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Natural Zeros of Regge Residuesf
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We discuss the method of Reggeization of invariant amplitudes with particular reference to the kinematic
zeros of the residue functions at nonsense points in J and at t= 0. The zeros which occur naturally at these
points yield in the erst case the sense-choosing solution, and in the second case a well-dehned scheme,
covariant evasion, for satisfying the t =0 conditions on helicity amplitudes. Factorization is automatically
satis6ed in our method.

such as 6'~p. or (P~p. , which can be obtained from Eq.
(1) by a differential technique~ and have been
tabulated in Ref. 7.

For example, in ~X scattering only normal parity
exchange P= (—1)~ can occur, and the contribution is

HE problems of Reggeizing processes with high
spin' and/or unequal masses' have been the

subject of much discussion in the recent literature. ' An
approach to these problems which deals with invariant
amplitudes rather than helicity amplitudes has been
proposed. ' In this article we discuss the kinematic zeros
of the Regge residues of this approach. We begin by
reviewing briefly the method of Reggeizing invariant
amplitudes.

The method stems from the remark that the appro-
priate (1-channel) angular functions, in terms of which
the covariant 3E function is to be expanded, can be
obtained from the exchange of "particles" of spin J
and mass gL The sum of all such exchanges weighted
with arbitrary coefficients then has the form of a partial-
wave expansion of the M function, which can subse-
quently be Reggeized.

To calculate the contributions to the process P+q —+

P'+q' from such exchange graphs one needs the spin-J
projection operator' (p~p, ...tt~, ,... ~(A) along with
partial contractions such as

g(g Ps+a.»)~'o, (P, -Q; ~)
=gc [g (P +g J-'(y Q(P

'—mP'(P ')j (3)

which, with a suitable identification of gg~ and gg~,
gives the usual partial-wave expansion for the in-
variant amplitudes A and B.

In general, the appropriate spin-J angular functions
are obtained by summing all possible exchanges
6(P):(P~(P; —Q; 6):6(—Q), where the i 's are the
coupling functions of Ref. 7.

The partial-wave expansion can then be Reggeized
by the prescription (Pz(s,) ~(P (—s&)X—', (1+e ' )/
sine+, coupling constants becoming Regge residues,
functions of iV=—t.

For the exchange of a single Regge pole the amplitude
thus obtained will be automatically factorized. It will
explicitly contain the correct threshold factor (PQ)~,
and the explicit separation of c from the vertex
residues yields the very simple asymptotic behavior
c (p u exactly for large r=P Q=s(s—u).

The remaining factorized residues g(a(t)) will then
be free of kinematic singularities in rr(t) and, even for
high external spins, can be chosen~ to be free of kine-
matic singularities in t. They may, however, have
kinematic zeros in J and in t, and it is to these that we
now turn our attention. Because of our explicit factor-
ization we discuss each vertex separately.

(i) Kinematic zeros in J nonsense coup/in—gs. For
integrais J)sr+sr the number of couplings of a spin-J
particle to spins sr and ss is' (2st+1) (2ss+1). However,
for integral J(sr+ss the number of couplings is reduced
by g()+1), where rl=st+s& —J. This reduction is
achieved in the Regge amplitude by making appropriate
couplings vanish at integral nonsense values of J. A
well-defined prescription for the "appropriate" cou-
plings is as follows: Those couptings which involve more

o (~Qi ~')=Pcs Pss+ "sss" ss &t" &s(~)Q'~r"'Q~t'

Here P= —',(P+P'), Q=sr(q+q'), and A=P' —P=q —q'.
Thus for spinless external particles the t-channel

contribution to the amplitude is proportional to

~ (P, -Q;~)-=Ps~ s. (P, -Q;~)="~., (1)

where
2~(J!)s ~~r(v+1)

Cg=
(2J)! (2)

and (Pq is the sotid spherical harmonic (PJ ——(EQ)~Pg(s, ).
The contributions to the M function for processes

with spin involve projection operators with free labels

t The research reported in this document has been sponsored
in part by the Air Force OS.ce of Scienti6c Research OAR through
the European Ofhce Aerospace Research, U. S. Air Force.*National Science Foundation Postdoctoral Fellow.' E. Leader, Phys. Rev. 166, 1599 (1968).

2 D. Z. Freedman and J. M. Wang, Phys. Rev. Letters 17, 569
(1966); Phys. Rev. 153, 1596 (1967).

'A rather complete review is given by L. Sertocchi, CERN
Report No. TH 835, 1967 (unpublished).

4 H. F. Jones and M. D. Scadron, NucL Phys. 84, 267 (19
5 This is a traceless symmetric tensor in both initial and

indices satisfying hp(P~p. ..=(P~ ...6 =0.' C. Zemach, Phys. Rev. 140, 897 {1965).

68)
7 M. D. Scadron, Phys. Rev. 165, 1640 (1968).

anal s V. Singh, Phys. Rev. 129, 1889 (1963).' We limit ourselves here to boson Regge poles. Similar remarks
apply to fermions.

17l 1809



1810 H. F. JONES AN D M. D. SCA D RON

labels of the projectiort operator thats are available ctt a
nonsertse Point vanish there

Thus, for example, the residue g2' & of the NN-n
vertex [Eq. (3)g will vanish at n=0, this being the
usual" explanation of the dip in xX charge exchange.
The coupling gj is not constrained to vanish at this
point, since g~Ep6' p., can be written as g~(P~, a form
not involving any labels.

As another example, consider the process mN —+ coN,
where by the conventional Regge analysis" a dip is
predicted when n, =O. This can be seen very simply in
our method, since the +cop vertex has the form
ge„,Q O'. Since this involves one propagator label it
must vanish at n, =O.

Finally, all couplings will have zeros at negative
integers where the coupling cannot exist at all. This
will prevent "ghost" poles arising at negative-integer
right-signature points" and will give dips at negative-
integer wrong-signature points.

(ii) Kistesrtatic zeros ist t evasios—s. At t=0 the Regge
pole simulates a massless particle, which, for any J&0,
has only two spin states. Correspondingly, the number
of couplings is reduced to 2(2s; +1) for stress and to
4s+1 for st ——ss ——s. Again this reduction is achieved by
making appropriate couplings vanish or become related
at t=0. A well-defined scheme which always ensures
the correct number of couplings is that the colp/stggs
are coestraimed to be gauge imariamt at t= 0. That is to
say, we require that'4 6ttt'tt(P) =0.

The rate at which (combin. ations of) couplings go to
zero is determined by demanding that no terms in
1/6s, which would be indeterminate at t=0, should
survive when we make the replacements Vp —+ Vp—U hatt/6', g„s~ g„tt—A„hatt/6' for the vectors and
tensors occurring in Btt(P)."

The conditions on couplings thus obtained turn out
to be sufFicient in the equal-mass case to ensure that
invariant amplitudes remain finite at t=0, so that the
dispersion procedure proposed in (4) is no longer
necessary. For unequal masses one will still have to
disperse or introduce daughter trajectories, but by the

' This corresponds to the "choosing-sense" solutions. In our
formalism it is hard to see how the "choosing-nonsense" solution
could arise."F.Arbab and C. B. Chiu, Phys. Rev. 147, 1045 (1966)."L.L. Wang, Phys. Letters 16, 756 (1966).

"To avoid ghosts at n=0 for even-signature trajectories one
will have to invoke extra (dynamical) zeros which cannot be
derived from the above arguments. A zero in the sense coupling
would correspond to the "noncompensating" mechanism (see
Ref. 3).

"Such "mass-shell gauge invariance" has been discussed in
detail by S. Weinberg, Phys. Rev. 135, 31049 {1964).

"For unequal masses, where 6 I'/0, this criterion must be
applied only to the redmced coupling Cn(P) defined by separating
oG all common factors I'p,

~si" ss(&)=c'si" s, (&) ~s.+i" Pss.

introduction of the concept of "reduced" couplings'
we have separated the problems of high spin and un-
equal masses in a well-defined way.

As a specific example, consider NN scattering. Here
the coupling of the A & trajectory, f&ysytt, is the only one
which is not by itself gauge invariant. Thus we expect
fs to vanish like t at t=0. Since the At trajectory alone
gives terms in 1/t, " giving a contribution fss(v(P "
+4stt't '(p ') to the pseudoscalar amplitude Ap, this
ensures that all invariant amplitudes are 6nite at t=0,
i.e., that the forward scattering conditions are satisfied.
In fact our condition might seem too strong, as fss t',
but it is indeed necessary that fs t, as can be seen,
for example, from a detailed analysis of pN —+ xN."

As another example consider the normal m p-n vertex. '

The reduced coupling is gtQ„Qs+gsg„s, so that the
gauge condition on the residues at t=0 is Q Agt(t)—2gs(t)-t.

The "gauge invariance" requirement thus provides
a well-dehned scheme of evasion' —covariant evasion—
which is factorized from the beginning. We have
arrived at an evasive solution because we have required
each Regge pole separately to have the correct number
of couplings at t=0. As this gives rise to a very natural
scheme, we would incline to those solutions" of the np
charge-exchange problem and others which do not
involve a conspiring pion trajectory. "

Conspiratorial solutions can also be constructed in
our method, although they do not arise very naturally
and correspond to a weakening of one or other of our
assumptions. Thus class-II (2 t-like) conspiracies arise
when the leading Regge pole does not obey the gauge
condition, while the leading Regge poles of a class-III
(parity-doubling) conspiracy have singular residues
with square-root branch points at t=0.

Finally, we remark that calculations of cross sections
are surprisingly easy if one works with the covariant
Regge amplitude as a whole rather than splitting it up
into contributions to invariant amplitudes. Thus, it is
easy to see that, to leading order, cross-section con-
tributions from each Regge pole decouple into a product
of vertex factors. " Moreover, the interference terms
between different normality exchanges can easily be
seen to be suppressed by at least one power in s.

Thus, the cross section will be an incoherent sum of
individual factorized Regge contributions.
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