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The techniques of current algebra are applied to the process m-X —+ ~~X, with a view of obtaining certain
coupling-constant sum rules. The emphasis is on the evaluation of the limit when all three pions become soft.
While the matrix elements for such a process all vanish in this limit, it is possible to use a suitable limiting
procedure to obtain nontrivial relations involving various strong coupling constants and certain low-energy ~-
x parameters. The entire formalism is based on using an extensive pole model for the evaluation of the7' —+ mxN matrix elements. The problem of ambiguous terms which have a more complicated structure in
such processes is treated in some detail. One of the interesting results is an independent determination of the
pion scattering lengths (in terms of the known coupling constants of hadrons), in almost exact agreement
with Weinberg's original result.

I. INTRODUCTION

'HE applications of current-algebra techniques to
strong-interaction processes developed by various

authors in recent times' are mainly characterized by
extrapolation from the soft-pion limits to physical
pions, assuming smooth behavior of the amplitudes. The
extrapolation itself is expressed by expanding the ampli-
tude in terms of the usual invariant parameters (s, t,u)
of the process, and relating the coe%cients in the expan-
sion by current algebra. These techniques have provided
highly successful predictions of the x-E scattering
lengths, indicating that the z-E amplitudes do not vary
appreciably between their physical threshold values
with actual pion masses and the (unphysical) values
when these masses are made to vanish. For the 7r-m.

amplitudes, however, the extrapolation is probably more
ambiguous, though most of the above investigations
agree on the "smallness" of the vr-7r scattering lengths
obtained by these methods. Such small scattering
lengths are, of course, an essential requirement for a
consistent treatment of current-algebra techniques
which would not make sense if the x-x interaction were
so strong as to make the contributions of the unitarity
cuts quite significant. While this result is at variance
with the predictions of the older bootstrap calculations, '
or the phenomenological evidences from x-X scattering, '
the idea of "not-so-strong" interactions among pions
and nucleons seems well worth pursuing, despite recent
attempts to accommodate larger x-x scattering lengths
via suitable unitarization procedures. " Indeed, a
more comprehensive calculation by Khuri, ' who kept

' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
2A. P. Balachandran, M. Gundzik, and F. Nicodemi, Nuovo

Cimento 44, 1257 (1966).' Y. Tomozawa, Nuovo Cimento 46, 707 (1966).
4 N. H. Fuchs, Phys. Rev. 155, 1785 (1967).' N. N. Khuri, Phys. Rev. 153, 1477 (1967).
e F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1709 (1976).
7 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 567 (1960);

Nuovo Cimento 19, 752 (1961).
J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737

(1963); C. Kacser, P. Singer, and T. N. Truong, Phys. Rev.
137, 81605 (1965); R. W. Birge et al. , ibid'. 139, 81600 (1965).

9 J. sucher and C. H. Woo, Phys. Rev. Letters 18, 723 (1967).
'e K. Kang and T. Akiba, Phys. Rev. 164, 1836 (1967).

171

the second-order terms in the expansion of the x-x
amplitude, strongly indicated the relatively mild role
of the unitarity cut, thus providing evidence against
any particularly strong m-m interaction. Moderately
strong interactions between hadrons, which represent an
essential requirement for current-algebra applications,
should also allow the use of "e6ective Lagrangians"
that have been shown to yield the same results" as the
former by the straightforward methods of perturbation
theory for any particular process calculated in the
lowest order.

The purpose of this paper is to extend the idea of
moderately strong hadron interactions to the process
7' —+ ex', assuming the amplitude to be dominated
only by low-lying poles and extrapolating down to zero
masses of all the pions, with a view to determining
relations between certain coupling constants. In such an
approach we must tacitly assume that the unitarity
e6ects are not much more important than can be simu-
lated by low-lying resonances in the intermediate
states. "However, since our object is not to calculate
the physical mS —+xwX amplitude but merely the
(unphysical) extrapolated one for zero pion 4-momenta,
one may expect the unitarity effects to be less important
than for the physical amplitude itself. Of course, this
amplitude vanishes in the limit of zero pion 4-momenta,
due to parity considerations. Yet it should be possible
to obtain some useful results by keeping track of the
terms of the lowest (first) order in these momenta. The
idea is analogous to the evaluation of the forward-
angle derivative in the dispersion relation for a spin-Rip
amplitude which by itself vanishes in the forward
direction.

An important question in this investigation concerns
the problem of ambiguous terms in the production
amplitude. It is well known that the corresponding
terms in scattering processes are exactly cancelled by

"S. Weinberg, Phys. Rev. Letters 18, 188 (1967);J. Schwinger,
Phys. Letters 248, 473 (1967); Phys. Rev. Letters 18, 923 (1967)."Such an assumption is absolutely necessary for the treatment
of production processes which, at the present (inadequate) stage
of development in dispersion techniques, cannot reasonably be
expected to admit of a full dispersion treatment with as many as
five independent variables involved.
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and the Adler self-consistency condition'

A = I42(2B+C), —
yields

(1 2)

the "pole" terms arising from the interaction with the
axial-vector fieM related to the pion field by partially
conserved axial-vector current (PCAC)."In the present
case of a production process, the structure of the am-
biguous terms is more complicated, being roughly of
the secorId-order type

(ql/Pl ql) (q2/P2 q2)

where ql, q, are pion 4-momenta and pl, p, are nucleon
4-momenta, rather than the first order -type (q/q p)
characteristic of scattering processes via nucleon poles.
Thus the inclusion of the extra pole terms contributed
by the axial-vector field (related to the pion field by
the PCAC condition) in the present case of a production
process is expected merely to reduce the ambiguity by
one order, so that one would still be faced with the
presence of first-order terms like (q/q p), in addition, of
course, to unambiguous terms. One of the purposes of
the present investigation is to analyze such terms in the
limit when all the three pion momenta are made to
vanish. In particular, it will be shown that the number
of varieties of such terms is only 1,irldepelodently of how
the pions become soft.

A second object of this investigation is to make an
independent determination of the m-x scattering length
through the envisaged coupling-constant relations dis-
cussed in the previous paragraph. More specifically, we
shall obtain a direct estimate of the parameter A of
Ref. 1 in terms of the (known) coupling constants
involving N, N*, p, m and show that this estimate,
together with the steinberg relation'

and also give the values of the various coupling con-
stants that are involved. Section 4 describes the evalu-
ation of the different matrix elements when the soft-
pion limit is carried out and the derivation of the
coupling-constant relations. Section 5 summarizes the
main conclusions of this investigation.

2. REDUCTION OF THE mN —+ m~N AMPLITUDE

In the standard notation and normalization, the
mN —+ +AN amplitude M3 on the mass shell is dered
in terms of the (third-order) S-matrix element by'

(f &q,Vqol ~8 I 2; q &

=—i(22r) 8 (P)(22r) '8 "(223 /SE;Erqloqsoqoo)"

X(fi Pqo&Tq8(~8)&i &ql)(on shell) q (2 1)

P= pl+ ql—p2 q2
—q8=—0.— (2.2)

The corresponding amplitude 3f3 o6 the mass shell is
expressible by Lehmann-Symanzik-Zimmermann (LSZ)
techniques as

(f pq2 Vq3~~3I2; irql)( —1)(22r)4i14(P)

X{g(142+qp) '}(22r) (2i82/E4Z/)'i

d xld x2d x3 exp(2q2'x2+2qs'x8 8ql'xi)

X(fly(& (xi)ps(x2)4»(x8)) I8). (2.3)

Here pl and p2 are the initial (i) and final (f) 4-momenta
of the nucleon, ql and (qs, q8) are the 4-momenta of the
initial (one) and final (two) pions, respectively, and
48, P, y are the isospin labels for the pions. The metric
is such that A4 ——iAo and A B=A„B„=AiBl+A2B2
+A 8B3 A oB8. The normalization of the pion field
qP(x) is expressed by

up=0. 18p, ', a2= —0.06p, ', (1.3) (0~/ (x) ~2rilq)= (22r) 8i (2qo) 8n%42's, (2.4)

in almost exact agreement with the result of Ref. 1.
Ke shall also obtain certain other relations involving
the coupling constants of the so-called cr 6eld with x
and N and discuss their significance.

In Sec. 2 we brieQy outline the reduction procedure
for the xN —+ m.~N amplitude in the soft-pion limit and
give a simple recipe in a covariant form for the inclusion
of the pole contributions arising from the axial-vector
counterpart of the pion field. In Sec. 3 we discuss the
relevant pole diagrams for the xN —+xwN process

and the PCAC relation for the corresponding axial-
vector field is given by'

where
cl A =p,'F~ (x)—=C~ (x)

F =22rlg~/Ggi

(2.5)

(2.6)

and p, , m, G are the pion mass, nucleon mass, and
pion-nucleon coupling constant, respectively. Using
(2.5) for the field in (2.3) makes the right-hand side of
the latter equal to

2c. 'q,„d'x-,d'x d'x 2expo(iq x2+siqs xo —iql ») (iVr ) T(A „(»)ps(x2)4"(x3))( K)

—c ' d'xld xsd xo exp(2q2 x2+iqs xo iqi xi)(iV—r [T(B(xio—xso)LA 8 (xl) qP(x2)gqP(xo)

+8(xio xoo)LAo (xl)~qP(x2)gpS(x2))~iV4). (2.7)

"V. Alessandrini, M. Bdg, and L. Brown, Phys. Rev. 144, B1137 (1966).
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We must now consider the limit q~„—+ 0 for the above
expression before any other operations are performed,
so that after this stage the 4-momentum conservation
condition would reduce to

where

Q~(&)= dx Ae (x) (2.17)

pl= pi+ qi+ql ~ (2.S) and a is a constant which one can determine (in
principle) from the airer vertex function f defined bye

you(pi) —+ yi(1 aiq/2m) u(pi) (2.9)

when the pion momentum q is absorbed or emitted,
respectively. Now, since the reduction (2.7) is made with
respect to the absorbed momentum q~, we must have

In general, the "pole" term of (2.7) arising from the
A„~(xi) 6eld will contribute in the limit qt„~0.We
transfer this term to the left-hand side of (2.7).Now the
net contribution of the left-hand side can be evaluated,
as in Ref. 13, so as to cancel the e6ect of the ambiguous
terms. However, we use below the following equivalent
recipe for taking account of the effect of this term in a
simple way. Thus, if the replacement of the pion 6.eld

by its axial-vector counterpart is made at a vertex
where a free nucleon line, say, pi, meets, the net effect of
combining the "pole" term with the corresponding
matrix element for the pion interaction is to make the
replacement

f.(~' o u') = ~-c=—' (2.18)

in the limit when one of the pions becomes soft. This
reduces the second term of (2.7), in the limit qt„~0, to

c—'a 'i d'x&d'xi exp(iqa. xi+ iq&»)

Pole= —u 'c ' d'x&d'xq exp(iqi xi+iqi xi)

x[~'&P~ I 7'(~(»)~'(»)) I Pi)

+&"&P~I T(~(x )4'(xe)) IP )] (2»)
Further reduction of (2.19), which consists in once
again making the replacement (2.5) for the p& and gs
fields, leads to a "pole term" as well as a commutator
term which, respectively, simplify to

and
you(pi) +pi(—1 iqi/—2m) u(pi)

u(pp)yp -+ u(pi)(1+iqi/2m)y5

(2.10)

(2.11)

x[qi,~.s&p. l &(~(»)A,~(xi)) I pi)

+q~»"&Pil T(~(»)A~'(»)) I pi)] (2 2o)

when the absorption occurs at the vertex of the incoming
or the outgoing nucleon, respectively. Even if the
absorption occurs at a vertex where both nucleon lines
are internal, the modi6cation yi(1 —iqt/2m) or
(1+iqi/2m)yi of 7i still holds.

The above prescription follows from the relation

2Mgg=IJ„'Il G, (2.12)

where G is the coupling constant for the md/ vertex

Be=iGpyir iprli (x) (2.13)

and g~ is the coupling constant for the axial-vector
current

(2.14)A p (x) igA4'Tp'rit~P.

Similar relations can also be written for the coupling
constants of the pion field and those of the axial-vector
current associated with other combinations like (g,E*),
etc. However, since the masses of such particles which
would be involved in the intermediate states are dif-
ferent from the nucleon mass, such "pole" terms [and
hence the vertex modifications corresponding to (2.9)]
would not be of physical interest.

As for the second term in (2.7), one must use the
the equal-time current-commutation relations'5

Conun =c ' d4x exp[ix (qi+qi)]

x&pilp'(x) I pi)(8 ~P'+8 'bs'), (2.21)

where we have made use of Eq. (2.16). The last term
in (2.21) has simply the structure of a ir %vertex a-nd

can be calculated by 5-matrix methods by replacing the
6eld P'(x) with the quantity

(p,
'—H') 'j&(x)=p, 'j &(x)=ii 'iGgy, i&f (2.22).

Similarly, (2.20), which physically corresponds to the
mE —+ O.E process via the nucleon pole, ' can be evalu-
ated by making the substitution (2.14) for A„(x)and
the value iu, 'g~~,+ for o(x), where giv ~, is the os%
coupling constant.

3. VERTICES AND GRAPHS FOR
VARIOUS AMPLITUDES

The matrix elements for the process xE~mxE, can
be classi6ed according to the diagrams listed in Figs.
1—3. Figure 1 is the traditional pion-pole diagram for
pion production, one end of the pion line being tied to
an effective qh4 vertex, where the full amplitude off the
energy shell is operative, and the other end to the EEm

[Q (&) -4'( )]= &' ( )

[Q (t),~(x)]= iS.sag~(x),

(2.15)

(2.16)

"The pion-pole term @rill contribute a propagator like
P(q2+q3)'+ii'j ' which, however, remains finite in the hmit
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FIG. 1. Pion-pole diagram
for ~N ~ 7f.mN.
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In Fig. 3(d) we give the diagram for Ns ~No, where

the initial pion is replaced by its axial-vector current
(2.14) since this process is related to the evaluation of
(2.20).

The basic interaction Lagrangians necessary for the

vertex, where the renormalized coupling constant 6 is

present. Such an effective x-x vertex also incorporates
x-x scattering diagrams through 0-, p, etc. , poles in s, I,
or t channels. Figure 2 is a collection of diagrams with

various baryons as internal lines, the possible pairs
being NN, NNe (or N*N), and NeN*. Corresponding

to each such pair, there are six subdiagrams, shown as

(a,a'), (b,b'), and (c,c'), which, by an extension of the
usual terminology of s and I channels for two-body

processes, may be conveniently classified as (s,s),
(s,u) (or (N,s)], and (N, N) channels. Here each letter in

the channel classification indicates whether the corre-

sponding baryon pole is s type (direct line) or I type
(exchanged line). These diagrams in Fig. 2 involve the
couplings between the EEx, EE*x, and E*E*x6elds.
Finally, in Fig. 3, we list the m.E—+ mxX diagrams where

one of the internal lines is a p or 0-, while the other
internal line is an E or S*.These diagrams involve the

couplings

(Q, 7 (tL, g,', C )

evaluation of the above diagrams are the following:

ZNNp sGIP7 cayslPQ (s) )

+NNp &gNNpsg' Yp&ag'Pp (&) y

&NN. =—gNN. ~~(~),

(3.2)

(3.3)

(3 4)

x'm'p gp~xabcpy + ~y~a b& c

Z...=—g,y.(x)y.(x)~(x),

(3.5)

(3.6)

ZNPNp= GtPP—s gr)py (x)@pi~l+H c , . .(3.'/)

gNANp — sgN8Np1PPp .(S)ys@p +H C. p (3.8)

&NpN"= sGn+, "'Vs—4 (~)~.+p"'. (3 9)

Here for the X* particles we have used the Rarita-
Schwinger representation" for both the Dirac as well

as the isospin indices. Thus, if 0'„&& is the wave function
for this particle, then

+ @ (a) 0

r @„~&=0.

(3.10)

(3.11)

Fxo. 2. Pole diagrams for xN ~ m~N, where the internal line
represents either N or Np The s.ymbol (2 ~ 3) indicates the inter-
change of pions Z and 3 in the respective diagrams preceding this
symbol.

t

~g JL r +$
~r'

Pg~ f)l

'V~
I

pI moro+»

Js
P$

~ (p =-- S)

Pg, 0i& P~ J

~--y- 0)
(rp-%s) "

FIG. 3. (a)—(c) Pole diagrams for s.N ~ ss'N, where one of the internal lines is an N or N*, and the other a p meson or a p meson.
(d) Pole diagram for p.N ~ oN. The symbol (2 +~ 3) indicates the interchange of pions 2 and 3 in the respective diagrams preceding
this symbol.

'P W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
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For completeness, we also list the propagator for the
N* particle (of mass M) in the form

-'D~"'(p)= —i(2~) 4(p'+M') '

XP„„(8~ ',—r —rp), (3.12)

shift analysis of Bryan and Scott'~ suggests that

gst ~,'/4s. =9.0. (3.22)

Gzs/4~ =4.0.
The quark-model prediction for G» works out as

G»'. G'= 8:25

(3.17)

(3.18)

which is not too different from (3.17) when we use the
familiar value

G'/4n. = 15.5. (3.19)

As for the S*lV*x coupling constant G~, a simple
possibility is again to use SU(4) symmetry (via the
quark model), which yields

Gz) = (9/5) G. (3.20)

Similarly, the coupling constant gz*&, can be related
to gzz, (=g,) by SU(4) symmetry. Now in the non-
relativistic quark model, the basic coupling Qp„y„r,Q
is non-spin-Qip so that it cannot connect the spin-~
state of S*with the spin-»~state of E. Hence the non-
relativistic quark model predicts

gN+Np (3.21)

Finally, we are left with the a couplings of pions and
nucleons. These are the most uncertain quantities in
the present theory since, apart from the experimental
uncertainties concerning the a particle, even the formal
connection of the a 6eld used in these current-algebra
techniques to the a particle of experimental interest is
not at all clear. Assuming that the a field of current
algebra is the same as the experimental a particle, one
possibility is to estimate g,&~ from the a contribution
to the nucleon-nucleon potential. Thus the phase E-E

"J.J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).

p~ [ sv 37s7v+sM pspv

lM—'(7.7 pp.+p.v.PV.)](M 7—p) (3 13)

and that of the p meson as

—:l'".'(p) = —i(2~)-4(m, '+p')-'
X(&„,+P„P,nip ')8 s. (3.14)

In general, the different coupling constants involved
in Eqs. (3.2)—(3.9) are too numerous to be of physical
interest. However, we can use the universality of iso-
spin interaction to relate g, and g+~p according to'

g, '/47r =gxiv, '/4s-—=g, '/4' =2.1. (3.15)

Similarly, the E*2Vm. coupling G&m ' can be determined
from the width of E*—+ Ez according to the formula

&ar* z = sGz'(Eiv+m)p 'M 'm 's. '=120Mev, (3.16)

where Ez is the nucleon (N) energy and p the pion
momentum. This gives

4. EVALUATION OF MATRIX ELEMENTS

Using the results of the last two sections, we now write
the matrix elements corresponding to the two sides of
the equality expressed by (2.3)—(2.7) and (2.19)—(2.21),
in the soft-pion limit. To illustrate the manner in which
the limiting procedure is carried out, we describe in
some detail the contribution to the off-shell matrix
element Ms of Eq. (2.3), arising from the (N, N)
intermediate states of Fig. 2, keeping separate track of
the (s,s), (s,u), and (u, u) channels. Since, in the pro-
cedure described in Sec. 2, the 4-momentum q»„ first
tends to zero, the "pole" contribution to this matrix
element [i.e., the first term of (2.7)] is incorporated by
the modifies, tion (2.10) or (2.11)at the vertex where the
pion (quan) is absorbed. This gives for the matrix elements
from Fig. 2 the following expression:

Mzz ——Mzz "+Mzi '+Mzz ', (4.1)

where Mzz t'& (i= 1, 2, 3) are the respective contributions
of Figs. 2 (tz,a'), 2 (b,b'), and 2 (c,c'). Thus

Mzz&'&= 2iG'u(ps)r —8P&

—
ZQ3

2ps qs+qs' 2ps qs+qs'

iPz+iqt rid

X yg 1— q» u», 42
2pi ' qz+ qi 2rÃ

which simplifies, in the limit q~„—+ 0, to

Mzzt'&= iG'u(ps)r 6»—
,+,v (p).

2ps ' qs+qs 2ps ' qs+ qs

'7 R. Bryan and B.L. Scott, Phys. Rev. 135, B434 (1964).

As for the arrear coupling constant g„even less is known,
but a very crude estimate based on a —+~~ width
F =p, at a mass m =4@ gives

g '/4ir=-'r ~ '(re ' 4p')—'"=3'' (3.23)

Since it would be futile to take these estimates (3.22)
and (3.23) seriously, we shall not make any quantitative
use of them, but merely use them as guides for compari-
son with the corresponding estimates from the present
formalism.

Finally, the xz —&xw vertex which is operative in
Fig. 1 can be represented by an invariant off-shell
~s. amplitude which for small (s, t,u) is'

T(q,n, q2P -+ qsp, q4e)
= "e ~8&'[A+8(u+1)+Cs+ ]

+ S& S'[APJ3(sg&)PCu+ ]
+8 &As'[A+A(u+s)+C1+ ]. (3.24)
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TAssE I. Contributions of the various pole diagrams to the elements of the M matrix defined by Eq. (2.1), in the
limit when all tend to zero. The factor N(pa)apaaa(pa) is suppressed throughout.

Poles

(x,fq)

(fq, fq~)

(fq *,fqa)

(2V,~)
(&",u)

(N, fx)

71- pole

0
—(16/9)GG22(3M —2m)m 'M '

4 '13 2m M+m
-Gg)G1~9,9 3'. M'

—4Ggaa/m, a

0
—2GgrgoNxm my

—GAp '

8 Pr~+8 ~op

—2G'D(qaqa)
—(16/9)GGaam(M+m)M 'D(qaqa)

4 13 2 m' 3II+m
-GLG1'
9 .9 3M M'

2GG, '/maa

0
2g,g, v—2vGmm, 'D(qaqa)

—GAp '

It may be seen that while the ambiguity in q& has now
disappeared from this expression, the ones in q~ and q3
are still present. Similar expressions can be written for
the other two members of (4.1), and when all the three
are added, one obtains ComlTl=c ~p, ~G, (4.12)

at the end of Sec. 3p are, respectively, '

Pole= —g 'c 'Gg.~~. 'mD(qs, qs) (4.11)
and

where

,A, , (4 4) where, in both the terms, we have suppressed the com-
mon factor

iu(ps)ysJ»n(pr). (4.13)
iqs+iqs sqs+'Lqs

A= +
2ps'qs+qs 2ps'qa+qs

(4.5)

and use has been made of the (reduced) conservation
condition

(4.6)pr= ps+qs+qs

to make substitutions like

—2p& qs+qs' ——2p& qs+qs', etc. , (4.7)

in certain energy denominators. Use of the Dirac
equation simplifies A to

A = 2mD(qs, qs),

where the single function

D(qs qs)=(2P2 qs+qs') '+(2Ps qs+qs') ' (49)

I~e7= 8»r, J~»—=5"er +—5~&re, (4.10)

and the rows are designated by the appropriate pairs
of intermediate states or poles. One notices from this
table that there is only a single type of ambiguous term,
represented by the function D(qs, qa) of Eq. (4.9),
irrespective of how qs and/or qa tend to zero.

Finally, the contributions of the terms (2.20) and
(2.21), the procedure for whose evaluation is described

represents the structure of the ambiguity in terms of
g2 and g3.

In a similar way, we can obtain the contributions from
the (X,E*) and (E*,1V*) intermediate states of Fig.
2 as well as the various pole diagrams of Figs. 1 and 2.
Ke list all these contributions to the matrix 3f3
[dered by (2.1) in terms of the S-matrix elements] in
a two-dimensional table (Table I), where the two
columns are classified according to their proportionality
to the following two possible isospin operators:

Substitution of all these results in the basic equations
(2.3)—(2.7) between certain quantities all of which are
proportional to the (vanishing) factor iN(ps)yam(pr). The
isospins are involved only in the two independent sym-
metrical combinations (4.10), so that, equating their
coefficients separately, we have two independent rela-
tions between various coupling constants and the xm

scattering parameter A. The coefficients of I », which
do not involve any ambiguous terms, satisfy the
relation

2g,g,~Nla' 4 Gr'~ p)2m+M 13 2 m)+-
i

—
i

— ———i, (4.14)
4 m~. 5 4~i cVi m 9 3mi

where we have used the relations (3.20) and (3.21). The
coeKcients of the other isospin operator J» are,
however, vitiated by the presence of the ambiguous
terms [proportional to D(qs, qa)). Physically, it is a
manifestation of the fact that while, for the limit q~

—+ 0,
there are counter terms available for cancellation of
"q~ ambiguities" in the matrix elements, the reduction

' A word of explanation is necessary on the appearance of the
factor D in (4.11).The actual evaluation of this matrix element
gives the essential expression

aaa(pa) D(qaqa) (aqapah ~rp+i qapeb &rp) 22(p2),

which, in general, is a sum of two independent isospin combinations
~7 y&5 ~T8 that, respectively, multiply the momentum factors

iq&&iq&. While the term with the symmetrical combination
reduces to (4.11) via the Dirac equation, the antisymmetrical
combination (corresponding to an I=1 arar state) involves the
momentum combination iq& —iq&. This last term, which would
lead to a further ambiguous structure, can be made zero only with
the further assumption of ~qa

—qa~&&~qa+qa~, which implies that
7f-& and ~& become soft in a symmetrical fashion.
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technique employed in the steps from (2.3) to (2.7) has
no place for corresponding counter terms to cancel the
"q2 and g3 ambiguities. "Therefore the only reasonable
assumption, for the coef6cients of J», would be to
equate them to zero separately for the ambiguous and
unambiguous terms. This then gives tmo additional
relations

4Gg' p, 'm M 13 2m

and

g.xNp, ' 2G' 16 M+m 2g.g,~N+—Gr' + (4 16)
aPm, ' m 9 SI' m'

g rfg rJNNIJ

4xmm '

8 Qg2 p2 3~—2m =—0.28, (4.18)
9 4x M' m

which shows that the coupling constants g,NN and g,
are in opposite phase. If, further, we take the estimate of

Equation (4.16) may be regarded as the defining relation
for the pion parameter a, as provided by the present
model. Equation (4.15) is more interesting because it
gave a direct estimate of the 3 parameter of Ref. 1 in
terms of entirely keozm coupling constants. Indeed, a
substitution of the values listed in Sec. 3 yields

A/47r =1.451.p =0.16. (4.17)

As already mentioned at the end of Sec. 1, this value of
A, together with the Weinberg relation 8—C=sxLIJ, ',
as well as the Adler self-consistency condition
2 = —p'(28+C), yields an indepeedeet estimate of the
pion scattering lengths, viz. , co= 0.1', ', a2= —0.06' ',
in almost exact agreement with Weinberg's alternative
derivation through the use of A= y, '(8+C) in—stead
of (4.17). This result indicates an internal consistency
in these small values of ao and a2 with the values of the
strong coupling constants g„G,etc. , known from en-
tirely different sources. This result also strengthens our
belief that perhaps the strong interactions are in practice
"not strong" after all.

Another interesting result that is obtained by sub-
tracting (4.15) from (4.14) is

g,~~ from (3.22), we obtain for g, the value

g.'/4' =6.8p', for m. =4tt (4.19)

which is, however, about double its estimate from
Eq. (3.23).
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"&.Chang )Phys. Rev. 162, 1497 (1967)j has applied current
algebra to the physical process 7fE —+7t-xX to obtain the low-
energy cross sections for the process by much the same kind of
pole technique that has been used here. Unfortunately, we were
not aware of the details of Chang's work until it appeared in the
Physicclj Review.

S. SUMMARY AND CONCLUSIONS

%e have tried to present here a somewhat new form
of application of current algebra towards the determi-
nation of coupling-constant sum rules, taking as an
example the process xS —+ zest. The emphasis in this
approach is not on extrapolation to the physical region'
but on certain consistency relations among the various
matrix elements in the soft-pion limit itself. These ele-
ments vanish in the soft-pion limit, yet with the help of
a suitable limiting process it is possible to extract useful
relations among the coupling constants. The essential
ingredients of the model are a fairly comprehensive set
of pole diagrams involving the coupling constants of the
familiar hadronic interactions. This kind of approach
provides an independent estimate of the pion scattering
length in very good agreement with the original deter-
minations. ' ' It is also capable of providing information
on the phases of certain coupling constants. For ex-
ample, the constants g and g NN are predicted to be
of opposite signs, though their magnitudes are not in
good agreement with other determinations. This may
well be due to the elusive (and pathological) nature of
the 0- particle, which makes it extremely hard to know
any of its properties with any con6dence. Our calcula-
tions do tell us, however, that the presence of some such
particle is essential for a consistency between the two
determinations (4.14) and (4.15) of the parameter
A/4'.

An approach like the present one, based on using an
extensive set of pole diagrams for the matrix elements
and taking the soft-pion limit, should, in principle, be
applicable to other similar processes to obtain further
relations between various coupling constants.


