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We investigate the possibility of formulating the dynamical theories in terms of nonlocal "currents. "
As an example, we formulate the nonrelativistic system of rt identical particles (with and without spin).
From these models we learn that the extension to relativistic systems is possible. This is illustrated by
treating the Thirring model in terms of nonlocal currents.

1. INTRODUCTION

V ERY recently, there have been a number of
articles' ' in which dynamical theories have been

formulated in terms of local currents, charge densities,
and spin-density operators.

In Ref. 1, Dashen and Sharp show how a nonrelati-
vistic system of many identical particles, for example,
without spin, can be described in terms of a charge-
density operator

p(x, t) =P(x,t)lt (x,t)

and current operator

J(x,t) = (1/2i) Q*(x,t) Vf(x, t) —V'P (x,t)f(x, t)j. (2)

In case the system of particles possesses spin, we must
add to (1) and (2) a spin-density operator

X(x,t) =-,'P(x, t)trit(x, t).
They have shown that the operators (1) and (2) form

a closed equal-time algebra under commutation, and
that p(x, t) and J(x,t) are a satisfactory set of coordinates
for a nonrelativistic system of spinless particles, in the
sense that every operator 0 which commutes with
p(x, t) and J(x,t) is a function of the total charge

Q= J'p(x, t)dssc.

This means that p(x, t) and J(x,t) form an irreducible set
of operators, at a given time, when acting on a space Of
states all having the same total charge, since in this
case the charge operator Q is a multiple of identity when
acting on this space of states. 4

If the system consists of e identical spin--,' particles,
the theory must then be formulated in terms of oper-
ators p(x, t), J(x,t), and X(x,t), where again one can
show that these operators form an irreducible set of
operators at a given time when acting on a space of
states all having the same total charge. '

Since p(x, t) and J(x,t) for a system of rt identical
spinless particles form an irreducible set of operators,
every operator is a function of p(x, t) and J(x,t). For

example, the total linear momentum P and the total
angular momentum L are trivially given as

P= J(x,t)dsx,

L= x&&J(x,t)de.

As far as the total Hamiltonian is concerned, the
expression for it in Ref. 1 is given as

H=tr LVp(x, t)—2iJ(x, t)g P p(x, t)+2iJ(x, t)]d x
p(x, t)

+ p(x, t) I'(I x—y l)p(y, t)d'~d'r (~)

I
H= —', d'xJ;(x, t) J,(x,t)+H',

p(x, t)
(6)

where H' commutes with p(x, t) and is therefore a func-
tion only of p(x, t). l If the particle possesses spin, it is a
function also of X(x,t).j

Although p and J form a complete set, it is not ob-
vious that the domain of a well-defined operator made
up of P's is the same as that when it is made up of p and
J.

where the particles interact through a central potential,
and the system of units A=m=1 is assumed.

As far as the interaction part of the Hamiltonian is
concerned, one does not have any particular problem;
it is a perfectly sound operator expressed in terms of p
operators. However, the free part of the Hamiltonian is
a singular expression in p, which certainly is one of the
unpleasant features of the theory. Moreover, assuming
that expressions such as Lp '(x,t),p(y, t)j are equal to
zero, one derives with the help of charge conservation
(p+ H=O), 'that the Hamiltonian H must have the
form

More recently, Callan, Dashen, and Sharp, ' solving
the two-dimensional relativistic Thirring model, ' have
included the energy-momentum tensor 0„„in the set of
coordinates j„(x).In this way one avoids singular ex-

' R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 185t (1968).' D. H. Sharp, Phys. Rev. 165, 1867 (1968).' C. G. Callan, R. F. Dashen, and D. H. Sharp, Phys. Rev.
j.65, 1883 {1968).

The probelm of irreducibility of the equal-time current algebra,
besides being treated in Ref. 1, has been also treated quite ex-
tensively by Sharp in Ref. 2 for the case of a model of self-
gcting charged scalar mesons.

inter- 'W. E. Thirring, Ann. Phys. (N. Y.) 8, 91 (1958); Nuovo
Cimento 9, 1007 (1958).
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pressions like Eqs. (5) and (6). The price that one pays
in this way is a larger number of coordinates. The elec-
tric current j„and the energy-momentum tensor 0„„
form a closed equal-time algebra under commutation.
As a, matter of fact, the components of 0„„and j„
form a closed equal-time algebra under commutation
separately, and the authors of Ref. 3 were able to write
down 0„„as an explicit function of the current j„ in
such a way tha, t the commutation rules for e„„and j„
remain the same. Although that form of 0„, does not
show singular features as does H in the form in Eqs. (5)
or (6), it is difficult to know in advance how to construct
it, i.e., this form does not show a resemblance to 0„,
when expressed in terms of the fermion field P.

In this paper, we introduce nonlocal density operators
and, later on, nonlocal currents, which for simplicity
we shall call by the common name nonlocal "currents, "
as a set of dynamical coordinates.

In Sec. 2, we shall study a nonrelativistic system of
many identical particles, 6rst without spin and then
with spin, First, we define a set of nonlocal "currents"
as dynamical variables which form a,n irreducible set of
operators, at a given time, when acting on a space of
states all having the same total charge (or number of
particles). The total Hamiltonian will not be a singular
expression in terms of these "currents. "

The ca,se of the system of n identical spin-~ particles
will be especially important, since the relativistic two-
dimensional field theory with spin ~, which we shall treat
in Sec. 3, will have a very strong resemblance to the
nonrelativistic system for the e identical spin-~ particles.
In the Appendix, we shall present some mathematical
techniques needed for solving the Thirring model.

2. NONRELATIVISTIC THEORY

A. System of n Identical Spinless Particles

We want to show that one can give a satisfactory
description for the system of e identical spinless par-
ticles (either bosons or fermions) in terms of the non-
local "currents" p(x,x', t), ' for which we postulate the
following equal-time algebra:

that any operator commuting with p(x,x', t) is a multiple
of the identity. To show this, we employ a technique
similar to that in Ref. 1.Any operator 0 is supposed to
be a function of p. If 0 is to commute with p(x, x', t)
for all x and x', it must be invariant under the following
similarity transformation:

U(X, t) = exp i X(x,x')p(x,x', t)d'xd'x' (8)

X(x,x') =(xlxlx'). (10)

With this notation, we see that under the transforma-
tion U(X, t), the nonlocal "current" p(y, y', t) satisfies

U(X,t)p(y, y', 3) U i(X,t) = d3xd3x'p(x, x', t)

&&(xl~'"ly)(y'l~ "lx') (11)

We see that whatever we do with p (or whatever
combination we take of the p's), because of the arbitrar-
iness of X(x,x ), the invariance will never be achieved
unless in (11) we take y'= y and the integration J'd'y
is performed, since J'd'yly)(yl =1. In detail,

U(z, t) d'y p(y, y, t) U—'(X,t) = d'xd'x'p(x, x',()(x l
x')

d'x p(x, x,t) . (12)

In other words, the operator 0 depends only on the
quantity

where X(x,x') is an arbitrary function of x and x'.
In what follows, it is very useful to introduce an

in6nite-dimensional Hilbert space whose vectors we
write in the form of kets lx). The basis vectors are
normalized with the 8 function:

(x'l x)= b(x—x').

The arbitrary function X(x,x') that appears in (8)
is itself the matrix element of the abstract operator X:

Lp(x, x', t),p(y, y', t)]=8(x'—y)p(x, y', t)
—~(»- y') p(y, x', &) (7)

Q= d'x p(x, x,t), (13)

From Eq. (7) we see that we can impose the condition
p*(x,x', t) =p(x', x,t).

We shall demonstrate that p(x,x', t) is an adequate
dynamical variable by showing tha, t any operator that
commutes with p(x,x', t) for all x and x' at a given time
is a multiple of an operator, which we shall define as
total charge Q. Since the total charge is a, conserved
quantity, the statement is then equivalent to saying

'Prom (14) we shall see that the most appropriate name for
this quantity is probably density-matrix operator; see S. S. Schwe-
ber, Arl, IntroductiorI, to Rela&'fistic Quantum Field Theory (Row,
Peterson, and Co., Evanston, Ill. , 1961).

which we shall de6ne as the total charge of the system.
For that reason the elements of the equal-time algebra
LEq. (7)] a,re irreducible at a given time when acting
on states all having the same total charge Q. This means
that every operator of physical interest is a function
of p(x,x', t).

The charge-density operator can be de6ned, from
(13), as

p(x, t) =p(x,x,t) .
In de6ning the free part of the Hamiltonian Ho, we
must be careful, since we want Q=O. We can see that
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Ho, defined through the limiting process~

will commute with Q, and therefore Q is the constant
of motion.

To define the current operator J(x,t), we use current
conservation:

B
p(y, y, t) = J—'(y, t)

By;
(16)

Then, with the help of the Heisenberg equation of motion
and (7), we have

J'(y, t) =z[Hp, p(y, y, t)]
By;

B B
',i f-(x,y)d'x — p(x, y, t)

Bxi By;
lim

f(x,s) -~(x-x)

Hp —— lim -', f(x,x')d'xd'x' P
f(x,x') -+ 5(x —I') BSi BSi

&&p(x,x', t), (15)

The expressions for p(x, t) [Eq. (14)],J,(x,t) [Eq. (18)],
and Hp [Eq. (15)]can be linked to the expressions (1),
(2), and

H p
———,

' VP(x, t) Vlit (x,t)d'x.

This, together with (19), conlrms that the theory
presented above in terms of p(x,x', t) describes the non-
relativistic system of e identical spinless particles. How-
ever, we want to point out that at no place did we need
the canonical commutation or anticommutation rela-
tions for the Geld operators.

This link between the operators, when expressed in
terms of f and p, respectively, can be of great help when
dealing with concrete problems, i.e., when we want to
postulate the theory for a given problem a priori. For
example, from (5) we see that the interaction of par-
ticles through a central potential, taking into account
(14), will be described with H;„z, when expressed in
terms of the p's, as follows:

d xd 7 p(» x t)I (lx—yl)p(y y t). (21)

I 3 Ilim sz f(y,x )d x . p(y, x,t). (17)
x(~,")- ~(s -x') Bx By; Note, however, that if Ho is not taken in the form

(15), H;„, must then be determined by some other

Consequently, from Eq. (17), J,(y, t) can be defined as considerations.

1 ci 8
J,(y, t) = lim — p(y, x,t) — p(x, y, t) l. (18)*-r 2i av ax )

Finally, let us see what differential equation is satis-
fied by the elements of the algebra of Eq. (7) in the
absence of interaction. From the Heisenberg equation
of motion and Eq. (7) we have

B
i—p(x, x', t) = [p(x,x', t),Hp] = —-', Vs(x') p(x, x', t)

Bt
+-',V'(x)p(x,x', t) . (19)

Equation (19) is invariant under three-dimensional ro-
tation, provided that p transforms as a scalar.

The form (15) for Hp does not show the unpleasant
features of (5), i.e., being singular in p. The commutator
of Hp with p(y, y', t) (element of the algebra) is well
defined in the limit f + 8. One could try to construct
different expressions for H p and J, but keeping in mind,
of course, that Q=0 and the conservation law (16).

The equal-time algebra of p(x,x', t) in Eq. (7) can be
realized, however, with the field operators P(x,t) and
P*(x,t), which satisfy the usual canonical commutation
or anticommutation relations, if one defines p as follows:

p(x,x', t) =P*(x,t)P(x', t) . (2o)

0P&v= ~Pvfto'a p (23)

where ao= 1, and g~, 0.~, and o.3 are Pauli spin matrices.
From (23) it is easy to calculate the F„„„,and we list
them explicitly:

~ijIt Z6ijht )

where i, j, and k run from 1 to 3 cyclically;

~ii0 ~oii ~i0i

~000
(24b)

where i = 1., 2, or 3. The remaining Ii's are zero.
If the coordinates p„(x,x', t) are to describe a system

of spin-~ particles, we must be able to construct a spin
operator. It is easy to see that with the definition

B. System of n Identical Spin=~~ Particles

The system can consist of either fermions or bosons.
We claim that the system can be described in terms of
the nonlocal "currents" p„(x,x', t) as dynamical vari-
ables, for which we postulate the following equal-time
algebra:

[p.(x,x', t),p.(y, y', t)]=F,-b(x' —y)p. (x,y', t)

F„„„fi(x—y') p„(y—,x', t) . (22)

The constants F„„„aredefined by the relation

' Note that in order to maintain the Hermiticity of IIp LE@. (15)g
through the limiting process the function f(x,x') must satisfy
f*(x,x') = f(x',x), since p*(x,x,t) =p(x', x,t).

5;= -', p, (x,x,t)d'x, (25)
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U(X, t) = exp $ X~(x)x )pp(x~x ~t)d sd s

(summation over t( implied), where l(„(x,x') is an ar-
bitrary function of x and x' for every p, . Since 0 is
supposed to be expressed through the p's, we examine
how p„(y,y', t) behaves under the transformation U(X,t).
For simplicity, we consider infinitesimal X's:

U(X, t)p„(y,y', t) U '(l(, t) =p,.(y, y', t)+i d'xd'x'p„(x, x', t)

X I ()(y' —x')F„„„X„(x,y) —8(x—y)F„„„l(„(y',x')5. (28)

As in the spinless case, we see that whatever combi-
nation of p's we take, because of the arbitrariness of
X„(x,x') the invariance will never be achieved unless in
(28) we take y'=y and the integration J'd'y is per-
formed, and, furthermore, only if the constants F„„,are
symmetric in p and v. It is easy to see that then v can
only be zero.

It follows, then, that the operator 0 is a multiple of
the operator

Q= d'y p (y, y, t), (29)

which we define to be the total charge of the system.
Therefore p„(x,x') for @=0, I, 2, 3 form an irreducible
set of operators at a given time, when acting on a space
of states all having the same total charge. From (25)
and (29) we see that we can define spin density

Z;(x, t) =-,'p;(x, x,t)

and charge density

p(x, t) = pp(x, x,t),

and that, because of (22), (24a), and (24b), we have

LQ,s'5= o
as it should be.

%e could write down the rest of the operators of
physical interest in terms of p„s. This is hardly neces-
sary, since how this can be done is illustrated above and

the 5 s satisfy the following algebra:

[S;,S,5=i p,,).Sp,

which is a familiar SU(2) algebra formed by spin
operators.

However, we want to show, in general, that the p„'s
are an adequate set of coordinates. For that reason, as
before in the spinless case, we show that any operator 0
that commutes with the p„'s is a multiple of a certain
operator, which we shall call the total charge Q.

If 0 is to commute with p„(x,x', t) for all t)'s and all
x and x', it must be invariant under the similarity
transformation

Qp —— p p(x,x,t)dx. (3l)

Of course, Qp is a constant of the motion. We define the
free part of the Hamiltonian for the Thirring model
(with mass equal to zero) as follows:

1
Hp= lim — dxdx'f(x, x')

f(x,x') ~8(x —x') 2j

It is not dificult to see that $Qp, Hp5=0. However,
we know that the Thirring model has another constant
of the motion, which corresponds —in the field-theoretic
formulation —to the conservation of the axial-vector

in the spinless case. Instead, we shall now turn to the
Thirring model and try to solve it in terms of nonlocal
"currents. "

Finally, let us note that the equal-time algebra (22)
can be realized with the two-component field operators
P,(x,t) and f;*(x,t) satisfying the usual anticommutation
or commutation relations. The variable p„(x,x', t) is
given as

p„(x,x', t) =f*(x,t)a„f(x',t).

3. THIRRING MODEL

A. Solution in Texms of Nonlocal "Currents"

As in well known, the Thirring model' is a relativistic
model of self-interacting fermions in two-dimensional
space-time. It is certainly a good idea to try to solve it
in terms of nonlocal variables, since, because of self-
interaction, we need only one type of them, those for a
Fermi system. In our formulation of the model it will
not be immediately apparent that we are dealing with
the Thirring model. However, in Sec. 38, we shall show
the connection with the usual formulation in terms of
fields.

First, let us define the nonlocal "currents" as dy-
namical variables. The variables denoted as p„(x,x', t)
satisfy the following equal-time algebra:

PP.(*,",t) p (y,x', t)5=~...~(*-~)P.(~a,t)

~".~(~ X')p.b,z', t)—, (3o)

where P„„„aredefined by the relation (23) and are ex-
plicitly given by (24a) and (24b). The set of nonlocal
coordinates in (30) is the same as the set for a non-
relativistic system of I identical spin-p particles )Eq.
(22)5, except that it depends nonlocally on one-dimen-
sional space. It is quite clear that the set of coordinates
p„, which are the elements of the equal-time algebra
(30), are irreducible when acting on sta tes all having the
same total charge. Obviously the total charge is defined
as
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Qg= Pg(x,x,t)dx. (33)

cu . ' d'% lt to see, however, that [Qa,Hcurrent. It is not i cu o
=0, where

show that C& 2 are 0 by employing the
similarity transformations U(X&, t an
example,

U(~i t) [pi(x x,t),pi(y, y, t) jU '(~i, t)

f nd two constants of the motion,Therefore, we have ioun wo

0 and Qa. It is convenient to define = 8(x—y) dxylx2 xy 8 x)(y I
e '"

I
x.')p, (x„x,', t)

(34)

are a ain cons ant nts of the motion. For-Q dQ
that reason, we shall define a new se o

dxi'dxp(x2(e'"'~y)(x[e-*" ~xi')

p, ,(x,x', t) =-', [P,(x,x', t) WP, (x,x', t)j.$)g ) (35)
Xpi(*2,xi', t) =0, (38')

not diflicult to show that pi, 2 form the fo owing a
under commutation:

[p,(x,x', t),p, (y,y', t)]=S(x'—y)pi(x, y', t

b(x y—')pi(y—,x', t),
[pi(x,x', t),p2(y, y t))=0
L (, ',t),p (y,y', t)j=~(*'—y) p (x,y', t

8(x y')—p2(y, x—'„t),
(36)

nclude that Ci must e zero. im' '

Dfi thwe conclude that C2 must be zero. e ning
f th Hamiltonian as follows:action part o e

Hi„,= 2g dx pi(x, x,t)p2(x, x,t),

with

p, ,*(x,x', t) =pi, 2(x',x,t) .

d the quantities Qi and Q2 are givenIn terms of pp an p2

as follows: 1
lim — dxdx'y(x, x') [pi(x,x ) )

Bxf(xx') ~ ~(x —x') 2i
H=

(34')Q, ,=fdx pi, p(x, x,t).

and taking into account (35) and (32 the total Hamil-
tonian then can be written as

s to show now that the set of nonlocal "currents"

d ' at a given time is a
and ~~2. This can be s own, as in.

stem of n identicalr of a nonrelativistic sys em o
d' h h o o 0spinless particles, by deman ~ng a

d the similarity transformationsbe invariant un er e s

8
/ /—p, (x,x', t)$+—[pm(x, x', t) —pi(x, x,t)j

12g dx pi(x, x,t)p2(x, x,t . 39)

e can write down theHaving the total Hamilton&an, we
equations of mot].on:

UP.i,t)=exp j Zi(x, x)pi(x, x, ,x x' t,dxdx', (37a) 8 8 8
i —+—+ pi(x, x—',t)

8$ 8$8$
U(x„t)=exp i Z, (x,x)p, (x,x,t,= e ', ' x' t&dxdx', (37b)

[p, 2(x,x,t),pi 2(y,y, t)g=iCi. m(x, y, t). (38)

f dX are two arbitrary functions of x and x .where X~ and X2 are w
'

bl has decreasedon that the number of varia es asThe reason a

g is that the number offour 's to two (pi and p2q is a

It is clear that this phenomenon is not restrK e
ensional theories.

In our further discussion, wesha mee e

=2g[p2(x, x,t) —p2(x', x', t) jpi(x,x,t),
8 8 8

i ——— pm(x, x', t—)
8$ 8$

= 2g[pi(x, x,t) —pi(x~, x', t)$p, (x,x', t .

that the dynamical coordi-
and 2, that depend locally on space varia es,

or x'=x. To show this, we introduce a new set o
variables:t, (x+x')/2, and x—x
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of motion (40) become

$0LN

The general solution of (45) is (see Appen '

(8 8
p, (x,x,t)

i at 8(x+x')I2

=2g[p2(x, x)t) P2(—x )x &t)jpl(*) r ) t

( )

py(u v' u 'v ) exp

Xexp —zg

p,o(u, )dug

u'

p, '(u )dui PP(v ) (46a)

lp (.,*',t)
&at 8(x+x')I2&

=2g[p, (x,x,t)—pi(x', x',t)jp~(»x")

Setting x'= x in (41), we have

p (u, v; u, v ) = exp ig

Xexp —ig

pp(vg) dvy

p 0(vi)dvi p2 (u u ) (46b)

fa 8)—il —+—l»(x x ')
&at axi

8 8)
i ———lp, (x,x,t) =0.

at axi

The interaction-free dynamical coordinates ooviously
satisfy

f'8 8 8
i

l

——+—+ pg'(x, x,t) =
&at ax ax'

(43)

) d .ru Q' the interaction-freesolutionswhere pi' &,» n p2 N~+

p~20 as t~ —.
the fact that C& and C2 are zero [see (~3)»

the discussion in the Appendix) one can eas'y
that the solutions (46a) and (46b) satisfy the e

bra (36) Provided that the interaction-free solutions

/
pq (v v') =PP(t —x, t—x') =PP(x,x,t)7

—i —— lp20(x, x', t) = 0
(8 8 8)
&at ax ax'i

aiid

P2o(u, u') =p2o(x+ t, x'+ t) =pmo(x, x', t)

Therefore, we can set

pg(x, x,t) =PP(x,x,t),
p2(x, x,t) =p2e(x, x,t)

Moreover, from (42) and (43) it follows that

(43')

satisfy it.
From the solutions (46) we conclude that the p ysica

in the limitresult of interest is very simple. Ta ing e
t~~ (u,u', v, v'~0o) in (46), we have

0 /'"'(v v')=hm pg(u v u p) =pg'(v, v
t -moo

py (x,x,t) =PP(t x), —
P2o(x, x,t) =p2o(x+t).

(44) /'"'(u u') =hrn pg(u, v; u', v') =p2'(u, u
t -+oo

(47)

Equation (40) can now be rewritten, taking into ac-
count the second relation in (36) and (43), as follows:

From (47) it follows that the S matrix is simply unity,
because of the completeness of the operators p~ an

. Th f process is possible in the Thirring
all themodel, as is already well known. Now, since a e

ive the sametheories are equivalent as long as t ey give
S matrix, we can conclude from (47) that the solution
of the Thirring model in terms of fields can be written
in its simp es orml t f rm as p=qP (po being an interaction-
free solution at t —+ —~ ).

Finally, let us note that by similar methods one could
obtain the solutions for p~ and p~ for the case of the
interaction o a zero-t' f ero-mass Dirac field with an external
field, 8 which, however, does not have an S matrix equal
to 1.

(8 8)
il —+ —

lpga(u, v; u', v')
&au au'i

0 /= g[p2'(u) p&(u8'i u p ) p&(upi u')v') p2 (u )j~

(8 8)
i

l

—+ lp2(u, v; u', v')—
&av av'i

=g[p~'(v) P2(u v; u', ")—p2(u v; u', v') p~'(")3

/ /where of the four variables u=x+t, v= t x, u =x', t, —
and u'=t —x', only three are independent, since

u+v=u +'v ./ / ' J. Solo, Nuovo Cimento 18, 914 (1960).
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49 we can writearith the help of

52) can be rewritten as8) Therefore Eq.

Connecection ~~tec ' ' h Thirring Model FoFormulated in
Terms of Fie' ld Oyerators

motion for the field operator it isThe equation of motion or e

(4i7"—rt A (»t) =6'VA'V V

(54)

where

pp 4 2 ]1 22 —$(v",v"}=—2g"", 4=Vv'
|II=-
2i

8 8
pi*—it i—f2*—6

8$ Bxand

g
12 21 0

to take theThirring, i,' 't is convenien t
h D"" 'tsentation o t efollowing representa

'

5— 2 1=101~ 'Y =&2 'Y ='Y
Y

e au
' ' . e field operatorshe Pauli matrices. T e pe

t' fy the following equa -timesatisfy the

t'

relation:
5x—x

8 r8«" «-l ——4')6. ax &ax

+2g dx pi*pgp2*i/2. (55)

ms of 's can bem 55 for ex
'

msom H xpressed in terms o

q "i"'1' h H il-(48) with the help of (54) or direc y,
tonian (55):

{4-*(x,t)At(x, t)} ~- (
(50)

g (x', t)))tt)(x, t)}=0,
resent the spinor indices.

h h o t
'

h is true regardless of
. Con-1 d'ff t fo1 to or i ere

h t the equal-time a g

total charge Qo
—— x

adil seen t a
e

enotedPfj

nt thea — „are '
icesz taking into accoun

ld thThe Hamiltonian that yie s
(48) is

—~Pi(x, t)+2igp2'(x, x,t)Pi(x, t) =0,
~ ax at)

(56)——
~

2(x,t)+ igpi'(x, *,t)$2(x, t) =0,
&ax at)

d

see (43') an, w ra vad (44) which are natura y va
'

'on-free solutions.

A
'

f h fhe A endix. gain,nique Pre ~ ~ PP
h A ~ d dre e ual to zero see e

ain the following solutionsparticularly (AS)g, we obtain t e o

0 Iv V 'g—dxi.i—"-(5247' 4
&

—v- —
2z

(52) can be linked to 32 with thee free part of B in c

h f' io i ero for the
h 1-

ass of the ermio
t

=0 E i 1 1, h
r thisreason, t eax

is also conserved: 8„$7)'yi, =0. quiv
another constant of motion

I "(~ )«i)e "(~)

(58)

p, (w, a) =exp( —
~g p '(i)i)di)i ~y2'(I) .pi i

Q3= Po g)Idx,

OR pARTI CL{ OORDINATENONLOCAL UH RFNTS As

he al eb» (36) is

=-'(Qo&Q ), e h vD«»ng Qi,~= & 0 3,

Qi 2=

new complete set of co-of (49). Therefore a new comp
b 1'ordinates p1 and p2 can e r

(53)
p2(x, x', t) =Pg*(x,t)&2(x', t).

are those of Glaser' (with g ~ —g).
(58) h h S ri

9 H th
h o1 io ( )follows unambiguously from t e so u

and p2.

4. DISCUSSION

oar bothn in the last three sections oar
h

'
b ittand relativistic t eories

ll oIo 1 hin terms of nonlocal "currents, ac ua

imento 9, 940 (j958).9 V. Glaser, Nuovo Cimen o
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and. spin densities. Although we have formulated and
solved a two-dimensional relativistic Thirring model, it
is quite clear that one can introduce the nonlocal
"currents" as dynamical variables also for the four-
dimensional relativistic Fermi system. In this case,
under the assumption that the charge is conserved, we
would have j.6 variables altogether. There is one quite
important thing (which turns out to be generally true)
that we have learned from the Thirring model: The
number of nonlocal dynamical variables necessary to
describe the system decreases if the number of constants
of the motion increases.

We have left open the problem of how to construct
the representations of the "current" algebras (7), (22),
or (36).We do not feel that this should pose a particular
problem (Sharp showed how this problem can be treated
for cases of local currents in Ref. 2). Also, it should be
possible to extend the present formulation to one which
would include the interaction of charged particles with a
quantized electromagnetic field, without particular dif-
ficulty. How this can be done for a system of charged
mesons interacting with photons, which is described in
terms of local currents, was shown by Sharp in Ref. 2.
The treatment of these problems is beyond the scope of
this paper.

Although the local currents have counterparts in
classical observables, which the nonlocal ones do not
have, the formulation of the theory in terms of the non-
local currents shows a certain advantage over the for-
mulation in terms of local currents. If one tries to con-
struct, for example, Ze (the free part of the Hamiltonian)
in terms of local currents, looking at Ho expressed in
terms of field operators, one runs into singular expres-
sions like (6). As we saw, He expressed in terms of non-
local currents does not give this de.culty. It is true,
however, that one can achieve nonsingular expressions
for Ho or 0„„in terms of local currents simply by express-
ing them as polynomials in the currents and bydemand-
ing Lorentz covariance (see Refs. 3 and 10). However,
in this case, we have model theories rather than theories
which are supposed to deal with the problem u priori.
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8 8—i —+ pi(u, v; u', v')
BQ BQ

=gLpe (u)pr(u~vi u lv ) pi(ulvi u p )p2 (u)j ~ (A1)

Since pi*(x,x', t) =pi(x', x,t), we can set

pi(u, v; u', v') = Ui(u) pie(v, v') Via(u'), (A2)

where pie(v, v') is the interaction-free solution of (A1) at
t —+ —ee. Equation (A1) is going to be satisfied if we put

8
i—U, (u) = —gp, o(u) V,(u) .

BQ
(A3)

Note that V~~1 as t-+ —~.
In what follows, we shall need the quantities

'(')g='c(, '),
(p2e(u), p2e(u') j= iC2(u, u'),

(A4a)

(A4b)

where pr (v) =pi (t—x) =pi (x,x,t) and p2'(u) =p2 (x+ t)
=pme(x, x,t) Lsee (43') and (44)j. We claim that Ci(v, v')
and C&(u,u') are equal to zero regardless of whether
the times are equal or not in v, v' and I, I', respectively.
Let us show this, for example, for (A4a). From (38),
(38'), and the discussion below (38) we have

Lpi'(t —x), pi'(t-x') j=0.
Making the translation x' —+ x'+t) and defining t'= t
we have

opia(t x), pre(t' ——x'))=0.
Therefore

Ci(vp') =0,
C2(u, u') =0,

(A5)

regardless of whether the times are equal or di6erent
in v, v' and I, I', respectively.

The solution of (A3) is then simply given as

p, (e) = exp(ig (A6)

Equation (A6) together with (A2) gives the solution
(45) for pi. Similarly, one derives the solution for p2.

APPENDIX

To illustrate the technique of solving the differential
equations for operators, we take the first of the equa-
tions in (45):


