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E p~ Ari at the upper vertex is rather smaller than
the E X~A.m amplitude, say, by 4 to 10 times.
Together, the ri-n interference term is at most =10%
of the OPE cross section, Eqs. (2) and (4a)."

Another interfering process might be the nucleon-
exchange graph, Fig. 1(d). (The corresponding graph
for pp —+de+ has been discussed by Heinz4 and by
Mathews and Deo.') However, because the deuteron

'3 These considerations also apply to g exchange in pp ~ der+.

vertex here involves a large relative momentum
L(p-e)'=1.2 (Gev/c)'1, this contribution is expected to
be quite small. Moreover, because of its peripheral
nature, its contribution to the energy behavior of the
cross section would be smooth, with the A. tending to
go forward. Thus this graph, if it contributes at all,
would only affect the OPE predictions.

We thank Dr. H. A. Thiessen and Dr. J.E.Young for
discussions and Professor H. L. Anderson for permission
to refer to his preliminary experimental results.
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H the exchange forces in a unitary scattering amplitude are too large, there is a breakdown of analyticity
due to the appearance of ghosts. As an illustration of this, the condition that the singlet amplitudes of
nucleon-nucleon scattering have no ghosts is formulated as a simple eigenvalue problem for the bound on
the pion-nucleon coupling constant, in the approximation of neglecting all but one-pion-exchange terms.
It is found that the pion-nucleon coupling constant g could not be more than 2-', times its actual value
without producing a ghost. It is suggested that the most stringent bounds should come from a consideration
of the Pomeranchuk pole. It is further speculated that the electromagnetic and weak interactions may
eventually be bounded in a similar way.

1. INTRODUCTION

"N relativistic scattering theory, it is supposed that.. the interaction between two particles is caused by
the exchange of particles in the crossed channels, and
that the magnitude of a phase shift is thus determined,
in a nonlinear manner, by the magnitudes of the coupl-
ing constants of the exchanged particles. At 6rst sight,
this requirement of crossing symmetry would not seem
to restrict the magnitudes of these coupling constants,
which could, apparently, be arbitrarily large. However,
this is not so, since the scattering amplitudes must be
unitary, and analytic, except for one-particle poles and
multiparticle branch points. As is well known, these
requirements are not consistent with arbitrarily large
coupling constants: A large coupling leads to the ap-
pearance of ghosts. In this paper, the term "ghost" will
be used to signify the appearance of any pole of the
scattering amplitude that is disallowed, on physical
grounds. A pole may be disallowed because, although it
corresponds to a real mass, its residue has the wrong
sign to correspond to a real coupling. Alternatively, a
pole may have to be rejected because it does not corre-
spond to a real mass; for example, if it lies on the nega-
tive real axis in the square of the total energy. In this

*Address after 1 october 1968:Imperial College, London.

case, the sign of the residue is immaterial; a pole any-
where on the physical sheet, except on the positive
real axis below the normal threshold, constitutes a
breakdown of analyticity. It is the exclusion of this
type of ghost that is the concern of the present paper,
and the object is to examine the consequent limitations
on the magnitudes of coupling constants. As a simple
example, restrictions on the size of the pion-nucleon
coupling constant will be derived from a consideration
of nucleon-nucleon scattering.

If the crossed channels are the same as the direct
channel, as in pion-pion scattering, then the coupling
constants of the exchanged particles are not only lixnited

by the requirement of no ghosts, but are, in principle,
determined by the condition of consistency with the
direct channel (the bootstrap principle). Indeed, the
considerations of the above paragraph add nothing to
the calculation of an amplitude that satisfies analyticity,
crossing, and unitarity. Such a hypothetical calculation,
whether or not it determined the couplings uniquely,
would certainly limit them in magnitude. Martin' has
shown, using analyticity, crossing, and only the unitarity
inequality, that the pion-pion amplitude satisfies a

A. Martin, in ProceeCings of the Seminar on High-Energy
I'hysics, Trieste, 1065 (International Atomic Energy Agency,
Vienna, 1965), p. 155.
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certain bound. If one thinks in terms of a Xq ' Lagrangian
field theory, then the coupling constant X is related to
the scattering amplitude at the total symmetry point,
and Martin's result is tantamount to a restriction on the
size of X. While Martin's numerical values are rigorous
upper bounds, they are disappointingly rather large.
What is overed in this paper are estimates of upper
bounds that are only approximate. That is, although
upper bounds certainly exist, the numbers given in this
paper are not de6nitely greater than these bounds, they
are only estimates of them. The reward for this semi-
phenomenological approach is that the bounds appear
not to be very large: The smallest estimate is 2~ times
the actual pion-nucleon coupling constant. (A much
more stringent bound would obtain if one were prepared
to exclude ghosts also in the odd-signature, 1=0, I=O,
singlet amplitude, which is, however, unphysical; see
below). Another advantage of the present method is its
extreme simplicity, for the problem reduces to a very
straightforward eigenvalue calculation, which is con-
siderably easier than a bootstrap.

The calculation will be performed in the N/D repre-
sentation of a partial-wave amplitude. Crossing sym-
metry is approximated by inserting, as the discontinuity
of the partial-wave amplitude across its left-hand cut,
the imaginary part of the partial-wave projection of the
one-particle-exchange terms in the crossed channels. In
the nucleon-nucleon example, a first approximation
consists in retaining only the one-pion-exchange term,
so that the force depends only on the square of the pion-
nucleon coupling constant (so that obviously all the
bounds discussed below refer to the absolute value of
the pion-nucleon coupling constant). Elastic unitarity
will be assumed; it will be shown in the next section
that an inelasticity factor would produce an even more
stringent bound on the allowed range of coupling. Thus,
the bounds obtained are rigorous, within the one-pion
approximation for the force. The techniques here
employed could easily be used with more complicated
exchange diagrams, in particular the exchange of other
bosons (p, co, p, etc.), but then one would only obtain a
bound for a quadratic function of all the coupling con-
stants of these bosons to the nucleon.

The calculation has been done for the singlet ampli-
tudes of nucleon-nucleon scattering. This example is
particularly instructive, since one pion exchange is
attractive in the I=1 state, repulsive for I=0, where I
is the isospin. The reader should perhaps be cautioned
that the terms "attractive" and "repulsive" have
rather ill-de6ned meanings in the context of an N/D
calculation, in contrast to their meanings in potential
theory. It is not simply a matter of the sign of the left-
hand cut discontinuity, since this is not definite for
higher partial waves. Nevertheless, in the absence of
bound states, the I=1 phase shifts are predominantly
positive, the I=0 phase shifts negative,

In the I=1, 7=0, singlet state, generally designated
'$0; a bound-state pole is produced if the pion-nucleon
coupling constant is large enough. The condition that
the bound state be just produced at the nucleon-
nucleon threshoM, with zero binding energy, can be
expressed as a homogeneous system of N/D equations,
in which the D function is subtracted at threshold. The
corresponding value of the pion-nucleon coupling con-
stant is then the smallest eigenvalue of the Fredholm
kernel of this equation. This is explained in detail in the
next section. As the pion-nucleon coupling is increased
beyond this value, the state becomes bound more deeply,
until, at a critical value of the coupling, the binding
energy equals the rest mass of two nucleons; and, for
larger values of the coupling, the "bound state" has an
imaginary mass. This is an unacceptable situation; a
pole in a partial-wave amplitude at negative energy-
squared cannot be reinterpreted as a particle in a crossed
channel, because such a particle's exchange contribu-
tion, when projected in partial waves in the direct
channel, gives a cut, not a pole. In short, there is no
physical interpretation for an "overbound state, " and
it must be rejected. The limiting condition for the oc-
currence of a zero-mass bound state can again be ex-
pressed as a homogeneous N/D equation, this time with
subtraction at zero energy, as is shown in Sec. 2. Again,
the problem is to locate the smallest eigenvalue of the
kernel. For even larger values of the coupling, the pole
moves to the left, becoming a ghost, i.e., a "state" with
the square of the mass negative.

Although this procedure does yield an upper bound to
the pion-nucleon coupling constant, one should not
expect it to be an interesting one. For one thing, a more
stringent bound would be implied by the requirement
of no bound state at all (as is known to be the case
experimentally), even though this would be a phenom-
enological rather than a fundamental bound. Moreover,
since the occurrence of an overbound ghost requires the
build-up of a very large binding energy (two nucleon
masses), one should expect the corresponding bound on
the coupling constant to be exceedingly large. This is
indeed the case (see below). '

A more interesting situation prevails in the
I=O states, in which the one-pion-exchange force is
"repulsive. "Here, it is expected that, for a critical value
of the coupling, a pole will be produced at s= —~,
where s is the energy squared. As is shown in the next
section, this critical value corresponds to the smallest
eigenvalue of a homoge. neous, unsubtracted N/D kernel,

~If one were to take the calculation of the condition for an
overbound state seriously, one should of course consider the
coupl. ed-triplet amplitudes, in which the attraction is most
effective, since this is the only case in which there actually is a
bound state, the deuteron. However, the calculation would be
appreciably more complicated, and it would again produce a poor
bound on the pion-nucleon coupling constant, namely, the value
required to raise the magnitude of the deuteron's binding energy
to 2 GeV. In fact, the well-known virtual state occurs in the 'So
state that is considered jn this paper,
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and in fact it yields a fairly stringent bound on the
pion-nucleon coupling constant. However, it might
be objected that, in practice, one would not treat
seriously a ghost at s= —~, or even at some large,
6nite value of —s, especially in an approximate calcu-
lation. Indeed, it is regular practice in numerical
calculations to insert spurious poles far from the physi-
cal region, in order to ensure correct threshold behavior.
This is indeed true; but it must be emphasized again
that the present object is only to obtain approximate
bounds on the pion-nucleon coupling. Moreover, for
larger values of the coupling Pand actually not much
larger values (see below)], the ghost will move to the
right, eventually reaching s=0 from the left. This
somewhat larger value of the coupling, corresponding
to an E/D system subtracted at s=O, can also be
calculated, although of course the scattering amplitude
would long since have been unacceptable because of the
ghost. For even larger values of the coupling, one would
expect the pole to move to the right of s=0, but with a
residue of the wrong sign for a bound state.

One di6iculty in the I=O state is that, because of
Fermi statistics, there is no singlet S wave. It may still
be of some interest to consider the "unnatural" J-parity
S wave, in which the 3 and I channels combine construc-
tively instead of destructively; and the results for this
wave are collated in the next section. The corresponding
bound on the coupling constant g is remarkably strin-
gent, namely, 1.4 times the experimental value. How-
ever, one cannot strictly require the absence of
ghosts, since this is not a physical partial-wave ampli-
tude, but only the analytic continuation in J of the odd
partial waves. Accordingly, for a physical case one may
consider the wave I=O, J=i, a state that is usually
designated 'P~. A problem in dealing with a P wave, or
higher waves, is that the threshold condition must be
observed. It is true that this condition can always be
satis6ed by considering a solution of the 1V/D equations
of a sufliciently high Castillejo-Dalitz-Dyson (CDD)
class. 4 On the other hand, if it is supposed that there
are no COD poles, then the left-hand-cut discontinuity
must satisfy suitable moment conditions. It is known
that the one-particle-exchange terms do not satisfy these
conditions, but the point of view adopted here is that
the one-pion-exchange term is an acceptable approxi-
mation to the exact discontinuity, which itself would
yield the correct threshold behavior. Thus, it is argued
that no special provision need be made to observe the
threshold behavior, since one is interested (in particular
in the repulsive E wave) in the occurrence of a ghost
and not in the details of the low-energy phase shift.
Once again, the reader is reminded that there certainly
is an (unknown) rigorous upper bound on the pion-

' J. S. Ball, A. Scotti, and D. Y. %'ong, Phys. Rev. 142, 1000
(1966).

L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956); for a discussion of CDD classes, see also D. Atkinson
and D. Morgan, Nuovo Cimento 41, 559 (1966).

TABLE I. Critical values of the square of the mN coupling
constant, g' j(4r) (experimental value about 14).

Position of pole in s plane
I J —~ 0 4m' Remarks

0 0
0

0
1 1

26
92

~ ~ ~

2.10'

~ ~ ~

180 104
104 110

2.10' 210

Unphysical, repulsive
Physical, mainly repulsive
Physical, attractive
Unphysical, mainly at tractive

nucleon coupling; the results of this paper are merely
approximate estimates of this bound.

It is found that the value' of gs/(4~) that would be
needed to produce a pole at s=0 in the physical Sp
wave is of the order of 104, compared to the experimental
value of 14. On the other hand, if g'/(4s. ) =92, a pole
just appears at s= —~ in the physical 'P& wave, while
a ghost appears in the unphysical I=O S wave for
g'/(47r) =26. These numbers, and those for other cases,
are listed in Table I. Thus, it can be said that the
physical value of the pion-nucleon coupling constant is
not such as to produce ghosts in the singlet amplitudes,
but that in fact this coupling could not be very much
larger than it is, without leading to a breakdown of
analyticity, unitarity, and crossing.

It is not surprising that the actual pion-nucleon
coupling constant falls short of these upper bounds. In
the erst place, they are only upper bounds, and there
is no necessity that they be attained. Moreover, these
results have been obtained by using elastic unitarity,
and, as is indicated below, the inclusion of inelastic
effects would make the bounds more stringent.

It should also be pointed out that there are many
other partial waves, and many other reactions, and in
none of these must there be a ghost. It is interesting to
speculate upon which scattering amplitude would lead
to the most stringent bound for the magnitude of strong
interactions. Following Chew and Frautschi, one would
expect this to be the J=1, I=O, 8=0, even-signature
amplitude that contains the Pomeranchuk pole as a
"bound state. " Although this is an unphysical ampli-
tude, the Froissart bound, ' which is a consequence of
analyticity, crossing, and unitarity, is equivalent to the
requirement that the "Pomeranchuk state" have
positive, or zero, mass squared. Moreover, if Chew's
principle of maximal strength6 is correct, and the Pomer-
anchuk actually has zero mass, as appears to be the
case experimentally, then one might expect that the
smallest eigenvalue of the relevant homogeneous E/D
equation gives, for the exchange force, not an inequality
but an equality. This equality, however, would not
yield directly the value of one coupling constant, but
rather the value of a combination of coupling constants,

~ Note that the values given here (and in Table I) are those of
g'/(4s-), whereas in the previous discussion the numbers referred
to the pion-nucleon coupling constant g itself.

6 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 384
(1961).' M. Froissart, Phys. Rev. 123, 1053 (1961).
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with the xm coupling constant presumably playing a
prominent role.

In the same vein of speculation, it may be wondered
whether similar considerations might not be applicable
to the electromagnetic and perhaps even the weak
interactions. The reason why the Gne-structure constant
has its actual value is a long-standing puzzle. In the
renormalization of the electron charge, one has ap-
parently given up the possibility of calculating the
electromagnetic coupling, as the price of having re-
moved, or at least suppressed, the ultraviolet diver-
gences. It is fascinating to speculate, therefore, that,
if the ultraviolet catastrophe could be averted in some
more reasonable manner, perhaps one could obtain a
bound on the electromagnetic coupling, and that, once
the ultraviolet divergences were treated properly, this
bound might have the order-of-magnitude characteristic
of the electromagnetic rather than the strong inter-
action. However, at the moment one does not possess
an unequivocal way of avoiding the ultraviolet problem.
In the same way, it may be wondered if the weak inter-
action, also, might be limited in strength by similar
considerations. Since the weak interactions are not even
renormalizable, one may wonder if perhaps this fact
indicates that, in a future theory, the corresponding
kernels will be much larger, with correspondingly
smaller lowest eigenvalues, of, perhaps, the order of
magnitude of the weak coupling constant. Of course, in
these cases the bounds should come from the exclusion
of ghosts due to "repulsive" interactions.

Finally, before proceeding with the mathematical
details, one should point out that a number of papers
have already appeared' that also address themselves to
the problem of establishing upper bounds on the magni-
tudes of coupling constants. However, these papers are
concerned with limitations on coupling constants due
to analyticity and unitarity alone, with no crossing
symmetry, and special assumptions have to be made,
either concerning an "interaction range, " or about the
number of zeros on the left-hand-cut discontinuity.
Thus, these methods, and their starting assumptions, are
quite different from those of the present paper; as for
the results, those that are suKciently explicit to allow
a comparison are less stringent than those of the present
work.

2. CONDITIONS FOR THE ONSET OF GHOSTS
IN THE NUCLEON-NUCLEON SYSTEM

sideration of nucleon-nucleon scattering. This can occur
in states of isospin zero and one. For each isospin, there
are Gve partial-wave amplitudes: the singlet, the un-
coupled-triplet, and the three coupled-triplet ampli-
tudes. ' ' In this paper, as has been explained already,
only the singlet amplitudes will be considered. The
Pauli principle implies the vanishing of the even partial
waves for I=O, and of the odd ones for I=1. Ac-
cordingly, attention is focused on the I=1, J=O, and
the I=O, J=1 states. However, results are also given
for the unphysical odd-signature I=0, J=0, and even-
signature I=1, J=1, partial-wave amplitudes.

Let f(s) be a typical partial-wave amplitude, normal-
ized so that the unitarity relations reads

lmf(s) = L(s—4m')/s)'"~ f(s) ~

', (2.1)

where s is the square of the total energy in the center-
of-mass system and m is the nucleon mass. This ampli-
tude is susceptible to an 1V/D decomposition in the
usual way:

where

and

f(s) =&(s)/D(s),

4m2—
hatt&

n(s')D(s')
S —S

(2 2)

(2.3)

1 " tgs fs 4m') '~'—
D(s) = 1——

~ (
1V(s') . (2.4)

4~~ s —sk s

Here, p is the mass of the pion, the least massive
particle that can be exchanged in the crossed channels,
and n(s) is the discontinuity of f(s) on its left-hand
cut. The inelasticity factor has been omitted from Eq.
(2.1) or (2.4); its possible effects will be considered at
the end of this section.

In the nucleon-nucleon problem, a good Grst approxi-
mation to the left-hand-cut discontinuity is provided
by the one-pion-exchange terms in the t and n channels.
For the S wave this contribution is'

p
o (s)= s'g' Ur, s & 4m' —ir',

g 4m2
(2.5)

where Ul is an isospin crossing-matrix element, equal
to —,

' for the (physical) I=1 state, and —ss for the
(unphysical) I=0 state, and where g is the renormalized
pion-nucleon coupling constant. In order to specify
the normalization, the Lagrangian density is

Although the method is quite general, for definiteness
the mathematical method will be illustrated by a con- &=gjVsrsgq ~ (2.6)

See however, in this connection, a forthcoming paper by D.
Atkinson and F. Calogero.

9 M. A. Ruderman and S. Gasiorowicz, Nuovo Cimento S, 861
(1958). V. N. Gribov, Ya. B. Zel'dovich, and A. M. Perelomov,
Zh. Eksperim. i Teor. Fiz. 40, 1190 (1961) [English transl. :
Soviet Phys. —JETP 13, 836 (1961)j; A. A. Ansel'm, V. N.
Gribov, G. S. Danilov, I. T. Dyatlov, and V. M. Shekhter,
Zh. Eksperim. i Teor. Fiz. 41, 619 (1961) )English transl: Soviet
Phys. —JETP 14, 44". (1962)g; M. A. Ruderman, Phys. Rev.

Here, lb is the nucleon field and yq the pion field, k
being the isospin label. Experimentally,

g'/(4z-) =14. (2 7)

127, 312 (1962); Y. S. Jin and A. Martin, ibid. 135, B1369 (1964);
H. D. Dahmen and A. S. Reiner, ibid. 143, 1295 (1966).' M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).
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For the P waves, the one-pion-exchange term is'

jt'

n(s)=-;g i 1+ iV, .
s—4m' E s—4m'I

(2.8)

1
0=1——

ds' -s'—4m'- »'
E(s') .

m~s —c s
(2.9)

Upon subtraction of Eq. (2.9) from Eq. (2.4), one 6nds

This time the physical state corresponds to I=O, the
unphysical to I=1.

The discontinuity for the physical Sp wave is negative
for all san&4m' —p' (Eq. (2.5), with I=ii, and this
corresponds to an attractive interaction. On the other
hand, for the 'Pi wave LEq. (2.8), with I=O), n(s) is

negative for 4m2 —2p'&s&4m' —p, ', and positive for
s &4m' —2@2. This apparently corresponds, in the
imprecise normal usage, to a predominantly repulsive
interaction, with a long-range attraction. This sign

change is typical of a P wave, and for most purposes the
"attraction" is without great effect. This is borne out

by the experimental situation: The 'P& phase shift is
small and negative, compared with a large, positive
'Sp phase shift, at low energies.

The purpose is to show that the form of the 1V/D

equations restricts the possible size of the xE coupling
constant. Suppose that g were such as to produce a zero
of the D function, for a given partial-wave amplitude,
at a point s=c~&4m'. Then Eq. (2.4) would imply

g'&g~' (2.12)

where g~2 is the smallest eigenvalue of the kernel

2

U'r $s'(s' —4m')i-'I
8+2

ds
(2.13)

(s"—s) (s"—s')

If g' is increased still further, the bound state becomes
ever more deeply bound, until eventually it has zero
mass. This occurs when g' is equal to gp', the smallest
eigenvalue of the kernel of (2.11), corresponding to
c=O. For still greater values of g', the bound state has
"imaginary mass, "and, as pointed out in the Introduc-
tion, it is rigorously excluded by the assumption of
analyticity. Thus the requirement that the state should
not be "overbound" is

g&gp ~ (2.14)

where gp' is the smallest eigenvalue of the kernel

&2 -s' —4m2-»21
Uz

8m 2 s' s'

one has D(4m') =0; and as g2 is increased beyond g~',
a zero of D(s) moves to the left. It is easy to see that
the residue of the corresponding pole in f(s), for the
physical state I=1, 1=0, is of the correct sign for a
bound state. Hence the condition for the absence of a
bound state in the S wave is

D(s)=—s—c " ds' s' —4m' '12K(s')
(2.10)

7? 4m~ S —$ $ S —C

4m2 —p,2

(s"—4m') (s"—s) (s"—s')

Now, this can be substituted into Eq. (2.3) to give the
following homogeneous equation for E(s):

00

E'(s) =—
2 4m'

-s' —4m2-»2 t
ds'1V(s')

s s —c

ns $ —c
ds" . (2.11)

(s"—s) (s"—s')

With either of the expressions (2.5) and (2.8), this is a
Fredholm equation.

Consider first the case of an attraction, for example,
the physical 'Sp state. The condition whereby a zero of
D just appears at the normal threshold is that (2.11)
have a solution for c=4m'. Suppose that one writes g', in

Eq. (2.5), as a factor in (2.11), and considers the kernel
to be the rest of the expression, without this factor.
Then it is clear that there will be no nontrivial solution
of Eq. (2.11) if g' is less than the smallest eigenvalue of
the kernel. That is, for g' smaller than this critical
smallest eigenvalue, say g~2, there can be no zero of
D(s) at s=4m'. When g' is increased to the value g~',

For the wave 'P&, the force is predominantly repul-
sive; and, for c=4 m', the corresponding eigenvalues of
Eq. (2.11) would be expected to be negative. LThis is
not a rigorous statement, because n(s) does not have a
constant sign in this case.) Thus one does n.ot expect a
positive value of g' for which D(4m') =0. This corre-
sponds to the obvious physical fact that a bound state
cannot be produced by a repulsion. VVhat happens as
g' is increased is that a zero of D(s) appears at s= —~,
and then moves to the right. This zero corresponds to a
ghost, and the condition for its exclusion is

g &g6' ~ (2.16)

where gg2 is the smallest eigenvalue of the kernel of
Eq. (2.11),with c= —~ . Notice that, for large negative
c, the sign of the kernel changes. Thus gg2 is the smallest
eigenvalue of the kernel

p,
' s' 4m' 'i' —'~~~' ds"f]+2y'/(s" 4m')]-

Uz
8m' s' „(s"—4m') (s"—s)(s"—s')

(2.17)
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For a larger value of the coupling, namely, the
smallest eigenvalue of the kernel

&2 -s'—4m2- ~&2 S

Sx' s' s'

4" &' ds"l 1+2@,'/(s" —4m')$
2.18

(s"—4m') (s"—s) (s"—s')

the ghost will have moved from ininity to the point
s=0.

The method of locating these smallest eigenvalues
is extremely easy. By symmetrizing the kernel, and
transforming the variables according to y=4m'/s and
y'=4m'/s', Eq. (2.11) becomes

APPENDIX: SYMMETRIZED KERNELS IN
THE VARIOUS CASES

Let

+(y,y', ~; &)= (3
—3') '

A —yB ( I—
y)lnl 1+3

y'8 — 1—y'~-
(A1)

where
X=4m'/p, '. (A2)

attractive I= j., J=O case. This reQects the fact that
an overbound state at s=0 has the enormous binding
energy 2m.

where

g2

4 (y) =— dy'&(y, y')4 (y'),
4m

(2.19)

P(y) =s'"(s—4m')'"(s —c) '"E(s). (2.20)

Then the kernel of Eq. (2.19) has the following forms:
5 mavt,',

: II(y,y') =(2~~) 'U. l:(1—3)(1—3')j'"
X+(y,y', 0; 1), (A3)

The expressions for the symmetric kernel II(y,y') in
the various cases (S and I' waves, c= —~, 0, and
4m') are given in the Appendix, in case the reader should
care to check the numerical results.

The integral equation (2.19) was converted into a
matrix equation by replacing the integral by a sum, and
all the eigenvalues of the matrix were found by a stan-
dard computer-library subroutine. The largest eigen-
value of the matrix, corresponding to the smallest
eigenvalue of the integral equation, was found to be very
stable against increase in the order of the matrix, and a
30)&30 matrix in most cases gave errors of only a few
percent. The programs were also run for 50' 50
matrices; this required about a minute of IBM-7040
computer time.

The results are displayed in Table I. They justify
the discussion of the Introduction. The following
additional remarks appear appropriate:

(i) The difference between the values of the coupling
required to produce ghosts at —~ and at 0 is rather
small in the completely repulsive I=O, J=O case. It
is also relatively small in the I=O, J=1 case, even
though here the long-range attraction weakens the
repulsion more effectively when the ghost occurs at 0
than when it occurs at —.

(ii) The difference between the values of the coupling
required to produce a bound state at threshold and an
overbound state at s=0 is very large in the completely

c=0: II(y,y') = —(2m%)
—'Ur Lyy )'"

XL(1—y)(1—y')1'"4(y, y', 1; 0), (A4)

c=4m': II(y,y') = —(2m') —'Ur(yy')'"
X L(1—y)(1—y'))'"4(y, y'; 1; 1); (A5)

P mare,

c= —~: IIb y') =(~~)-'&rl. (1—y) (1—y') j-'"

X 1+3-'yy'Ol y,y'; 1;

+-+——1
2yy' y y'

(A6)

IIb y') =(2~3) 'U'rLyy'O'"L(1 —y)(1—y')3 '"
X (2—L(1—y) (1—y') —2X 'yy'j

X+(y,y', 1; yy'

—:3(1-y)(1-y'))}, (A~)

c=4m': II(y,y') = —(2 ~) 'fIrby'3'"

XL(1—y)(1—y') j-~~ 4'(y, y', 1; 1—2/X), (AS)

where U~ is the isospin factor:

(A9)


