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As in the derivation of our sum rules discussed in the
text, the use of SU(3) approximation for the charge
operator VK and the existence of a vacuum state in the
states under consideration restrict the intermediate
states (in the one-particle approximation, which is the
same as in the spectral-function case) to the p and &&

states. The right-hand side of (A1) vanishes, so we have

lim I E,(q) —Err (q)j
lel
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I
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z*+(q)&

= hm ~„&ol vtr I.o)("Ivo.-(*)ll&.*+(q)).
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Apart from the factor
I E,(q) —Erc*(q)], which vanishes

in the limit Iql ~eo, the terms on the left-hand side
of the above equation are finite. Therefore, we have

(()I vtr'lx'&&" I vs (&) II&:*(q)&=0
I el ~

APPENDIX 3
In a way similar to that of Appendix A, we can show

that the pion electromagnetic form factor satis6es an
unsubtracted dispersion relation. We take the com-
mutator Lvs '(x),v +j=&)„A„+(x). As in (A1), we
obtain

»m (&ol vo"(*) lt&o&&t&'l~ 'ln (q)&

—&ol~- l~-&&~-I vo"(*)l~-(q)&)
= lim (ol &)„A„'lsr-(q)&. (B1)

fel

From the PCAC condition, the right-hand side of (81)
is zero. Then using the same argument as in Appendix
A, we obtain

lim &sr (y) I
Ver'(x) I&r(q)&=0,

where lyl =0.

P H YSI CAL REVIEW VOLUME 171, NUM BER 5 J ULV 1968

Subsidiary Condition in Quantum Electrodynamics
KURT HALLER*

Department of Physics, University of Connecticut, Storrs, Connecticut

LzoN F. LANnovrTzl'

Belfer Graduate School of Science, Yeshioa Unioersity, view York, 1&&'ew Fork
(Received 6 July 1967)

The subsidiary condition BA„&+&/Ba„ln) =0, usually known as the "Gupta-Bleuler" condition, is shown
to be inadequate as a criterion for defining physical states in quantum electrodynamics in the Lorentz
gauge. The condition is shown not to be covariant and to fail to define state vectors that remain in the
physical subspace. An alternative subsidiary condition, which is satisfactory, is discussed and is shown to
require an extensively different formulation of the collision problem in quantum electrodynamics. Some
possible physical consequences of the inadequacy of 8A„&+&/sx„(n) =0 are proposed; these include effects
in the decays of short-lived particles, and the fact that in some types of strong interactions, acting simul-
taneously with electromagnetic ones, S-matrix elements may occur which predict transitions from the
physical space into the part of space in which the subsidiary condition is violated. The solution to the colli-
sion problem for stable charged particles that have only electromagnetic interactions is shown to be identical
to that obtainable from the present theory.

I. INTRODUCTION

'HE correct formulation of quantum electro-
dynamics (QED) in the Lorentz gauge requires

the imposition of a subsidiary condition Lnamely,
I&+&(x) In)=0, where x&+&(x) =&)A„&+&(sc)/&)sc„j on the
"physical" state vectors and involves the use of a non-
degenerate inde6nite metric space instead of the usual
Hilbert space in which quantum theories are ordinarily
framed. The reasons for this have to do with the incom-

patibility of the subsidiary condition c&A „(x)/Bx„=0, as
an operator identity, with the canonical quantization
procedure and the commutation rules for the four-
dimensional vector potential. This situation has been
understood for a very long time and is discussed in detail
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in most standard texts. ' For a set of noninteracting
photons the resulting theory is clear and has the follow-

' S. N. Gupta, Proc. Phys. Soc. (London) 63, 681 (1950); W.
Heitler, The Quantum Theory of Radiation (Clarendon Press,
Oxford, England, 1954); G. Kallen, in Handbgch de Physi, edited
by S. Fl&igge (Springer-Verlag, Berlin, 1958), Vol. 5; J. M. Jauch
and F. Rohrlich, Theory of Photons and Electrons (Addison-Wesley
Publishing Company, Inc. , London, 1955); A. J. Akhiezer and
V. B. Berestetskii, QNantum Electrodynamics (Interscience Pub-
lishers, Inc. , New York, 1965); P. A. M. Dirac, The Principles of
Quantum 3Iechanics (Clarendon Press, Oxford, Fngland, 1958),
4th ed. ; S. S. Schweber, An Introduction to Relativistic QNantlm
Field Theory (Harper and Row, New York, 1949); J. Hamilton,
The Theory of Elementary Particles (Clarendon Press, Oxford,
England, 1959);N. N. Bogoliubov and D. V. Shirkov, Introduction
to the Theory of Quantized Fields (Interscience Publishers, Inc. ,
New York, 1959); for discussions of the algebra of the indefinite
metric space see R. Ascoli and E. Minardi, Nucl. Phys. 9, 242
(1958);L. A. Maksimov, Zh. Eksperim. i Teor. Fiz. 36, 465 (1959)
LEnglish transL: Soviet Phys. —JETP 9, 324 (1959)g;K. L. Nagy,
Nuovo Cimento Suppl. 17, 760 (1960);L. K. Pandit, ibid. 11, 157
(1959); A. Uhlmann, Nucl. Phys. 12, 103 (1959); H. J. Schnitzer
and E. C. G. Sudarshan, Phys. Rev. 123, 2193 (1961);E. C. G.
Sudarshan, ibid. 123, 2183 (1961).
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II. IN'DEjFINITE METIC SPACEing features: The subsidiary condition in the non-
interacting Heisenberg (or "interaction") picture

The indefinite metric space is spanned by a set of
state vectors and their adjoints (rtt+~ = (trt

~ rt, where (rtt
~

denotes the Hermitian conjugate and g is a Hermitian,
unitary operator which obeys

X&+l(x) its)=0

eGects an unambiguous separation into physical and
unphysical states. The operator x&+I(x) is a four-
dimensional scalar operator and Eq. (1) is trivially
covariant. If the subsidiary condition is true at a space-
time point x, it is also true at a space-time point x if
(g —x) is timelike; i.e., in that case Eq. (1) implies

[rt,A(x)]=0, f rt,A4(x)) =0, (2)
and which commutes with all other fields. All four com-
ponents of A „, including A 4= iA 0, are Hermitian and
(ts+~A4~tt) is an imaginary quantity because of Eq. (2).
Observable operators must be self-adjoint in this space,
i.e., I'=I'* for E*=g 'P~g, and transforms are length-
preserving if they are pseudo-unitary, i.e., if 2 '= T*.
The following photon operators, in the Schrodinger
picture, can be dered:

exp[—iP„(x'—x)„]x&+I (x) exp[+ iP„(x'—x)„]~
tt) =0.

QED, for this set of noninteracting photons, takes place
as it were, wholly within the physical subspace, and the
imposition of Eq. (1) manifestly leads to no dilemmas
or paradoxes.

The situation for the case of interacting photons and
charged particles is generally assumed to differ only
trivially from the state of affairs that prevails for non-
interacting photons. On the basis of various arguments, '
it is believed that state vectors that are wholly within
the physical subspace at any one time remain in it
forever after; the permanent inclusion of state vectors
within the physical subspace is invoked to guarantee
the continued validity of Maxwell's equations for the
expectation values of the electric and magnetic 6elds,
and also the nonappearance of "negative probability"
states. '

In this paper we erst point out that the subsidiary
condition' Xi+I(x) ~n)=0 is inadequate in the presence
of interactions because, erst of all, it is not a covariant
condition (this is proven in Appendix A); in addition,
the normal time evolution of a state vector, in the
presence of charged-particle —photon interactions, suf-
6ces to invalidate this condition at times later than go
so that the state vector "leaks" from the physical to
the unphysical state. We describe an alternative sub-

sidiary condition which is both covariant and perma-
nently persistent but which has a complicated set of
eigenstates (which, for example, do not include the
vacuum or photon-free sta, tes such as tt-electron states).
We shall prove the validity of the usual computational
practices in QED for a restricted set of circumstances,
and also discuss some possible physical consequences of
the difference between our formulation and the usual

a k, ,(;)= atk, tet(i),
a k, L= a k, l7tl/Jt

as creation operators and their Hermitian adjoints as
annihilation operators. We see that

[ak, L&a k', LJ &5k, k'&[ak, (i)&ea 'ke'(i')] ok, k'54, 4'
&

and [ak, (') a k', L] 0. Moreover, since A4 is Hermitian,
we have [ak, 4, ark, 4]=Bk, k .

It is, moreover, useful to dehne the following sets of
operators:

a"k, n = (2) '"[atk,-L+iatk 4],
a~k, q (2) [a k, L za k, 4]&

(3)

and their Hermitian adjoints. We hand that

[ak, tl, a k, n]=&5k, k, [ak.q, a k, q]=6k.k,l

and

[ak, Il &
a k', Q]= I ak, Q&a k', R]= 0 ~

The significance of these operators can be seen by
writing Xt+'(x) in the momentum representation. In the
Schrodinger picture, the operator x &+I = p' At+I —i114&+I

(II„ is the canonically conjugate fteld to A„); we ftnd
that

X&+I(x)=i Q k"'ak, qe'k *.
k

In the Schrodinger picture, the subsidiary condition
becomes

ak, qitt)=0, (4a)

i.e., there are no "Q"-type photons in physical ket-state
vectors. Since a k, @

= p 'u~k, @g= atk, z, the subsidiary
condition also can be written

one.

(4b)

and asserts that there are no R-type photons in physical
bra-state vectors. It is indeed possible to relabel these
operators as physical and unphysical by

Gk, g =Gk, »
Ck, g =Gk, &.Q~k, g=C k,»

'K. Illeuler, Helv. Phys. Acta 23, 567 (1950); F. Coester and
J. M. Jauch, Phys. Rev. 78, 149 (1950); Ning Hu, ihid 76, 391.
(1949); 77, 150 (1950); J. M. Jauch and F. Rohrlich (Ref. 1);
H. Umezawa, Q&tait&ts& Field Theory (North-Holland Publishing
Company, Amsterdam, 1956).' The following notation will be used to designate operators: The
operator P or P(x) will designate a Schrodinger operator, P(x)
or P(t) will designate the operator in the interaction picture, and
P(x) or P(t) will designate the operator in the Heisenberg picture.
x refers to the three-dimensional position, and x to the four-vector
x, it. Boldfaced operators A designate three-vectors in whatever
picture their argument (or barring) signities.
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Then the subsidiary conditions read

ak,

„hatt)=

0, (t4"
i
a"k,„=0,

and we have

I ak, t ta k', tt]=[ak, ttta k', tt]
[aktt&a, k yl]=[ak, tt,a k', ]tt= 4,k' ~

We shall, however, not use this latter mode of designa-
tion in this paper. Ho(„), the Hamiltonian for non-
interacting photons, can be written

+p(t ) g k[ g a k, 4( 4) ak, ~ (4)

+a k, Qak, Q+a k, Rak, R] ~ (5)

The expectation value of Hp(„) is (I+~Hp(, ) ~e). Since

jr) contains no atk q, and (e"
j

contains no ak R

operators, only the transverse-photon-number operator
contributes to the energy. The Hamiltonian II for
spinor electrodynamics consists of Ho~„) and Ho~, ), where

This form allows us to write the rules for simple ver-
tices involving physical and unphysical photons. For
transverse photons, besides the usual contributions to
four-momentum conservation, etc., @ dictates the
corner term ip-e. For physical nontransverse photons,
we have iy k*/k = i(y k—74k4)/k. For unphysical
photons (creation of a Q-type or annihilation of an
R-type photon), we have (iy k/k). This shows that the
absence of unphysical photons in the final asymptotic
wave functions for colliding systems in spinor electro-
dynamics implies a restricted gauge invariance; i.e.,
invariance of S-matrix elements in the Lorentz gauge
to the transformation A„(x) -+A„(x)+8„$(x), where

Q(x) is a scalar that satisfies 5=0.

III. PERSISTENCE OF THE SUBSIDIARY
CONDITION

In the case of noninteracting photons the Heisenberg
and interaction pictures coincide and the time-
dependent subsidiary condition becomes

Hp(, )
—— dx P'(x) DItl —ie V]f(x) e'H"[V A(+) —iII4&+&]e 'H" ~e)=0 (9a)

and of the interaction Hamiltonian H~. The latter is
given by

or, equivalently,

etHpta e-tHpt
i
tp) —0 (9b)

Hi= dxLJ(") ' &(x)+ip(x)A4(x)], (6) Expansion of this equation leads to

and

J(k) = dx J(x)e '"'*

p(k) = dx p(x)e '" *

and the previously defined photon operators. This leads
to

K= —Z (2k'") '( 2 Lak. &')J(—k)'(i)

+atk, ,(;)J(k) e(i)]V2+ak, R[p(—k) —k J(—k)/k]

-ak, q[p(-k)+k J(-k)/k]
—at„,R[p(k)+k J(k)/k]

+atk, q[p(k) —k.J(k)/k]) . (7)

This can be written in a more nearly manifestly
covariant form by writing

Hi ——
ttt (x)@P(x),

where

g = —Z (2k"') '( E [ak..(t)(iV. 4(j))e'k'*

+a'k, .(;)(iy p(j))e '" *]&2k

[ak,R(iy —k)e'" *+a q(ivk. k)e "*]-
[akq(i7 —k*)e '

, *+a kR(i7 k*)e'", *]). '

where J(x)=eppt(x)erat(x) and p(x)=epft(x)4(x). It is
convenient to rewrite H~ in terms of

ak, Q+ 4/H p, ak, q] I

+ "(i)-[a„[a„"[e„ak Q]" ]]I~/~!=0. (10)

Since pXp, ak, q]= —kak, q, Eq. (10) becomes

ak Qe-'"~N)=0;

hence the subsidiary condition persists forever. This
argument can be rephrased in slightly di6erent language
by noting that the time-dependent subsidiary condition
can be written in the more conventional form
X&+&(x) ~N)=0. Then X&+&(x)~N)=0 and since only
positive frequencies occur in X&+&(x), the operator
(8/()&I)X(+)(x) is essentially the same operator as X(+&(x)

(with different e-number coefficients in its Fourier
decomposition) and the same sets of states obey
(8/8&)X(+)(x) ~N)=0 as obey X(+&(x) ~tt)=0. By Green's
identity, therefore, X'+'(x) ~tt)=0 holds at all times, if
it ever held once. It is noteworthy that an attempt to
extend this argument to interacting photon —charged-
fermion systems fails.

To show this, we de6ne the Heisenberg operator

x (+)(x) —e(H tx (+)(x)e-tH t

This operator has the following significance: Suppose
that at one time, chosen arbitrarily to be t=0,
X&+&(x) ~N) =0 de6nes the physical state ~n). Then the
question of whether states remain physical reduces to
the question of whether X&+&(x)e 'Ht

~
e)= 0, or, equiva-

lently, whether X&+)(x) ~t4)=0, where X(+)(x) is the
operator defined above. It is X(+)(x) ~tt) which must
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vanish at all times if the Gupta subsidiary condition is
to persist forever. It is noteworthy in this connection
that x'+'(x) is r&ot the invariant positive-frequency
part of x(x).

It is easy to see that x&+&(x) ~N)=0 does not persist
for all times because x&+&(x) ~N)40. In fact, x&+'(x)

obeys the equation x&+)(x)=f(x), where

x+ (x)=e' '{Px+ (x)+[H,[H,x+ (x)77)e-' '.

By using Eq. (7), we can show that f(x) is given in

either of two forms. In the Schrodinger picture,

1 8
f(X)=

8&&44
—

e&&

2 8$~
dy &(x—y)

4'(y) W(y)-
X ~-lt (y) —0'(y)~—

Byj-By;

8
dy~, (y)~(.-yet(y)..~(y), (11 )

B&l

where

g)(X—y) = (24r)-' dk e"(*-»/k= 2iD&+'(X—y; 0)

or, in the Heisenberg picture,

f(*) =i—[7 d.y &(x—y)p(y, xs); (11b)

f(x) does not vanish.
It is important to note that although

X&+&(x)= ei~&X&+&(x)e '&r4

x&+&(x), at times other than t=0, will not contain only
photon annihilation operators. Because of the time
evolution dictated by H, creation operators for various

types of particles arise in x&+'(x). This can be illustrated

by expanding e'~&a&,qe '~4 and noting that

[H,ax q7= —{kas,q+ [p(k) —k J(k)/k7),

which contains fermion creation as well as annihilation
operators. Subsequent commutators, like [H,[H,&I&, , q77,
[H,[H, [H,ax, q7. 77 each generate new functionals
of operators that differ from those of earlier orders so
that the form of the subsidiary condition continually
changes in time.

It is apparent, from Eq. (11b), that we can frame a
subsidiary condition which persists in time.

If we define 0&+&(x) by

Q&+'(*)=x(+'(x)+-'i &ty &(x—y)P(y, xs) (12)

Q&+&(x)
~

v)=0

then from Eq. (11b) we see that Q(+&(x) does, in fact,
vanish, and the condition

(13)

persists forever. This new subsidiary condition de6nes
a new set of physical states

~
v).

If we write

Q(+)(x) —i g k&/2Q(+) (k)ei&4 I

with Q'+'(k) =as, q+'sp(k)k —'", then the new physical
states can be equally well defined by Q'+'(k)

~
v) =0. To

obtain the time derivative of this equation, we calculate
i[H,Q'+&(k) 7 and observe that it is identically
—ikQ&+&(k), so that (&)/&)t)Q&+)(x)

~
v)=0 selects the

same set of states as Q(+)(x)
~
v) =0. We can now invoke

Green's identity to prove that Q&+'(x)
~
v) =0 holds at all

times if it ever held at all. In fact, the time-dependent
form 0&+&(k)

~
v) =0 can be seen to be Q(+'(k)e 's&~ v) =0.

In Appendix A we also show that, in contrast to x&+&(x),
the operator Q&+&(x) is a scalar operator and Eq. (13) is
covariant. ' The subsidiary condition Q&+'(x)

~
v) = 0

satisfies the requirement (v*~ BA„/&)x„~v) =0, since

Q'"'(x)+Q' '(x) =x"'(x)+x' '(x) =x(*).
Moreover, (v+~ ((iA„/()x„)'~ v)=0, required for the cor-
rect energy-momentum tensor, is also guaranteed by
the fact that Q&+&(x) and Q( &(x)= [Q(+&(x)7* commute.

The preceding discussion allows us to conclude that
0&+)(x) and Q& '(x) represent the invariant positive- and
negative-frequency parts of x(x), respectively. It must
be noted that Q'+'(x), which selects the "new" physical
states according to Q&+'(x)

~
v) =0, differs from x&+'(x) in

a way that requires an important reformulation of the
scattering problem in QED. This will be discussed in
detail in Sec. IV.

IV. NEW PHYSICAL STATES AND
TRANSITION AMPLITUDES

In order to 6nd the proper description of physical
states, we must solve Eq. (13). It is immediately
apparent that most states that we have always con-
sidered to be physical do not satisfy Eq. (13).Since p(k)
contains terms that are bilinear in fermion-creation
operators, the vacuum is not a physical state; neither

4 K. Bleuler (Ref. 2) suggested this form of the subsidiary con-
dition but he apparently did not realize how sharply the physical
states and the scattering formalism implied by Eq. (13) differ from
those of Gupta's theory. Bleuler's work is in fact generally con-
sidered to serve as support for the application of Gupta's sub-
sidiary condition to interacting systems, and Bleuler s paper never
calls attention to any of the crucial changes required in the theory
by the substitution of Eq. (13) for Eq. (1). W. Heitler (Ref. 1),
calls attention to the fact that the expectation values of the
operators which dehne the subsidiary condition must satisfy two
initial conditions to guarantee that the expectation values for
Qelds continue to obey Maxwell's equations at all times. These two
conditions, in our notation, are (&t

*
(
V. A —4II4 ( P) =0 and

(&t~~ V II—4V'A4+p[&«)=0. The states ~44) obeying x&+&(x) ~44)
=0, violate the second of these equations but the states )v)
obeying D&+&(x)

~

v)=0 form expectation values that obey both of
Heitler's equations. Heitler pointed out that the usual solutions
of X&+&(x)

~
44) =0 are not the correct choice of states for interacting

systems; he did not, however, attempt to construct the states we
refer to as

~
v) or to construct any alternative dynamical formalism

based on any new states.
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are many-electron states, nor are the transversely
polarized photon states physical. To facilitate the
search for the new physical states, i.e., the solutions of
Eq. (13), we note that X&+'(x) and 0&+&(x) are related

by the identity

II&+&(x)= e—n&&&+&(x)e+D,

where D is given by

dxdyf&(x)f& A(y)+i114(y) j(g~l» —vl) '

= —s 2 & "'I ~.,~»(—k) —~",q~(k) j.
We can therefore solve Eq. (13) by noting that the

solutions are given by

usual formulation of the theory the asymptotic statess
of the colliding system are eigenstates of Bo, the out-
going scattering states obey the integral equation

f&+&(E,e) =&I&(E,ts)+(E Ho—+s ) 'H t'&+&(E e),
where Hp+H&=H and. tIb denotes an eigenstate of Hp.

The new eigenstates
l v) are, however, not eigenstates

of Ho, but rather of 3'.O=e Hoe . We therefore write
3C» ——H —Ko and the new scattering eigenstates' will be
given by

f&+&(E,v) = (p(E,v)+LE—Kp+iej 'RgP&+&(E,v), (18)

where p denotes an eigenstate of 3'.0. It is easy to
explicitly calculate 3CO and K&, since the commutator
l D,Hp) commutes with D. We obtain

Xt Ht ,' Q——ie '"—
{—&&,&, ,&rL&p(

—k) —k J(—k)/kj

(16)
and

+ats, qg(k) —k J(k)/k7), (19a)

The lm) states, eigenstates of the "old" subsidiary
condition, are of course well known and include all
electron and photon states with the exception of Q-type
photons. For each

l
I)-type state, there is a correspond-

ing lv)-type. For example, a physical E-type photon,
to second-order in eo, is given by

e ~~'p, &tl0)= &&', , &tl0) —~pep P [&&'k q«'p &t , b~ -.,]—& '",
I&„ ff, X'

Xet. ,,et. ,;.l 0)u(~, j)~4v(~', j')S(~+~'pl )

——s'ep' P l
«'a. qa'~, qc', ,&t+&&'~.qb~, —,+~'~ .qbk.-p]

k, A.",ff, «~

&& p et„;et„;e,ts&e ,p&l ,0)u(,u, j)&4v(x', j')u(p, i)&4v(p', i')

XS(~+~'yl )b(p+p'+k') . (17a)

Similarly, a one-electron state to first order in eo is
given by

e-ne'&, ,;l0) = e'a, ;l0)

—pep p et&,—g, lG g, ql0)&&
' 'u(k —x,l)&4u(k, j)

——',ep g a'„,qe', , &e', , & e'&, ,;l0)

X&&
P

u(&I, l)p4v(q', l')l&(q+q'+x) . (17b)

u(k, j) and v(k, j) in these expressions refer to u&, ,;(@=0)
and va, ,(@=0), respectively, where l m+y„8„jul, ;(x)= ()
and l m —y„8„)v,,;(x)=0. They are normalized to

Q N(k, j)u(k, j)= (m ip k](2k—p)

Similar expansions can be given for all the lv)-type
physical eigenstates, none of which remains in the same
form that it had under the old subsidiary condition.

Note tha, t the form of these new physical states
requires a modification of the scattering theory that
goverris electrodynamic collision processes. Since i'n the

Xt(f) = H t(f)+i'(f)/A. (19b)

where
l X) are a complete set of eigenstatesr of Xp and.

0&+&(x). T and Ts can be rewritten as

T,=(mr+ led% te nlrb, )

Tp=g (ng+lenKte ~ll)(l'*le Xte ~lrr;)(E; E&+ie) '—.

Since Kt= Ht —l Hp, D1, and since LD,H&j commutes
with D, we have en%re ~=Ht+LD, Ht) —LHp, Dj and

T.&»=(~;l LD,Htjlm;).

Similarly, we have

Tp"'= (~r+ lHt —LHp, Dj I l)«IHt —LHpDj
l ~;)

)&(E—E&+ie) '.
' In this paper we are treating the entire theory as though it

required no renormalization and we are ignoring the so-called
Van Hove paradox of the second kind (L. Van Hove, Physics 21,
901 (1955)j which deals with the inadequacy of eigenstates of Hp
as asymptotic states. It appears to us that the renormalization
difhculties and the problem to which we are here addressing our-
selves are not related and are best treated independently of each
other.' Although this point is perhaps very clear to the reader, we
would like to emphasize that we are not here recasting the same
theory into a trivially different form by making a pseudo-unitary
transformation. This can be seen most easily by observing that
whereas the states and the operator H0 are transformed, H is not.
X1 is not, for example, e II1e . The transform effected by e is
simply a bookkeeping device for generating the pro er physical
(asymptotic) states. It is of course obvious that for v)=e o~a),
(SC, L~') ~ g )=0 if (Hp Z~)

~
I)=—0 for the same E in borh —equations.' The unit operator is discussed in Appendix B.

We can apply Eq. (16) to the evaluation of transition
amplitudes for collision processes. The most general
second-order transition amplitude T&') has contribu-
tions both from

T.=(vI lXtlv;)
and from



K. HALLE R AN D L. F. LAN DOVI TZ

Here T,(') and T~(2) are the parts of T, and T~,
respectively, that are the second order in the electric
charge.

Tq(2) can be rewritten as

&e, la, lt&&)la, lm;&
T (2)= +&~r'IL&i D) I~'&

E; Ei+—ie

&, IDIO&&tie, ln;)
(E—»)

E,—Ei+ie
+-:&~r'ID'I ~'&(Er—E~) .

Combining, we 6nd that

Tl»= +-,'&~,+ID2ln;&(E, —E,)
E, Et+ie-

&~r+I DI t&&tl fail ~')
(E'—Er) (2o)

E4—Ei+«

Examination of the various terms on the right side of
Eq. (20) shows that the 6rst one is identical to what
the old perturbation theory would have led to. The
second can never contribute to processes evolving from
realizable situations since either Q- or E-type photon
operators, neither of which refers to transverse photons,
are part of every term. The third term is important; it
makes contributions to the wave function which are
required to keep it in the physical space ut alt times;
however, both the second and third terms vanish on the
energy shell. In other words, although, to this order,
the old subsidiary condition Xi+i (x) I n) =0 allows

leakage of state vectors from the physical to the un-

physical space, the amount of this leakage vanishes in
the limit as the time elapsed in the process approaches
infinity.

hen the transition amplitude is examined to orders
higher than the second, the same features are observed.
The di6erences between the old and new values for the
transition amplitude vanish on the mass shell.

%'e illustrate this feature of the theory by calculating
the time-dependent wave function f(t), which describes
the scattering e~ „+y4,~ eq. ,„+y4 „ to second order
in eo, where pq, g represents a transverse and pq, is an
unphysical photon. We let g(—~) represent the state
le& „y4, && in the infinitely remote past and observe its
evolution in time.

The wave function has two parts. One part, P~(t), is
the one that the use of the old subsidiary condition
I Eq. (1)) leads us to. The other part, fe(t), is a correc-
tion due to the use of the correct, persistent, subsidiary
condition, Eq. (13), to define the physical states. It
becomes apparent that both P„(t) and Pa(t) vanish in
the limit t +~ . T—hat f„(t) vanishes in this limit is well
known and traditionally ascribed to the gauge invari-
ance of the theory. It will, however, also be clear that
P~(t) does r4ot vanish at all times, and for finite values
of t, f„(t) executes an excursion into the unphysical
space. The sum of 1tx(t) and go(t), however, always
remains entirely in the physical space.

The wave function f(t) is given by

a(t)=Z «. «'g(E„t)

T(E j'IE,j)
&& ~»'» '+ — Q(E4, ,j)e *~", (21)

Eg —E4+ie

where T is the transition amplitude and g(E~,j) is a
packet function which describes the spectral definition
of the initial state. The second order in (eo) of P~(t) is
evaluated by using T„(EI...j'I Ez,j) which is given by

Z (e've. ql&ilt&«l&ile»4. ~&(E4—~~—
v&

'.

It is evaluated by using the vertex J(—k) e for the
transverse and Lp(k) —k J(k)/k) for the unphysical
photon at&g

I
0). Its value is given by

Tx(ev, „74 4t I ei,„p4,4)

u(k', r) (q +F4, —4el~+4l)
Q u(k+tl, j)u(kytl, j) —

' +p v(—(k+q), j)v(-(k+41),j) y e
(2)'t'(q')"'(q)"' t (p+4o4:—4elj+4l)

. 4 —~~—&lj-e l)P u(k —41',j)u(k —41',j)+Pv(41'—k,j)v(41'—k,j) — &4 u(k, r)
(1—4o4 —401~-4 I)-

u(k', r) u(k+41, j)u(k+41,j)y4g Ve
(2)' '(q')"'(q)"' - 4 (q+4v4, —4el~+~l)

v(41'—k,j)v(41'—k,j)-
y4 u(k, r)(q'+cog —

q
—4oI,) . (22)

(2 F4' 4elj —a'l)
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It is easy to see that Tx(es „y» @l« „y», ,) vanishes
on the energy shell when (ps+q=(ps+(7'. However, at
other times it does not vanish.

At finite times t, l|„(t) has components involving un-

physical photons, and the probability of observing them
is not zero. If, however, we evaluate

Tu=&« "~» QIDlt)«l&lies. ~». )
X (R—(02—g) ((ps+/ —402' —(I ) &

then we observe that even og the energy shell Ta= —T~
and the total wave function f(t) never enters the un-

physical space at all.
Note, incidentally, that the probability amplitude

for the existence of an R-type photon in lt „(t) does not
vanish even on the energy shell. The corner term for this
photon type in the S matrix is iy q*= (iy q+y4g); or
since the amplitude involving an unphysical photon
is iy q, and leads to a vanishing S-matrix element,
ip q* can be written 2p4g. The E-type photon of course
is physical though not transverse and its presence is
entirely consistent with the subsidiary condition. Its
presence can never affect probabilities since (u»)»+la»)2)
=0; the matrix element (a»4)+la»12)WO, but such can
never arise in the evaluation of probabilities since the
Q-type photon may never appear. The crucial distinc-
tion between Q- and R-type photons in ket vectors has
not always been made in the literature. The appearance
of a Q-type photon in the asymptotic state t p pe is a
catastrophe; the appearance of R-type photons is
perfectly all right.

V. SCATTERING MATRIX

The scattering matrix fox stable particles vanishes
except on the mass shells of participating particles, and
in the energy continuum it is possible to prove that
this quantity, when evaluated from the viewpoint of
the proper, new, subsidiary condition LEq. (13)j, re-
mains identical to the conventional S matrix. The
expression for the S matrix for a transition from an
initial state

l v;) to a 6nal state
l vr), for particles having

only electromagnetic interactions, is

r dD'l"
(()*I«xp —i «I ~1(t)+i I l~)

dt)

where

If we write

lt. (t) =e (')H (t)e

5 exp i dtl —Hx(t)+i
l

=Z(ts, tl)
dt)

and let

0(t„t,)=e-~«2 z(t„t,)eo«

straightforward differentiation leads us to

d(r(t2 tl)/dtl= 20'(t2 tl)X(tl)
and

d0'(t2&tl)/dt2= 2X(t2)0'(t2&tl)
&

which can be integrated to give

&(t2 tl) = «xpl —i dt Ic(t)
l

r

This proves the lemma.
In our case, Xi=Pl—LHp, Dj and

Xl(t) =Hl(t) —expLiXotjLHo, Dj expL —iXotj.

D commutes with l Bp,Dj, D(t) =D(t), and

e4~"LHp, D)e '~pl=idD(t)/dt=H1(t) —Xl(t).
Hence we have that

and the interaction picture exp(iHpt)X1 exp( —iHpt).
We denote the operator exp(iHpt)X1 exp( —iEIpt) by
Xl(t) and exp(iXpt)X1 exp( —iXpt) by Xl(t).

In order to prove the main theorem, it is necessary to
prove the following lemmas':

Lemma 1.

S(fi)=(vol V' exp -i dpxX1(x) lv;). (23) S(f i)= lim (vol en((2)
tl ~oo, t],~to

Here 1' denotes the time-ordered product and Xl(x)
denotes the interaction Hamiltonian density l Xl
= J'dxX1(x)j in the interaction picture. It is crucial
in this connection to be precise about what the time-
evolution operator in the interaction picture is. It is
given by

Xl(t) =exp(iXpt)X1 exp( —iXpt),

where Ko is that "free ield" Hamiltonian of which the
noninteracting particle coniguration is an eigenstate.
It is important to recognize the di6erence between this

2 I. Bialyuicki-Birulae Phys. Rev. 155, 1414 (1967).

dtK(t)
l

e-1)«»lv4). (24)

We now turn to the second lemma, which has to do with
the time evolution of the operator e~&').

Lemma Z.
lime+n(')lv)= lv).
t~+co

An incorrect version of this theorem is given in M. Zulauf,
Helv. Phys. Acta 59, 439 (1966) (Eqs. (40), (41)j; Hl appears
instead of E in this reference.
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Ke can write

eD&"
I v) = exp(iXpt)eD&') exp( —iXpt) I v),

where

(Xp—E)
I v) =0.

If this expression approaches a limit as t ~+~, this
limit is given by'

e &")Iv)=lime &')Iv)=lime dte'i &'& "'Iv)
g ~oo e~o

e

eD&" Iv)=[1—(Xp—E+ic) (Xo—E)]eD&o) Iv).

Since eD&'&
I
v) = Its), and since (Hp —E) I et) =0, we have

e '"'Iv)=[1+(Xp—E+ie) U]IS)t
where

The second term on the right side can be rewritten

{(—1)'GpD'(E —Hp)D/(l —1)!}.
Since [Hp, D] and D commute, OR(t+t) can be rewritten
as

OR(t+t) = ( 1)'GpD'(Ho —E)D/l!

OR(t+t) = (—1)'+'D'+'/l! —1OR(ti.t) .
This leads to

and proves that

1++OR) ——e—D.
l=l

Returning to Eq. (24), we now have

Xp=Hp+U, U=[Hp, D]. dt's(t)
I

Iv,) (25a)

We now recognize that [1+(Xp E+ie)—'(Xp Hp)] i—s
an operator (the Mpller operator) which forms an
eigenstate of Xo from an eigenstate of Ho, where both
have the same eigenvalue of the operators Ko and Ho,
respectively (the sign of ie in this case does not matter
since both states are plane-wave and no real scattering
is mediated by U). We therefore have exp[D(oo) Iv)
=

I v) and the lemma is proven; the case of limt ~ —~
is proven the same way.

It is possible to prove this identity in a second, very
direct, way. We expand the Mff lier operator'o'

where

{1—(Xp—E+ie) '[Ho, D]}=1jg ORt,
1

ORt ——Gp[Hp, D] Go[Ho, D].
Here Gp=(E—Ho) 2, and Go and [Hp, D] each appear
l times. We shall prove that OR&= [—D]'/l!. For l=1
we have

(E—H&&)-'[Hp, D]
I n) = —DI tt).

If we assume that ORt ——[—D]'/l!, we then have

OR(t+t) =Gp[Hp, D]OR(= (—1)'Gp[Hp, D]D'/l!
=Gp( —1)'(Hp —E)D'+'/l!

+Gp{( 1) /l!}[D,Hp]D.

Since [D,Hp] commutes with D, we have

or

dt2 dtt{E(tt) E(tt) }. (25b)

and since

we have

X(t) = e &"Ht(t)e

e- &'&=exp(iXpt)e-D&'& exp( —iXpt),

(26)

X(t)=exp(iXpt) e &p) Hte+D &'& exp( —iXpt) . (2'7)

Since, moreover, SCoe ( )=e & )Ho, we have

Q(t) —e-D(p)eiHotH&e ilrpteD(p)-

I&.(t) =e &')Ht(t)e &'&.

Substituting Eq. (28) into Eq. (25b), we have

r

r
dxH, (x) I

P«)Iv.).

Since e D&o&
I
v)=

I rt), we can now prove the relation

d44o (4&) ~44;&. (29&S(f,i)=(nt"I v' expI i-

We must now write K(t) in terms of E(t) in order to
bring this expression into the familiar form in which the
interaction operators are written in the interaction
picture exp[iHpt] exp[ iHpt—] For .this purpose we
note that

[D'H ]=lD' '[DH ] In the energy continuum, S(f,i) is therefore equal to
S(f,i), the S-matrix element for this transition derivable

OR«, )=( 1)t+2D&+&/i!+( 1)&{Go/(l 1)!}Dt[DH,] from the old subsidiarycondition.

' M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(&953)."'¹teadded 222 proof The following . argument assumes that
the various operators act on an eigenstate !tt) for which
(Hp —Z)!tt) =0.

VI. PHYSICAL CONSEQVENCES OF THE
NEW SUBSIDIARY CONDITION

In this section, we address ourselves to the question
of what observable consequences we can expect from
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the nonpersistence of the old subsidiary condition,
Eq. (1).

One source of such effects is in the electromagnetic
decay of short-lived particles. The spread of the Gnal-
state energies over a resonant spectral curve is due to
the detection of the "final" state after a hnite time and
should show the effects of any leakage of state vectors
into the unphysical subspace. Specifically, the term

Tj,;——&zzj+IeD(H E—){e D+(E H—+io) '

Xe DCHo+Xz+5+V+0+n —E)}lzz;&. (32b)

Similarly,

(E H—+i.)-'e D-

(E Ho X—) —F—
I&
——V n—+zo)

&zzj IDll&&llH) IN;)(E;—E&)-'(E;—Ej),
and if we let

Ho+ V=Hs,
which is a contribution to the second-order transition
amplitude connects states Izz;& and Izzj) which are both
in the physical subspace (and represent detectable
particles). This term does not vanish when the spectrum
of energies of final states properly represents the 6nite
lifetime of the decaying particle, though it is an open
question whether it will have a measurable effect in any
actual decays.

Another direction along which to look for possible
physical effects of the new subsidiary condition is the
scattering or decay, via electromagnetic forces, of
systems held together by the strong interactions. In
that case we derive a 6nal-state theorem, if we wish the
transition amplitude to be exact in the strong inter-
action and wish to evaluate it to some definite order in
eo. Let us consider a Hamiltonian H=Xo+Xz+V,
where V is some strong-interaction Hamiltonian. Con-
sider an asymptotic state

I v;) corresponding to a scat-
tering state 4'; which is an eigenstate (H —E)@;=0.
The relation between these two quantities is given by

e,= [I+(E—H+io) —'(H —E)) Iv;). (30)

If we choose the state Iv;) to be exp[—D) Izz;&, then the
transition amplitude to a state

I
v j& is given by

T(f,i) = (zzj+
I
eo(H E)—

X[1+(E H+zo)-'(H ——E))e-
I
zz;&. (31)

Since
~pe-~ = e—DHo

Xze n=e n{X)+P},
where &=CD,X)], we have

T(f,i) = (zzj+IeD(H E){e +(—E H+io) '—
X Ce D(Ho+Xz+ r E)+Ve-D]}

I zz;). (32—a)-
If we write

enVe D= V+0+n-,
where

e= [D,V]

n= o[»C»V]]+(1/3')[D, [D,CD, V]]]+.
+(I/zz()[D . . [D V] ]+

then we have
Ve ~= e ~[V+8+n]

and
$;(+)= [1+(E—He+ io) 'V)

I
zz;&

4' '= [I+(E—Hs —zo) 'V) lzzj&

The 6rst two terms on the right side of Eq. (33) lead to
identical results as the right side of Eq. (20). This means
that the on-the-energy-shell value of Tj;(z& is given by

where

and

Tj .(z) —2'j,(z)+gj,(z)

Tj ('& = &b(-&
I
H z(E—H+ io)-'H)

I
&;(+&)

~,; "=!&b'—I CD, CD, v]]I~;( &.

(34)

Tj,(') is identical to what the old formulation of QED
in the Lorentz gauge would have given; hy, ,{"is an
additional on-the-energy-shell term which appears in
this new formulation only. Since V is independent of
the photon 6eld, we can write

4j,,(')=o' Q (kk') —"'

X&b' '*Is'~.Qs'~, QCP(lr), CP(lr'), V]]I h"+'& (33)

To this order, the asymptotic state, as t~+oo, will
include

Ito(+ oo) = —2zri dEjdE, o(Ej—E;)g(E;)t))j,;(')

x &b(- *Ib -»
I b —&e-*»',

we have (since CD,H)) = [D,X&))

Tj,,= &zzj+I eD(H E)e—
X{1+(E—Hs —X(—CD,H&)—[D)V)—n+io)-'
X (Hs —E+X)+[D,H))+ CD, V)+n) }I zz;&. (32c)

This can be rewritten as

Tj,;—&zzj I {Hs E+Hz+—CD,Hs]+CD)H)]+n}
X{1+(E Hs —H) —CD,IIs)——CD,Hy) n+io) '—

X(Hs E+Hz+CD—)Hs)+CD, H1]+n)}Izz;&. (32d)

The on-the-energy-shell value of Tj,; to second order in
the electric charge is denoted by Tj;('&, which is given
by

Tj;()=&b(-) ICD,H))14( )&

+&)j '
I {H)+[DHs)}(E—He+zan)

x {H,+LD,H,)}I
&;( »

+l&b' 'ICD, CD, V]]lk"+)&, (33)
where
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which can be written as and
pt. ,8(x))=~,(a,8(x)). (A3)

Pa(+ ~)= —2si dEydE;b(Ef —E~)g(E;) )& st g (kk') —s~s

APPENDIX A: COVARIANCE OF THE
SUBSIDIARY CONDITION

An operator 8(x) in the Schrodinger picture is defined

to be a four-dimensional scalar operator if its expecta-
tion values (when taken with state vectors that obey
the equations of motion) are four-dimensional scalar
functions. When this criterion is applied, Qi+&(x) can be
seen to be such a scalar operator, though X&+&(x) is not.

The commutation relations that 8(x) must satisfy
with the generators of the Lorentz group, in order to
satisfy the preceding criterion for a scalar operator, are

LZs, 8(x)]=—ic& 8(x)/c&xs,

PJs, 8(x))= ies&„»r)8(x)/Bx„—,

(A1)

(A2)

"W. Heitler (Ref. 1, Appendix, Sec. 3) commented on the
likelihood that the use of the ~e) states for bound-state problems
in quantum electrodynamics was incorrect and would lead to
diQiculties.

X&6' 'l~tsO~'kal p(k), b(k'), V))I4'+')14' &)s *"'

In contrast to the case of pure electromagnetic inter-
actions, in this case there are differences between the
Gnal asymptotic states of colliding systems as evaluated
on the basis of the old and the new formulation of the
theory. In this case these differences will appear when
the final-state ket vector

~
$r' ') contains two Q-type

photons and provided of course that the operator
(p(k), )p(k), V)] does not vanish. It is only for unusual
interaction Hamiltonians Bg for which this double
commutator is not zero; in particular, in the case of
strong interactions that are derivative-free and local,
fp(k), Q(k), V]) does disappear.

These terms Li.e., l4(+oo)), when they do not
vanish, presumably mean that the subsidiary condition
Xi+&(x) ~ts)=0 is not succeeding in forcing the state
vector back into the physical space of the theory. This
circumstance therefore raises serious questions not only
about the physical interpretability of the Gupta theory
for this case, but also about the gauge invariance of
transition amplitudes in the Gupta theory for this type
of process. None of this, however, should be taken as a
criticism of the strong-interaction Hamiltonian in-
volved, since presumably the use of 0&+&(x)

~
&)=0 as a

subsidiary condition should lead to consistent and
gauge-invariant results in these cases too.

The authors also believe that the effect of the new
subsidiary condition on Geld-theoretic corrections to
bound states should be reexamined to determine
whether these are in any way affected by the change in
subsidiary condition. "

The first two conditions are usually trivial and can
be veriGed by inspection. The only condition that
requires careful scrutiny is (A3). It obviously arises
from the pure Lorentz (velocity) transformation. In
the case of QED, Ms is given by"

II„l+&(x)=— II„(x)+i dy ~(x—y) Vs& (y) (A(&a)
2

1
~,"'(x)=- &„(x)+i dye(x —y)II„(y)

and the properties of X)(x—y), we obtain

I~i,X"'( ))=-i*iv II+ (x)-*iv ~.+ (.)—;i»,(x)

t9+- — — dyyiJ (y) $(x—y)
2 8$~

=» iV II—&i &(x)—Vs/4&+&(x) ——,'jp(x)

+- dy X)(x—y)v J(y)
2

8+- — dy8(x y)v J—(y)
2 Bxg

+- dy X)(x—y)J,(y), (A7)
2

where

It can easily be shown that

g(x—y) = (27r)
—' dkk se'" &*-».

LH, X&+&(x))= —iV. II&+&(x)—V'F 4&+&(x)—ssip(x)

1+- dyn(x —y)v J(y) (AS)
2

"A. I. Akhiezer and V. B. Berestetskii (Ref. f, pp. 226 and
278).

dx(»,H(x) —i(114(x)2 „(x)—11s (x).4,(x))
+sit(x)VA (x)) . (A4)

By making use of

L~.'+'(x),~.' '(y)) =-,'&,„&(x—y), (Asa)

Dl. '+i(x), II.' '(y)) = ——,'~. .&'S)(x—y), (ASb)

L~."( ),11, —(y))=- ~.„~(.-y), (As.)
and
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and that

[Mi,x(+&(x)]=x([a,x(+&(x)5

1 8+- dy B(x —y)& J(y)
2 Bx)

+- dy &(»—y)~i(y) (A9)
2

This shows that X&+)(x) is rot a four-dimensional

scalar operator. Since

[M),Q'+&(x)] =$$(—iV II&+&(x)—V'A4&+&(x) —2'ip(x)),

we Gnd that

First let us consider %(=e'~, where

F= —i(4 ) ' dxdyp(x)(Ix —yI)
—'II (y).

Note that Pt= —F but F*=F, so that the transforma-
tion is pseudo-unitary. Now, since

1
'It '114(+&(x)It= II4(+)(x)+— dy X)(x—y) p(y), (Cia)

2

W-'A (+&(x)+=A (+&(x)

+i(8') ' dy Ix—
yI 'p(y), (C1b)

and
[M(,Q &+& (x)]=x&[H,Q &+'(x)], (AIo)

'll 'A '+) (x) II=A;(+&(x), (C1c)
and Q(+&(x) is a four-dimensional scalar operator. Note
that if Ho, rather than H, had governed the time
evolution of the system, X&+&(x) would have satisfied
the criterion for a four-dimensional scalar operator.

'lt 'Q&+&(x) ql, = X&+&(x),

'IL 'PI Q(+)(x)5'It= —iV II&+'(x)—V'A4(+&(x)

(C2a)

APPENDIX 3: UNIT OPERATOR

In this Appendix, we erst address ourselves to the
problem of specifying the unit operator in the inde6nite
metric space. In the representation in which we refer to
the photons as transverse, longitudinal, and timelik. e,
(i.e., &)t)...r;&,at), J.,&&t), 4) we hand that the matrix elements

(oI~'.- at, ,.o)=8, , 5., ~ and that1=1t&(tI = It&(t*Ie,
where y)&= (t yt I

l)= (l+I I). This can easily be seen to be
identical to 1=

I
l&(l'*I in the representation in which

the designation Z- or Q-type photon is used; in the
form 1=

I
l&g'*I, the I and l' states are chosen so that

for every Q-type photon operator in /, the corresponding
E.-type appears in /', and vice versa.

In the case of the
I )» type states, in order to guarantee

that orthogonal states appear in the unit operator, the
form 1= I)()(I&'*I must be used since

(n~'*In'&= (~~'"
I exI [D] expL —D] I

~'&= ~.,'
(n)pI n)*., t&.)=, (a),p I exp[—Dt] exp[ D] I

&i) ', p'&

F(+ = —i(4m) ' dxdyp(x)(Ix —yI) 'n. (+&(y)

and

where

I F & &,F(+&]=— dxdy p(x) &)(x—y)p(y),
2

g(x y)
—(2yr) 3 di( P

—aeik (x—y)

= [HO, X&+&(x)]. (C2b)

Since the transformation 'lL is pseudo-unitary it is
clear that if I) &='ItIe), when the Ie) are normalized,
the

I p& are too. However, we can ask whether the states

I)& are expandable in terms of the states Ie&, i.e.,
whether the inner product (n*I) '&= (n I yt&I e'& exists,
where

I e&, In') are two states in the set satisfying the
"free" Lorentz condition [Eq. (1)].

Let us write

p= p(+)+p(-)

where

APPENDIX C: ALTERNATIVE TRANSFORMA-
TIONS TO THE "FREE FIELD"

SUBSIDIARY CONDITION

Clearly,

[p(+) [p(-) p(+)]]=o

Ke have used the pseudo-unitary transformation e~

to effect a simpli6cation of the set of states satisfying
the subsidiary condition. In this Appendix, we consider
some alternative transformations and compare them
with eD

and, therefore,

expiF = exp[ip & &5 exp[ip(+&5 exp-', [F&-&,F&+&].

Hence we have

(n+Ie'~In'&=(eIe'(~& & ~&+&&Ie'&
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if there are no timelike photons in
I n), I

n'). Thus

(n*l v') = (n I exp — dxdy p(x) &&(x—y) p(y) I
n') .

the states
I n) are normalized, so are the states

I v)=VV In) B. ut, once again, let us compute the inner
product of a free and interacting Lorentz state

e+ u'= e+e~e'.

ote that J'd»dyp(x)g(x —y)p(y) is a positive semi- We use the same trick that we used previously. Let

definite operator and is, in fact, in6nite; e.g., for the G—g(+)+g(-)
7

vacuum state,
where

(oI fd*dr p&*&NX r)~&&&—lo)' G(+)= —i(4zr) ' dxdyp(x) Ix—
yl 'V A(+)(y).

dxd3(0lp(x) II)g(» —y)(tip(y) [0) We now find

I
[G( ) G"))=- dxdyp(x)8(» —y)p(y)

2

dRdr e'P &'g(r)
I (0 I p(0) I l) I

'= m

Thus (n*l ')=
Another transformation which leads from the inter-

acting to free Lorentz condition has been used by
Sleuler. "Let

and [G + LG ) G(+&))=0. Hence

The characteristic of D that makes it so useful is that
[D(+),D( &]=0 and hence (n+Iv')=&3„,„.

APPENDIX D: RELATION BETWEEN THE
LORENTZ AND THE COULOMB GAUGE

where

% =eg

G= —i(4~) ' dxdyp(x) Ix—yl
—'V A(y).

In the body of this paper we have related state
vectors Iv) which obey Eq. (13) to others, In), which

obey Eq. (I), by the pseudo-unitary transformation

I v) = e ~ ln). The expectation value of H taken with the
physical states Iv) is (v+IHlv) and this can also be
regarded as (n*

I
H

I n), where H =e ~He~; 8 is given by
Note that here Gt= G*=—G and eg is both unitary and

pseudo-unitary. From the relations

'W 'II4(+)(x)VP = II4(+'(x), 'Vt& 'A 4(+)(x)%=A 4&+&(x),

8
'N 'A. (+)(x)% =A (+)(x)+i(8zr) ' dx'dy'p(x')

8$g

x(l»' —y'I '&(»—y')),

8=H+(Szr) —' dxdy

X[V A(y)+iII4(y)) lx—yl
—'V J(x)

8
+z(8 ) ' dxdyp(y)

Bxp

'll, (+)(x)%= II;&+&(x)—(8 ) '
Bxg

we find, again,

dy p(y) I»—yl-', X A 4(x) —ills(x)
Bxp

+(8~) ' d"dyp(*) I"—yl 'p(y) (DI)
'0 (+)(x)%=X(+)(x),

~-'[H, fl(+)(x))W = [H„x(+)(x)) The meaning of 8 can be clarified if we introduce the
new fields

so that the states satisfying the free Lorentz condition

In) are pseudo-unitarily equivalent to the states satis-
~ x~=A x ~~sz~ —'

fying the interacting Lorentz condition. Once again, if @'(") ""'+'

"K.Bleuler (Ref. 2). X I»—
3 I

'[& A(y)+iII4(y)) (D2a)
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g4(x) =A4(x) —(Ss.) ' dy

l9

[x—yf
—' A 4(x) —iII&(y)

8SIt,

The following are easily shown to be the case:

[@'(x)PL(y)) =o,
8

[@(x)&A~(y))=~'. (S~) '
&X'

=-,'A4(x) —i(Sn-)-' dyix —yi 'V II(y).

Also,

V g=V A—-', (V A+ill, )=-', (V A —i«). (D3)

Therefore, we have

8
[@;(x),II;(y))= i b;,;h(x—y)+(Svr) '— —

~

x—y ~

BxjBx;

8
[@,(x),A,(y)) = —(S~)-'

~
x—y~-',

Bxj

and
(e~

i (8g;(x)/Bxg) i n) =0

(n+~(am, (x)/ax, )2~n) =0.
Moreover, we have

( *n~L(x) (n)=~~(n
~

A4(x) —i(4n) ' dy

(D4)

(D5)

[@'(x),«(y)) =o,
[& (x),11 (y))= li~(x —y),

[@4(x),II;(y))=0,
and

[@4(x),5;(y))=0. (D9)

&& ix—y(
—'V II(y) (n), (D6)

Using these commutation rules we 6nd that

V'g;(x)+ [H,[H,g;(x)))

and since

(n+
~ {V.II(x)—iV'A 4(x) ) ~

e)=0
=J (x)1(4') '

dye x—y i

—'V. J(y) (D10)

we also have
(n+( 54(x) )n)=0. (D7)

The potentials 5„(x) act on the ~n) states as though
they were in the Coulomb gauge. Note that in terms of
the 5„(x)

B=ao— dx J„(x)5„(x)+(Sm) ' dxdy

&&p(x) ~x—y~ 'u(y) (DS)

Let us now 6nd the equations of motion for the 5„.

and the 5; are only coupled to the transverse parts of
the current, which is consistent with

(n+~ (Bg;(x)/Bx;)
~
e)=0.

Furthermore, V'54(x)+[V, [H, 54(x)))=0 and g4 is a
free 6eld. Since (n+~54 e)=0, we can take 54(x)=0.
Then the expectation values (n+~ g„~n) are unaffected

by the gauge transformations still permitted within the
free Lorentz gauge (which characterizes the states

~
n)).

e is rot simply a gauge transformation, however,
since e ~A en' 5 .


