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The pion residue is obtained as an integral over the relevant photoproduction amplitude following the
usual prescription of the Gnite-energy sum rule. The latter, studied as a function of t, reveals the following
interesting features of the pion residue. It is nonzero at t =0 (thus showing pion conspiracy), but vanishes
around —1.5p,', as required by high-energy data. The magnitude of the residue at t =0 also agrees extremely
well with that obtained from the high-energy forward photoproduction cross section.

HE recent Regge analysis of high-energy pion-
photoproduction data by Drell and Sullivan' and

by Frautschi and Jones' strongly suggests a nonzero

pion residue at 7=0, which requires pion conspiracy.
On the other hand, Ball, Frazer, and Jacob' have ob-
tained a Regge fit to the high-energy forward peak in
the photoproduction cross section by requiring the
pion residue to vanish at —1.5p,'. A zero in pion residue
near t=0 has also been suggested by Mandelstam, 4 on
the basis of conspiracy and partially conserved axial-
vector current (PCAC), and by Arbab and Dashs from
a Regge fit to the charge-exchange tt-p scattering. In
order to study these behaviors of the pion residue, we
construct a t-channel amplitude that would couple
only to the pion trajectory. The pion contribution is
then obtained in terms of a finite integral over the
corresponding photoproduction amplitude by the usual
method of using a finite-energy sum rule. This has the
obvious advantage over the high-energy cross-section
fits, in that the latter always contain the contribution
of the conspirator along with that of the pion, so that
the latter can be disentangled only by assuming a model
for the conspirator. 7

Following closely the notation of Zweig, ' we pick. up
the combination of invariant amplitudes, (A, & &

+tA, & &), where the superscript (—) means that the
3-channel isospin is 1 and the G parity is negative
(isovector photon). Following Ref. 2, we have

A &
—&+tA &

—
& =—L2v2M/(ts' —t)]P, (1)

where ts and M are the pion and nucleon mass and f'
is the kinematic-singularity-free, definite spin-parity
helicity amplitude, which couples in this case to the
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nucleon-antinucleon singlet state
~
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t

—s —st).
Therefore, we must have C= —P= (—1)s. This,
together with the isospin and 6-parity requirement,
allows only pion exchange. Then, on absorbing certain
innocent factors into the reduced residue function y(t),
we get the usual Regge contribution:
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I'xo. 1. Pion contribution, as given by the Gnite-energy
sum rule, as a function of t.
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where
v = (s I)/4M =—Jtr,+ (t tss/4M) .— (3)

Here, kl, is the lab photon momentum and vo ls a scale
factor, which we choose for convenience to be 1 GeV.
Then, using the odd crossing property of our amplitude~
under v —+ —v, we get the following finite-energy sum
rule:
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T&u&LE I. Nucleon Born term and resonance contributions to (1/s)y(0) (N/~0)~&»; g 0
——1 GeV.

Resonances
Multipole

Contribution
(10 ' GeV)

E(940) Ã*(1236) 1l&'*(1471)

Born term BI+ M I+
1.85 0.662 0.049

1P (1519)
E2 M'g

0.034

E*(1561)
QQ+
—0.254

1P(1652)
E2+ M2+
—0.004

X*(1672)
E3 M3
—0.011

1
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Near I,=0, this essentially gives us the residue function.
We note the following interesting features: First, the
residue does not vanish at )=0, thus showing that the
pion chooses conspiracy. "It, however, falls steeply and
vanishes at 1=—0.03 (GeV/c)', as required by high-

energy data. ' Finally the magnitude of the residue at
t= 0 Ly (0)=0.023~] agrees very well with that obtained
from the ht to the high-energy forward cross section, '
which gives y(0) =0.0267r. This agreement, we believe,
is very signi6cant because the high-energy forward
cross section receives a contribution not from the pion
but from its conspirator, so that the pion residue is
obtained only via the conspiracy equation. In other
words, the conspirator residue calculated from our pion
residue y (0), using a conspiracy equation, would

quantitatively account for the high-energy forward
cross section.

In order to assess the accuracy of our results, we list
in Table I the Breit-Wigner pole contributions to
Eq. (6) at /=0, together with the nucleon Born term.

' R. I . Walker (private communication).
M The sign of the A+ term here is opposite to that given in

Ref. 8, because of a slightly difFerent isospin convention used by
Walker."This part of the calculation was earlier done by M. B.Halpern,
Phys. Rev. 160, 1441 (1967). Unfortunately, he had started by
postulating a nonconspiring pion and was led to rather implausible
conclusions. Besides, his estimates are quantitatively inaccurate.

The first term above is the nucleon pole contribution,
which contains the well-known kinematic pion pole,
arising from gauge invariance. We take e'/4~=1/137
and g'/4~= 14. To evaluate the integral, the amplitude
is expanded in terms of the electric and magnetic
multipoles. ' These multipoles have been empirically
obtained by Walker' in terms of Breit-Wigner poles
plus nonresonant parts, up to a lab momentum of 1.2
GeV/c. The nonresonant parts are indeed very small.
Our A & ' amplitudes are connected to the amplitudes
A+ and A corresponding to m+ and x photoproduction
by10

A & & = —(1/242) (A++A —
) . (5)

We evaluate the continuum contribution, using
Walker's multipole parameters. The upper limit E of
the integration corresponds to kr, = 1.2 GeV/c.

We have plotted in Fig. 1 the quantity

We note that the dominant contributions are from the
nucleon and the N~ (1236),and that the two are additive.
The higher resonances are seen not to affect the net
contribution to any significant extent. Our sum rule
would then evidently be insensitive to variations in the
higher-resonance parameters and the cutoff value E.
We have, in fact, repeated the calculation by changing
the integration limit to incident momenta of 1 and 1.5
GeV/c and found very little deviation. " Thus the
question, whether Regge asymptotic behavior has set
in around the energy region where we cut off the inte-
gral, should not affect the residue estimate in any

significant way. Equally insignificant should be the

difhculty associated with the partial-wave expansion
at nonzero values of t since, for the range of 3 of interest
to us, the unphysical region is a very small nonresonant
region near threshold. Further, we see that the con-
tinuum contribution is dominated by the Ã*(1236)
resonance. The higher resonances reduce this contribu-
tion by about one-third only. Thus it is highly unlikely
that a possible variation in their parameters or the
cutoff would Qip the sign of the net continuum contribu-
tion. Moreover, the integral is seen to change very little
in this small interval of t, the major variation coming
from the (p' —t) factor. Thus the net cancellation can
occur only beyond —p', where the Born term Qips sign.
In fact, varying the integral between zero and about
twice its present magnitude would make the zero-
residue point vary between —p2 and —2@2, which we
consider to be safe limits. In this respect we favor the
parametrization of Ref. 3 over that of Ref. 5, which
requires a zero at —0.85p,'. Finally, we wish to remark
that, in the present model, one can see phenomeno-
logically [see Eq. (6)] how the zero-residue point
moves to t =0 as we approach the soft-pion limit. "

It is a pleasure to express our gratitude to Professor
R.L. Walker for allowing us to use his preliminary data.
We are also grateful to Dr. B. R. Desai, Dr. P. E.
Kaus, and Dr. H. K. Shepard for helpful discussions.

"This is in contrast to the second-moment sum rule S2, which
receives a negligible contribution from S and 37*(1238), and is
dominated by higher-resonance contributions of alternating sign.
With our set of parameters, this would give a small negative slope
for the pion trajectory, but the result is extremely sensitive to
these higher-resonance parameters as well as the value of the
cutofF. We feel that more precise data over a wider energy range
will be very helpful in this regard.

"Note gdded irI, proof. Due to a programming error, the Born
term has been underestimated by a factor M' (=0.88). Thus in
Table I the Born term should read 2.10 instead of 1.85. However,
this has a negligible efFect on the position of the zero-residue
point, and increases the y(0) estimate (=0.023m.) by only 10%
(thus bringing it embarrassingly close to the high-energy esti-
mate of 0.026m). We are grateful to Professor K. V. Vasavada for
pointing out this error.


