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The spectral-function approach to the broken-SU(3)-symmetry sum rules has two difhculties. One is the
ambiguity with respect to the Schwinger terms, and the other is the derivation of the so-called second sum
rules, which are not acceptable. By using commutators involving a charge operator, our approach is free of
the erst difhculty. In computation, we make the following approximation for the operator Vtr /which is an

SU(3) raising or lowering operator in the symmetry limitj: In the broken symmetry the operator Vtr still
acts as a generator, to a good approximation, in an appropriately chosen infinite-momenta limit. For the
vector meson ~ l+l couplings, we are able to derive sum rules which are essentially equivalent to the first
spectral-function sum rules but not to the second ones. Instead, we obtain other sum rules which enable us to
determine the first-order co-p mixing angle from the rates of V —+ l+l decays. A sum rule for the co ~ 3'., @~
3x., and E*~ E~x couplings is also obtained. We also derive in our approach the Gell-Mann —Zachariasen
relation and its E* analog which favors the existence of the sc meson.

I. INTRODUCTION first sum rules' ' in the broken SU(3) symmetry read

(3)G s/nt s=(G~.'/m~*')+F '
and

G s/rrt s—G s/rrt„—G /rrt '=0 (4)

Here, F„ is defined by (0
~

V„~+(x)
~

tt (q))=q„F., where tc

denotes the I= ~~, I'= &1 scalar resonance. The second
sum rules' are given by

(5)62—6 e2
P

and
G2 —G2+G2

The second sum rules require stronger conditions
than the erst ones for the high-energy behavior' ' of
the spectral functions. However, the derivation of these
sum rules' requires a knowledge about the so-called
Schwinger terms, and reference to the algebra of gauge
6elds' has often been made to make a definite statement
about Schwinger terms. ' Several works4 have been
devoted to the study of the ambiguity due to the pos-
sible existence of various types of Schwinger terms.

As regards the practical implications of these sum
rules, Sakurai'has pointed out that the combined use of
the 6rst and second sum rules is not consistent with ex-
periments, so the second sum rule should be discarded.

The purpose of this paper is to show that we could
also obtain sum rules for the 6's from a different stand-
point without using the spectral furtctiorts and to discuss
experimental implications of these results.

We propose to use the commutation relations between
a charge dertsity and a c-harge operator or between two
charge operators. Since we always involve a charge oper-
ator, this approach can avoid a confrontation with
Schwinger terms. Therefore, this approach is consider-
ably different from the spectral-function approach so

The space integrals of the time component of these cur-
rents will be denoted by V +, Vz+, V„, ., and A
A~+, A„, . ~ . We denote also the matrix elements of the
V„(x) between the vacuum and a vector-meson state
as follows Le„N is the polarization vector of the vector
meson ag:

(2qo)'"(o
I
Vo"(x)

I p (q)) =Gpeo',

(2qo)'"(0~ V„~+(x)~E* (q))=Grc*e„~',

(2qe) '"(0
~
V„&'(x)

~
co'(q)) =G„e„", (2)

Recently, Weinberg et al. ,
' and also Das et al. 2 from a

different approach, obtained interesting sum rules for
the above defined G's by using the high-energy behavior
of the spectral functions of appropriately chosen combi-
nations of the vector and axial-vector currents. This
approach has the advantage that the spectral function
receive contributions only from states of fixed spin and
isospin. They assumed that the spectral functions are
dominated by appropriate single-particle states. Their

~ Supported in part by the National Science Foundation under
NSF Grant No. GP-6036.' S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 137 (1967); S. Weinberg, Phys. Rev. 18, 507 (1967).

'T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
761 (1967).

'T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

4 See, for example, Y. Frishman, Phys. Rev. Letters 19, 539
(1967); R. Perrin, ibid. 20, 306 (1968).

~ J. J. Sakurai, Phys. Rev. Letters 19, 803 (1967).
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' 'N the broken SU(3) symmetry there have been many
& ~ interesting calculations based on the idea of current
algebra. Recently, the derivation of sum rules from the
spectral functions of vector and axial-vector currents
has attracted much attention. Let us denote the vector
and axial-vector currents by, for example, V„+(x),
V„+(x), V„e(x), , and A „+(x))2„+(x),A „&(x),
respectively. They are normalized in a quark model as,
for example,

V„'(x)=ig(x)y„-,'(Xi+its)q(x), V„~(x)=ig(x)y„,') sq(x), -
A„~+(x)= ig(x)yean„s P,4+iXs)q(x), . (1)
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that there is, from the outset, no guarantee that both
approaches give the same results. We shall show below
that our approach leads to sum rules almost equiv-
alent to the first spectral-function sum rules but we
do not obtain the problematical second spectral-function
sum rules. Instead, we obtain other sum rules for the
vector meson ~L+l decay couplings which enable us to
predict the branching ratios of V -+ L+L decays in terms
of the co-Q mixing angle computed in the first order of
the symmetry-breaking interaction. The result is
different from the one obtained by using the usual
treatment of the te-p mixing. We also obtain a sum rule
for the to —+ 3s., P —+ 37r, and E*—+ E7rs couplings which
is also useful for the determination of the to-P mixing
angle.

Finally, we also derive a Gell-Mann-Zachariasen
relation, G,o + G,=m, ', and its E* analog which
provides some information on the rc meson.

IL SU(3) APPROXIMATION

We propose to use an approximation for the vector
current V„x(x) which may be compared, in a spirit,
with the asymptotic SU(3) condition used in the
spectral-function approach. ' In the SU(3) symmetry
limit, V& is an SU(3) generator and it only connects
members (A and 8) of the same SU(3) multiplet. In
the broken SU(3) symmetry, the renormalization of
the value of the diagonal matrix elements (A

~
V„x(z)

~
8)

at zero momentum transfer appears only in the second
order (denoted as O(e') j of the SU(3)-symmetry-break-
ing interaction whose strength is symbolically denoted
as e.' Our approximation is to assume that this renormal-
ization of the matrix elements of the V„x(x) at zero
momentum transfer is small compared with other sorts
of symmetry-breaking eRects. The form factors of
(A

~
V„x(x)~B) which are multiplied by nonvanishing

Pin the SU(3) limit] kinematical factors are called SU(3)
form factors of V„x(x). Our approximation, therefore,
corresponds to the use of the SU(3) value onLy for the
SU(3) form factors onLy clL sero rnonsenturn transfer. We
call this approximation an SU(3) approximation. We
stress that we only make this approximation at zero
momentum transfer, where the renormalization eRect is
expected to be minimum.

Except for this approximation for the matrix elements
of Vz, we use observed values (which naturally include

the effects of symmetry breaking) for other quantities
such as coupling constants and masses of particles
consistently with the original spirit of the current-
algebra approach. In order to carry out this program
in a systematic way, we always compute the matrix

M. Ademollo and R.. Gatto, Phys. Rev. Letters 13, 264 (1964);
S. Fubini, G. Furlan, and C. R,osseti, Nuovo Cimento 40A, 1171
(1965).

elements of the Vx clt the appropriateLy chosen iefiniLe
rnornenta limA W. e then can use the SU(3) value
(which is at least known to the first order in the sym-
metry-breaking interaction) for the diagonal elements
of the U~ and consistently drop the nondiagonal matrix
element of V~ in this limit. ' In other words, our approxi-
mation corresponds to assuming that, even in the
broken symmetry, the operator Uz still acts as an

SU(3) generator, to a good approximation, in the ap-
propriate in6nite-momenta limit. So far we did not
consider the cases where mixing possibility exists. We
certainly need to consider the important SU(3)-breaking
effect due to mixing which appears in the order of O(e).
By taking into account the effect of mixing of the order

O(e), we claim that our SU(3) approximation is good,
effectively, to the order. 0(e).

When two SU(3) states can mix in the broken SU(3)
symmetry, we write physical states, to the first order
of symmetry breaking, in terms of the SU(3) states
(with which the physical states coincide in the limit
e~ 0) and apply the same procedure whenever these
states come into the matrix elements of V~. We
believe that this approach gives a more consistent way
of handling the first-order mixing angle than the usual
one. The difference can be seen explicitly in Sec.
III. In the usual treatment, the ratio I'(Q ~ L+L)/
I'(tee ~ L+L) is given by cot'e, where 0 is the first-order
o&-P mixing angle. In the present approach this ratio
acquires an extra factor (ns„/me) which may be checked

by experiment.
Our SU(3) approximation in the broken SU(3)

symmetry must, of course, be justiled. First of all,
the rate of K,3 decay indicates that the renormalization
of the SU(3) form factor F+(0) of the matrix element

(s'~ V„x+(x) ~K ) at zero momentum transfer is indeed
small (2—

S%%u~).
' Secondly, using the charge commu-

tators typified by Ax ——LVx,A j and using the above-
rnentioned approximation and the PCAC (partially
conserved axial-vector current) hypothesis, we have, for
example, derived a relation between the coupling con-

stants for the E*—+ E+s and p ~ rr+s. decays where

7 The dropped nondiagonal elements of Uz are formally of 6rst
order in the symmetry-breaking interaction. One can show that
the second-order renormalization of the diagonal matrix element
of V~ is expressed as a second-order eRect of these nondiagonal
elements. Therefore, our SU(3) approximation corresponds to
assuming that these nondiagonal elements are, in eRect, less
important compared with other symmetry-breaking eRects.
Namely, Vz acts as a generator, to a good approximation, in the
in6nite-momenta limit.

Application of this approximation to charge commutation
relations to discuss the broken SU(3) symmetry has been dis-
cussed by S. Matsuda and S. Oneda LPhys. Rev. 158, 1594
(1967)j.' S. Oneda and J. Sucher, Phys. Rev. Letters 15, 927 (1965);
15, 1049(E) (1965). The precise measurement of the IC,& decay
rates and the form factors F+(q') is important. The electromag-
magnetic correction is small (less than 2 jo), as is to be discussed,



171 CHARGE —CHARGE-DENSITY AND CHARGE-CHARGE COMM UTATORS 1745

only one of the pions is off the mass shell, ' "i.e.,

2Grc "x- 0(mrs', mx', m '=0)
R=

Gp+ -.o(m ps, m ', m '= 0)

In the same way, taking the matrix elements of the corn.-

mutator LVrr-, Vpp(x) $= —a&3 V, (x), between the

vacuum and the E*(q) state with
I ql = po, we also

obtain

m p'+mrs*'

2mp

m a+md'i
=1.19 (-mx im).P 2m. ' i

As Sakurai'" often emphasized, this indeed gives a good
agreement with experiment if we take I'(p~ pr+pr)
~128 MeV, which seems to be a currently preferred
value. We can also derive the Gell-Mann —Okubo mass
formulas by using this approximation and a charge
algebra as will be shown in Sec. III B.

Encouraged by these observations, we would like
to apply this approximation to the charge —charge-
density commutators.

III. SUM RULES FOR THE VECTOR
MESON ~ l+l DECAYS

(mps+mrc' ) 1—Gp cos8I
I

=—Grr ", (10)
2mps i V2

where we have written, to the order O(e),

a&=cos8 cpr+sin8 cps, g=cos8 ~s—sin8 rpr. (11)

o&~rpr and g —+ pps in the limit e —+0. Since we are
interested in the mixing of the order O(e), this de-

scription in terms of 8 is sufhcient for our purpose.
If we, instead, choose the commutator Lvx+, Vpx j

= V„'+V3vpp' and insert it between the vacuum state
and the g(g) or ~(q) states with

I q I
= po, we obtain

A. Derivation and Exyerimental Imylications mx "'+m p')
Gp= —Grr* cos8

Consider the following charge-charge-density com- 2mx*' i
mutators:

I
Vgo, vp (x)i=vpx (x).

If we take the matrix element of this commutator
between the vacuum and the E*-meson state with
infinite momentum, we obtain in our approximation
(in a symbolic notation),

&ol vit I")("Iv" (*)lz'+(a))
—&oI vo ( ) I p')&p'I V- I&*'(fl))

=&ol v x-(~) le*+(q)& lql = ~.
For the matrix elements of charge operators involving
vacuum states, such as (Ol Vlpp& or (OIA IN&, the only
orle particle states -which can contribute are the spin-
zero mesons. Therefore, in the above equation, for the
element (Ol Vgo

I rp&, we only need to consider the x-meson

state (pp=x). For the matrix elements (ps
I
Vzol E*+(q))

Laccording to our SU(3) approximationg we only need
to keep the state ps= p+ in the limit

I g I
= po. We shall

show in Appendix A that the contribution of the I~:

term in the above equation is at least of second order
in the symmetry-breaking interaction. Therefore, we

drop this contribution consistently with our SU(3)
approximation. We then obtain, after summing over the
p-meson spin states (the computation is similar to the
one given in Ref. 8),

1 m, '+mrs' mx"+mp')
=—G, cos8 — I. (12a)

v2 2m 2 2m'*' i

As will be shown in Sec. IV, this relation is numerically
equivalent (within 1.5 jq) to

We also obtain, for G„,

1 (mrs "+m„'~
G„=—Gx sin8I

v2 2mx*s

which is also numerically equivalent to

(1 m„) (1) (m~)
G„ I

—Gx " sine
I

I

—IG, sin8I I. (13b)
kent mx i k&2) km, i

From (9), (12), and (13), we have established relations

between G's. In particular, (12) and (13) give

(mp +mx+
Gx ——

I

'
IG, .

2m, ' i
(9)

G4, (mls 'ym p') mp)
lcot8, (14a)

G kmlc'+m 'i m i
"If=mrr~/m, has been inferred by many people. For example,

see H. T. Nieh, Phys. Rev. Letters 15, 902 (1965); Phys. Rev.
146, 1012 (1966); Riazuddin and Fayyazuddin, ibid. 147, 1071
(1966). Our derivation has the advantage that the off-mass-shell
extrapolation can be clearly stated, and no model is used except
for the use of charge commutation relations.

where y„and yp are the photon-rp and photon-P

coupling constants, respectively. For the rates of
P-+ l+2 and pp + l+I decay, I'p—, and I'„, we therefore

predict in terms of the erst-order pp-qh mixing angle 8



1746 S. M ATSU DA AN D S. ONE DA

from (14a):

irl' q'72 arm„'i' m '+m, '

kr„i

(m~) I

cote. (14b)
Em, i

&(I VKo, VKo)~K*s(q))=0 with (q[ = ~ and use our
SU(3) approximation. By expressing the c0 and
states in terms of epi and res states using Eq. (11), we
then obtain from the above equation directly the first-
order e~-p mixing angle 0 given by

sin20 (3m 2 4mK@2+m 2)/3(m 2 m 2)

—sm, l', m I"„+mal'&. (14e)

B. Remarks on the ai-p Mixing Angle

We have thus shown. that Eqs. (14b), (14c), and (14d)
may serve to determine the first-order re-p mixing angle
8. The derivations of these formulas are general since
we do not make a specific assumption about the nature
of the symmetry-breaking interaction. It is therefore,
of great interest to study whether the value of 0 de-
termined from the V —+ l+l decays coincides with the
value 0 ~40 derived from the first-order vector-meson
mass formulas based on the usual assumption of the
symmetry-breaking interaction. In order to further
illustrate this point and also the applicability of our
SU(3) approximation, we show below a new derivation
of the 8 by utilizing a current algebra and our SU(3)
approximation.

I et us now assume that the following commutation
relation holds:

|VKo, VK )=0.
Compared with other commutators used in this paper,
the validity of this commutator is model-dependent.
If, for example, the SU(3) symmetry-breaking inter-
action transforms like j'g(x)Xsg(x)d'x, the above com-
mutator is satisfied. Consider the equation (K*'(q)

~

Equation (14b) may be useful to determine the 6rst-
order co-P mixing angle 0 from the precise measurement
of P(tu) ~ l+l decays. Note that the usual approach
gives G~/G„= cot8. Notice the extra factor (mq/m ) in
(14a), which arises from our way of handling the lowest-
order mixing. The measurements G,/G„ from the ratio
of r„ to r p will also be useful in testing our approach
and approximation for the broken SU(3) symmetry.
We predict, in terms of 0,

tr31' '" 22,)"'(m, '+m ' (m *'+m ')
m i k 2m, ' 5 2m

m, q
"2

sin 8, (14c)
m..i

+
k I'p ) mb) 2m ' 2mK'

f mp)
cos8. (14d)

&m, i
Upon eliminating 0, (14c) and (14d) lead to

If we substitute this value of 0„ for 0 in Eqs. (12b)
and (13b), we obtain

and

1(mp') (4mK" m—'—3m. ')

25m, si 3(mg2 —m ')

1 arm. 2~ (3m42 —4mK*'+m, ')

2&, i

These results are the same as the ones obtained by
Das ei at."Therefore, if we assume 8 =8 (which follows,
a,s shown above, if we assume further, for example,
the validity of the commutation relation L VKp, VK'j =0)
our results agree with those of Das eI, at."obtained in a
spectral-function approach by further modifying the
second sum rules (5) and (6) by introducing specific
SU(3)-violating effects. Recently Sakurai and Oakes"
have also attempted a similar modihcation of the second
spectral-function sum rules. As mentioned in the
Introduction, we do not need to introduce such a pro-
cedure to derive Eqs. (12), (13), and (14). Our SU(3)
approximation directly gives a kind of result which
Das et al." and Oakes and Sakurai" wanted to derive

by patching up the second spectral-function sum rules

by imposing further a specific model of symmetry
breaking. For the sake of simplicity, we, of course, hope
that experiments will turn out to be consistent with
having 0 =0.

mp +mK mK mK* +my mP

5$p 2'~ ~ OSIS ~2' p

mK +m(g m~

2'+ 1s+

"Similar problems have also been discussed recently from a
different standpoint by T, Das, V. S. Mathur, and S. Okubo
LPhys. Rev. Letters 19, 470 (1N7)g.

"After we submitted this paper, the work of Oakes and
Sakurai LR. J. Oakes aud J. J. Sakurai, Phys. Rev. Letters 19,
1266 (1967)j has been published. If 0= 8~ (which we prefer), our
result on V ~ l+t decays is different from theirs.

IV. COMPARISON WITH THE SPECTRAL-
FUNCTION SUM RULES

We now wish to discuss the relation between our
sum rules and the spectral-function sum rules. We
first note that the function f(mg/mrr) = (mQ/mQ)—2m~'/(m~'+me') has an extreme value at m~/mii ——1.
Therefore, the relations
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hold within 1.4%, 0.9%, and 0.9%, respectively. We
have already used this in deriving Eqs. (12b), (13b),
(14b), (14c), and (14d). By noting this fact, we can
rewrite (9) as

G„'/yg '= GIc~'/mx~' (within 1.4%). (16)

In Eq. (3), F„' is of the order O(e') which should be
neglected in our SU(3) approximation.

We can easily verify that Eqs. (10), (12), and (13)
are mutually consistent within 1.0%. Moreover, from
(12) and (13) we also obtain, with a good accuracy
Lcompare with Eq. (4)j,

G 2 G 2 G s2 G2
+ = = (1&)

1g m 11$+ s2

PCAC which requires an oG-mass-shell extrapolation
m~' —+ 0.

We wish to point out that in the comparison of the
rates of E*—& E'+7r+rr and re(P) —+ 3' decays we can
avoid this diKculty and make a consistent determina-
tion of the mixing angle. Consider the following
relation between charge commltators:

2LV&-,a. j= (Vx,a.-] (=gx-).
Take the matrix element of the above commutators
between the I=1, (s+(y+), s (p )) stateandtheE'*+(q)
state with

~ q~ = oo. Taking the SU(3) approximation for
the matrix elements of V~ and using pion PCA, C for
the A 's, the computation in the frame p+=y-= —'q
yields a broken SU(3) -sum rule:

Therefore, it is demonstrated that our approximation
and use of charge —charge-density commutation relations
lead essentially to the first sum rules, (3) and (4), of the
spectral-function approaches. However, our SU(3)
approximation does not lead Ns to the second sum rlles,
(5) and (6), which are not acceptable. The SU(3)
symmetry is certainly broken. We have, however,
assumed that the charge V~ could remain, to a good
approximation, to be an SU(3) generator in the
itsfirtite momeeta-limit discussed above. We, neverthe-
less, have obtained results with an appreciable SU(3)
breaking. In the spectral-function approach with the
asymptotic SU(3) condition, we have to introduce
another criterion which prevents us from obtaining
strict symmetry results. "" In our approach, this
criterion seems to be already built-in by our SU(3)
approximation. This seems to be the reason why we do
not encounter the second spectral-function sum rules
in our method.

V. SUM RULES FOR THE to~ ~&~ 6~3~~
AND g~~ Z~~ DECAYS

In addition to Eq. (14), we would like to present
another way of measuring co-p mixing angle deiined by
(11), which may be feasible in the future. Usually the

y ~E+Edecay is taken to be the best place to measure
the mixing angle. However, theoretically this is not the
case. ' "In order to relate the P —+ E+E coupling to,
for instance, the p —+ 7r+rr coupling, the usual prescrip-
tion is to write a pure SU(3) F-type VPP coupling and
then re-express the cps field in the cps KK interaction in
terms of the physical fields P and co. However, we must
note that once the SU(3) symmetry is broken, the SU(3)
coupling relations must also be affected. This is not
taken into account in the usual determination of the
mixing angle from the P -+ E+E decay. )Note that in
the E*Ex and pew coupling constants we have already
seen that this effect is around 20% in the amplitude.
See Eq. (7).$ We have shown in Ref. 8 that we can make
some estimate of this effect if we tolerate the kaon

(sin8 G„o s —cos8 Geo s )=—Gx .. . , , (19)
v3

where each coupling constant" G is de6ned with one of
the pions off the mass-shell (m s —+ 0).

In (19), we are justified in using the physical masses
for the particles involved. ' Thus if our approximation
for Vrc is good and the off-mass-shell effect (rN, ~ 0) is
negligible, as usually assumed, Eq. (19) can be used to
determine rather precisely the value of 8.

In (19), since I'(Q ~ p+s. and 3s.)~0.05 I'(oi —+ 37r),
G„3 ))G& 3, considering that the phase space of the
P ~ 3rr decay is larger than that of the co —+ 3s- decay.
Therefore, in practice we may neglect the G& 3 term in
Eq. (19).We think that a precise determination of the
rate of E*~E+7r+m decay is useful in this respect.

LV,"(*),A. ]=A,-+(,). (20)

"G o + —o, for example, is dined in such a way that the
&u' ~ s+v m' decay matrix element is given by (16@„E~~,)—&in

XG„0~+~-~oe~p„pe~~'pp~+p~~ p, ~o

' In a similar approximation we have also shown (see Ref. 8)
can der1ve a set of sum ~ulnas between the ax1al vec

coupling constants of hyperon P decay at zero momentum trans-
fer. These sum rules coincide with those obtained by eliminating
the ratio of d-type and f-type coupling in Cabibbo's original
pure SU(3) analysis. This demonstrates that the usual way of
determining Cabibbo's angle is justi6ed rather well even in the
broken SU(3) symmetry if our approximation is good. The same
approach was also applied to the direct calculation of the pion-pion
scattering length from the E,4 decay. Results similar to those of
the usual current-algebra calculation have been obtained (S.
Matsuda and S. Oneda, Phys. Rev. 165, 1749 (1968)j."M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961).

VI. DERIVATION OF THE GELL-MANN-
ZACHARIASEN RELATION AND ITS X*
ANALOG AND POSSIBLE EXISTENCE

OF THE x MESON

We wish to add an application of our procedure which
now involves the axial charge A instead of V~. We
show that by using a reasonable approximation we can
derive the Gell-Mann —Zachariasen relation. "We make
use of the commutator
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Take the matrix element between the vacuum and the
s (q) state with lql =en. We assume that single-

particle states dominate the intermediate states. We
then obtain

(oI ."( ) I
p')&p'IA-'I )—&oIA-'I

X&~
I V."(*)l~ )=«IA."(x)l~ & (»)

We again note that for the matrix element of the charges,

(Ol A
I I& or (0I Vl ri&, the only one-particle states which

contribute are the spin-zero mesons. Therefore, together
with the restriction on the state e in the matrix elements
involving the current density, (0I Vs(x) or As(x)ll),
we see that the restriction on the intermediate states n
is stringent as in the case of spectral-function sum rules

and we may expect a quick saturation. "
If the pion electromagnetic form factor satisfies an

unsubtracted dispersion relation, as usually assumed

(see also the discussion given in Appendix 3), the second

term of the left-hand side of Eq. (21) will drop.

LF(s) ~ 0 as s ~ee, where F(s) is the pion form factor. )
Then at lql ~~, if we use PCAC for A +, Eq. (21)
yields

Gpo +„-Gp=mp', (22)

which is the Gell-Mann —Zachariasen relation except for
the fact that the G, coupling is now defined with one

of the pions off the mass shell (m —+ 0). However, G,
is on the mass shell.

If we, instead of (20), use the commutator

[Vsx'(x),A +]=A ex+(x) (23)

and take the matrix element between the vacuum and

the E (q) state with lql = ~, we obtain the relation,

assuming that the E~3-decay form factor satisfies an

unsubtracted dispersion relation,

~K ~,G,oK-.
~K GK* K+ mK

m '—mK'
(24)

"In fact, we have derived in a rather similar way (using
PCAC) the sum rule

Gp'/mp' —GA, '/mg, '= F~',

which is the same as the one obtained by Weinberg from the
consideration of spectral functions in the chiral SU(2}&&SU(2}
symmetry [S. Weinberg, Phys. Rev. Letters 18, 507 (1967)j.
However, we cannot get the second sum rule of Weinberg GA, =G,
unless we assume that the A, is a strict generator of the chiral
SU(2) /SU(2) group. This does not mean that we rule out the
possibility of having Gz, G, when the A is not a strict generator,
which is actually the case. Details will be discussed elsewhere.

where F and Fx are the amplitudes of the s.~ p+v
and E~ p,+v decays and G„x is the coupling constant
of the x -+ K+s. decay defined with a pion off the mass

shell. It is very interesting to observe that the E*
meson cannot completely saturate the commutator

(23) taken between the vacuum and the IC (q) state
with

I q I

= ~, although we have seen that the p meson

can saturate the corresponding commutation relation

(20) taken between the va, cuum and the s (q) state with

lql = ~. To show this, let us, forthetimebeing, neglect
the Ir meson term in Eq. (24). We obtain

Gx Gx"x . —(F——x/F. )mx*' ——1 28. mx~' . (25)

From (7), (16), and (22) we have

Gx*ox~ -=((m '+mx*')/2mv')Gpo. +.

Gx*/G, =((m, '+mx*')/2m ') and G,G,o, +~-=m

We therefore obtain

trm '+mx' '
Gx 'Gx 'ox+, =I -m ~mx "'. (26)

2m, '

Therefore, Eqs. (25) and (26) are not compatible. We
can avoid this difficulty if we keep the contribution of
the Ir meson in Eq. (24). We then predict from Eqs.
(24) and (26)

(Fx
X (m„'—mx')

I

—1 (m '—mx') (27)

This relation niay be useful if the existence of the a

meson is confirmed. Since B„V„x=0 in the SU(3) limit,
F„~0 in this limit. This is exP/icitly horme out in Eq.
(27). $Fx F, mx*——m——, in the SU(3) limit. ]We have
discussed in another place'~ an implication of this
relation to the K&3 decay which seems to enable us to
have a consistent description of the K&3-decay form
factors. In particular, the form factors F+(qs) and F (q')
obtained by using Eq. (27) satisfy the Callan-Trieman"
prediction (based on a soft-pion approach) made at the
point —

q =mK'.
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APPENDIX A

In deriving Eq. (9), we have dropped the Ir contribu-
tion. We shall show below that this is justi6ed in our
approximation, which is good, e6ectively, to the order
O(e). From the commutator LVx~, V„~ (x)$= V„x (x),
the commutator LVs (x),Vxo)=B„V„x (x) is derived.
We insert this commutator between the vacuum state
and the Ea+(q) state with

I q I

=

«I vo" (x) IP )&P lv)r IIt:*'(q)&
—

&oI Vx
I
"&&"I Vo (*)lit~(q))

ol ~.v." (*)lit*(q)), lql = (A1)

"S.Matsuda and S. Oneda, Phys. Rev. 169, 1172 (1968).
"C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153

(1966); M. Suzuki, ibid. 16, 212 (1966); V. S. Mathur, S. Okubo,
and L. K. Pandit, ibr'd 16, 371 (1966). .
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As in the derivation of our sum rules discussed in the
text, the use of SU(3) approximation for the charge
operator VK and the existence of a vacuum state in the
states under consideration restrict the intermediate
states (in the one-particle approximation, which is the
same as in the spectral-function case) to the p and &&

states. The right-hand side of (A1) vanishes, so we have

lim I E,(q) —Err (q)j
lel

)& &0I v, --(~)
I
p+&(p+

I
v-

I
z*+(q)&

= hm ~„&ol vtr I.o)("Ivo.-(*)ll&.*+(q)).
lel

Apart from the factor
I E,(q) —Erc*(q)], which vanishes

in the limit Iql ~eo, the terms on the left-hand side
of the above equation are finite. Therefore, we have

(()I vtr'lx'&&" I vs (&) II&:*(q)&=0
I el ~

APPENDIX 3
In a way similar to that of Appendix A, we can show

that the pion electromagnetic form factor satis6es an
unsubtracted dispersion relation. We take the com-
mutator Lvs '(x),v +j=&)„A„+(x). As in (A1), we
obtain

»m (&ol vo"(*) lt&o&&t&'l~ 'ln (q)&

—&ol~- l~-&&~-I vo"(*)l~-(q)&)
= lim (ol &)„A„'lsr-(q)&. (B1)

fel

From the PCAC condition, the right-hand side of (81)
is zero. Then using the same argument as in Appendix
A, we obtain

lim &sr (y) I
Ver'(x) I&r(q)&=0,

where lyl =0.
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The subsidiary condition BA„&+&/Ba„ln) =0, usually known as the "Gupta-Bleuler" condition, is shown
to be inadequate as a criterion for defining physical states in quantum electrodynamics in the Lorentz
gauge. The condition is shown not to be covariant and to fail to define state vectors that remain in the
physical subspace. An alternative subsidiary condition, which is satisfactory, is discussed and is shown to
require an extensively different formulation of the collision problem in quantum electrodynamics. Some
possible physical consequences of the inadequacy of 8A„&+&/sx„(n) =0 are proposed; these include effects
in the decays of short-lived particles, and the fact that in some types of strong interactions, acting simul-
taneously with electromagnetic ones, S-matrix elements may occur which predict transitions from the
physical space into the part of space in which the subsidiary condition is violated. The solution to the colli-
sion problem for stable charged particles that have only electromagnetic interactions is shown to be identical
to that obtainable from the present theory.

I. INTRODUCTION

'HE correct formulation of quantum electro-
dynamics (QED) in the Lorentz gauge requires

the imposition of a subsidiary condition Lnamely,
I&+&(x) In)=0, where x&+&(x) =&)A„&+&(sc)/&)sc„j on the
"physical" state vectors and involves the use of a non-
degenerate inde6nite metric space instead of the usual
Hilbert space in which quantum theories are ordinarily
framed. The reasons for this have to do with the incom-

patibility of the subsidiary condition c&A „(x)/Bx„=0, as
an operator identity, with the canonical quantization
procedure and the commutation rules for the four-
dimensional vector potential. This situation has been
understood for a very long time and is discussed in detail
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t Supported by the National Science Foundation and by the

National Aeronautics and Space Administration.

in most standard texts. ' For a set of noninteracting
photons the resulting theory is clear and has the follow-
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