,1) invariance is a consequence of
Poincare invariance. Extension to unequal masses or

'4 M. Toiler, Nuovo Cimento 37, 631 (1965)."R. Delbourgo, A. Salam, and J. Strathdee, Phys. Rev,
164, 1981 (1967); G. Cosenza, A. Sciarrino, and M. Toiler
(unpublished)."D. Freedman and J. Wang, Phys. Rev. Letters 18, 863
(1967)."R. Delbourgo, A. Salam, and J. Strathdee, Phys. Letters,
268, 230 (1967).

» G. Domokos and G. L. Tindle, Phys. Rev. 165, 1906 (1968).» N. F. Bali, J. S. Ball, G. F. Chew, and A. Pignotti, Phys.
Rev. 161, 1459 (1967).

to s&0 requires, first of all, that the action of O(3,1) as
a transformation group on the external physical states
be defined. The work of Bali, Ball, Chew, and Pignotti, "
who showed that this can be done when the external
legs of the scattering diagram stand for multiparticle
states, is very close to the two-particle model con-
sidered here. We have only added the observation that
one-particle states may be considered as isolated points
in a two-particle spectrum.

When s=0, and Pi' ——P&', we may take P&+P&=0,
since the model is Lorentz invariant. This gives
X= (0,0,0,0,1), so that the degeneracy group is just the
physical Lorentz group. In. this case cosP reduces to
the hyperbolic cosine de6ned by the four-vectors pi
and ps, and our integral formulas reduce to those of
conspiracy theory. If either sWO or p&'A ps', our model
is a generalization of conspiracy theory. We do not
pursue this point here, since the results are obviously
strongly model-dependent.

It has been proposed that certain production pro-
cesses may be dominated by double Regge poles, or
even double conspiracies. "This has raised the question
of how to construct a Vukawa coupling between two
conspiracies and an ordinary particle. The infinite-
component field theories obviously incorporate such
couplings. The amplitude for the process of Fig. 13,
for example, can be calculated in the same way as the
elastic scattering amplitude and expressed as a double
Sommerfeld-Watson integral. The high-energy domin-
ant contribution is obtained by isolating the pole terms
in both integrals, and one obtains a closed expression
for the double-conspiracy contribution.

VI. ADDITIONAL COMMENTS

A. Diseases

Most of the so-called diseases of infinite component
field theories have turned out to be specific to the
early examples.

Desceedi eg 3fass

The first equations that were proposed, by Majorana"
and by Gel'fand, Yaglom, and Naimark, 4' had descend-
ing spectra with an accumulation point at zero. Nambu
gave the first example of an ascending mass spectrum. "

Spttceli jte Solutiorts

All equations that had been proposed up to 1966,
including Nambu's Grst equation, have solutions for
spacelike momenta. Again Nambu was the first to
invent an equation with no spacelike solutions. 4'

OT. W. B. Kibble, Phys. Rev. 131, 2282 (1963); N. F. Bali,
G. F. Chew, and A. Pignotti, ibid. 163, 15/2 (1967).

4'For a summary of the work of Gel'fand, Yaglom, and
Naimark, see M. A. Naimark, Linear Representations oj the
Lorene Group (Pergamon Press, Ltd. , London, 1964).

"Y.Nambu, Phys. Rev. 160, 1171 (1967).
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Comp/ex Soll ti ops

Most of the equations that have been considered in
the literature, including the three examples discussed
above, have no solutions for complex momenta.

TCP Inl,rg,nce

In infinite-component Geld theories TCP invariance
is an independent postulate; it is possible to violate
it," but just as easy not to. Therefore, this is not a
problem.

Spin Stati-stics

It has been claimed that the usual connection be-
tween spin and statistics is looser in inGnite-component
field theory than in conventional Geld theory. Even
if this were true, it is dificult to see how this could
create a problem; let us just take the usual correlation
as an experimental fact and choose our method of
quantization accordingly. The fact is, however, that
models with unorthodox spin-statistics connection are
very pathological. ' In a given Lagrangian model there
is at most one choice, commutators or anticommutators,
that yieMs a positive energy density; if this turns out to
be the "wrong" statistics, then the whole model must
be rejected. (The claim that quantization with anti-
commutators is always —see particularly Feldman and
Matthews4' —impossible is based on the notion that the
theory admit the spin group S as an exact invariance
group. Causal quantization with anticommutators is
obtained by the same authors under less restrictive
assumptions in a subsequent paper. 44)

Metric

However, the metric in Hilbert space must satisfy
a positivity condition. If the spin values are half-
integral, then the metric must be positive dehnite. If
the spins are integral, then the metric must have the
same sign as po. Note that the metric g enters the
canonical commutation relations through the deGnition
of the canonical momentum:

~= 52/bf= P*rt,
(

fp(x, t), m (x', t)j~= b &'&(x—x') .

In Sec. III we proved that the metric is positive de6nite
in our 6rst model. An example with half-integral spins
has been treated previously. '

Aealyticity

It is one of the conclusions of this paper that the
analytic structure of scattering amplitudes is largely
conventional. The di6erence between 6nite- and
infinite-component field theories lies in the order of
perturbation theory in which the various singularities

4~ G. Feldman and P.T. Matthews, Phys. Rev. 151, 1176 (1966).
44 G. Feldman and P. T. Matthews, Phys. Rev. 154, 1241 (1967).

are found. This is most dramatic with respect to bound-
state poles, which do not occur in any Gnite order in
ordinary Geld theory, but are incorporated into the
Grst Born approximation of the infinite-component
theories.

Crossi rig Symmetry

The idea that interactions are generated by local
Lagrangian interaction densities gives rise to a type of
crossing symmetry; that is, an intimate relationship
between two physical amplitudes that are related to
each other by a change of sign of the four-momenta of
one or more external lines. ' In the models that have
been investigated up to now, this crossing symmetry
has been found to differ from that of ordinary local
field theory; it is not so intimately tied up with analytic
continuation. This is not necessarily objectionable, nor
has it been shown to be uncurable. In ordinary local
field theory crossing by analytic continuation is a result
of invariance of the scattering amplitudes under the
complex Lorentz group. This is due to the fact that
every Gnite-dimensional representation of the spin
group (i.e., the spin part of the homogeneous Lorentz
group) can be extended to a representation of the
complex Lorentz group. It has been suggested that
ordinary crossing can be incorporated into infinite-
component field theory by choosing the group S to
include the complex Lorentz group. We plan to in-
vestigate this question soon.

B. Left-Hand Cut

All the well known difGculties seem to be avoidable,
but a new one has been uncovered: the appearance of a
left-hand cut in theories with no spacelike solutions.
There are several possible ways out:

(1) The origin of the left-hand cut in the scattering
amplitude is the left-hand cut of the vertex function.
This in turn arises from the fact that the spurion is
lightlike at the point s=m ', the point where the
spectrum of e changes from real discrete to imaginary
continuous. The two-particle interpretation, and the
determination of the constituent masses, depends
crucially on this fact, as does the correct location of all
the singularities. It is therefore necessary to insist on
this signi6cance of the point s=m '. Nevertheless, it is
conceivable that the discontinuity of the vertex func-
tion may contribute no discontinuity to the scattering
amplitude if we choose a different representation in
which the discrete spectrum of Fo is symmetrical
about the origin.

(2) A 6.xed left-hand cut in s is thought to be un-
physical because it may imply propagation of signals
faster than light. It is important to 6nd out whether
the signal propagates e6ectively over a large or a small
distance. Pending an investigation of this point, we
venture to guess that the signal propagates in6nitely
far in the model with spacelike solutions, but over a
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Pro. 14. The crossed
amplitude. The interpreta-
tion is the same as in
Fig. 6.

leaves no accidental degeneracy. A simple example is

$(pl')'+ f(p') 1"4'+g(p') jp(p) =0,
where f and g are polynomials of low order in p'. The
spectrum of this equation is discrete if

small distance related to the conspiracy parameter b' in
the case of our last model (Sec. V). If this is the case
there may be no real objection to a left-hand cut in the
amplitude for scattering off a composite system.

(3) It has been implicitly assumed that the scatter-
ing amplitude A (s, t) for the diagram of Fig. 6, analyti-
cally continued to negative s and positive I, is the
scattering amplitude A*(s,t) for the diagram of Fig. 14.
This is in accordance with conventional s-I crossing
symmetry. In principle it is possible to make a direct
evaluation of A*(s,t); then the important question is
whether or not this function has a left-hand cut. Un-
fortunately, this turns out to be highly ambiguous in
the models studied here. Without going into details, we
mention the origin of the diKculty. The doubling of
representation space (Sec. III A), which was carried
out in order to make the energy spectrum symmetric
about zero, is very artidcial. The properties of the
metric were found (Sec. III E) to require a super-
selection rule between states with pets)0 and states
with pars(0. The local interaction density (III12) does
not respect this superselection rule, and, in fact, no
local interaction does. It is necessary to construct a
model in which superselection rules of this type can be
avoided before questions of crossing symmetry and
left-hand cuts can be resolved.

C. Other Equations

The models presented here are exactly soluable; this
is due to the fact that the wave operator is a function of
a single spurion that picks out a single direction in
5-space. Another class of wave equations, though not
exactly soluble, is amenable to a similar analysis. The
vector spurion is replaced by a second-rank tensor; it
picks out two distinguished directions in 5-space and

and continuous otherwise. The Bethe-Salpeter-%ick-
Cutkosky equation is essentially of this type. 2' The
asymmetric top also obeys an equation similar to this
one, the difference being that in that case F~ is compact
so that the spectrum is always discrete. According to
Landau and Lifschitz4' the eigenvalue problem cannot
be solved exactly.

D. Current Algebras

Let the representation space be enlarged to allow' the
inclusion of some charge group wi)h generators X;.
From the canonical commutation relations (VI1)
follows immediately that the time components of the
currents,

satisfy equal-time commutation relations. This is a
representation of current algebra by means of one- and
two-particle intermediary states. However, these
currents are no more and no less physical than the
specific Lagrangian model they come from. "

1Vote added sos proof. Grodsky and Streater4r have in-
vestigated the structure of the commutation relations
for unequal times. If one postulates that the time-
ordered product of free fields is the Fourier transform
of the propagator, then one obtains a field theory that
is beyond the scope of their investigation, because this
operator is not a finite covariant. Whether or not a
formalism similar to ordinary 6eld theory can be de-
veloped is still an open question. Here we have given a
partial answer in exhibiting the extent to which inter-
actions are local in theories with or without spacelike
solutions. The intuitive argument (Sec.VI 3), according
to which our last model is only "weakly nonlocal, " is
supported by results of Todorov. "

] X +
I

Pl K7j

Fio. 15. The "ideal
spectrum, " with a Gnite
number of bound states, a
right-hand continuum, and
conspiracy, might have this
form.

4'L. D. Landau and E. M. Lifshitz, QNuntgm 3Eechunics
(Addison-Wesley Pubhshing Co. , Inc. , Reading, Mass. ), p. 3/4.

4s A special example has been constructed by Leutwyler LH.
Leutwyler, Universitat Bern, Switzerland (unpublished report)g.
See also M. Gell-Mann, D. Horn, and J. meyers, Princeton
Institute for Advanced Study Report, 5967 (unpublished).4'I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20,
695 (i968).

I. Todorov (private communication).


