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Possible symmetries between the (hypothetical) charged intermediate-boson field W„~ and the derivative
of the electromagnetic field Bt„„/Bx„are investigated. We assume that (a) the total electromagnetic current
operator g„&=ep '(BF„„/Sx„) is proportional to a neutral member W„o of the intermediate-boson fields,
(b) all hadron mass diiferences between difi'erent members of the same isospin multiplet consist of finite
O(e') terms but no O(f') terms, and (c) all known leptonic, semileptonic, and ASTRO nonleptonic weak
processes are transmitted by a single W„ field, where f, e, and eo are, respectively, the semiweak coupling
constant, the renormalized charge, and the unrenormalized charge. The simplest model compatible with
(a), (b), and (c) is found to be one consisting of six intermediate bosons, which may be regarded as forming
an SUB triplet and its Hermitian conjugate. Assumption (a) also implies finite radiative corrections for
other processes such as weak decays, charge renormalization, etc. The unrenormalized charge eo is shown to
be finite, bounded by the inequality 1~(ea/e) ~%.A lower limit off'is established. Neglecting higher order
corrections, one finds this lower limit of fs to be -', e'sec'8 and, in this limit, ea ——&2e and ms /m~ o'=, where
n is the fine structure constant, m& and m& are, respectively, the lV+ mass and the nucleon mass, and 8 is
the Cabibbo angle. The same model can also lead, in a reasonably natural way, to CP nonconservation.

l. INTRODUCTION

HAT there exists a similarity between the weak
interaction and the electromagnetic interaction

has been noted ever since the early formulation of the
vector theory of P decay by Fermi'; this similarity has
prompted many authors to consider the possibility'
that the weak interaction might also be transmitted
through an intermediate boson 0"+, in analogy with
the photon y. However, there are important differences
between the (hypothetical) W+ and the (real) y; for
example, even the degrees of freedom of these two Gelds
are completely different. At a given momentum, 8'+,
being massive, has three spin states, but the zero-mass

y has only two.
In a recent paper, ' hereafter referred to as I, it was

pointed out that one should seek possible symmetries
between the intermediate-boson field S'„+ and the
total electromagnetic current rj„&, i.e., between W„+ and
the derivative of the electromagnetic 6eld (r)F„„/r)x„)
rather than between H/'„+ and the electromagnetic
4-potential A„. In I, the total electromagnetic current
operator g„'r(x) is assumed to be proportional to the
field operator W„'(x) of an appropriate neutral member
of the intermediate-boson fields. From such a field-
current identity, 4 one can readily establish the finiteness

*Research supported in part by the U. S. Atomic Energy
Commission.

' E. Fermi, Z. Physik 88, 161 (1934).' For an early discussion on the possible existence of such an
intermediate-boson field universally coupled to all hadrons and
leptons, see T. D. I,ee, M. Rosenbluth, and C. N. Yang, Phys.
Rev. 75, 905 (1949).' T. D. Lee, Phys. Rev. 168, 1714 (1968).

4It should be emphasized that the concept of field-current
identity implies the observed electromagnetic and weak interaction
current operators g„& and g, " to be directly regarded as basic
field variables; i.e., $„7, g„k, and their derivatives satisfy the
appropriate canonical commutation relations of spin-1 fields. By
definition, these observed current operators have finite matrix
elements between physical states; therefore, they clearly represent
the renormalized fields. One could, and perhaps should, directly
use g„& and g„w" without ever introducing lV„' and 8'„+; it is

of all second-order electromagnetic corrections. The
same conclusions can also be extended to all higher
powers of e', at least for a system consisting of only
spin-~ and spin-0 particles. As emphasized in I, these
radiative correction calculations are quite insensitive to
the details of the intermediate-boson models, provided
that the general 6eld-current identity between
and S",0 holds.

In order to determine the detailed symmetry, or
broken symmetry, between the charged intermediate-
boson Geld and the derivative of the electromagnetic
Geld, additional assumptions have to be introduced.
Only then can the corresponding structure of the inter-
mediate-boson system become definite. To be speciGc,
in this paper we assume the following three conditions:

(a) The total electromagnetic current operator rj„&(x)
is proportional to a neutral intermediate-boson Geld

W, '(x).
(b) There is no O(f') mass splitting between different

hadrons of the same isospin multiplet, where f is the
semiweak coupling constant, related to the Fermi
constant Gp and the H/'+ mass m~ by

f2/m ~2 —2—1/2G~

This assumption removes the usual O(fs) in6nities in
such mass differences. ' Therefore, all these mass dif-
ferences are of the form

8m= [6nite O(e') termj+0(f' f'e' e'), (1.2)

where Snab can be either the mass di8erence bm between
m+ and x', or 8m~ between E+ and E', or SAN between

p and rs, etc.
(c) All known leptonic, semileptonic, and the

mainly for reasons of pure convention that the notations 8',
and 8',+ are adopted in this paper.

'Condition (b) can be replaced by a weaker condition (b')
which simply requires the absence of all infinite O(f') terms in bm.
Since all powers of (e/f)' will be kept in our discussions, (b) and
(b') become closely related.
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'H/'+

~.~'8'.
and its Hermitian conjugate

(1.3)

0

.We'.
(1.4)

strangeness-nonconserving

(ASTRO)

nonleptonic weak
processes are transmitted by a single 8'+.

As will be discussed in Sec. 2, the simplest model
compatible with these three conditions is one in which
there are six intermediate bosons, forming an SU3
triplet

In the present case, unlike those discussed in I,
the magnetic moment of 8 + can be simply

(2m') 'e. (1.13)

Consequently, the second-order electromagnetic mass
di6erence between 8'+ and 5" also becomes 6nite. ' As
will be shown in Sec. 4, these commutation relations
(1.8)-(1.10), and therefore also (1.12), can be valid to
all powers of e' and f' (while in I, Eq. (1.10) is valid
only to the lowest power of f'j.

In Sec. 5, the photon propagator is analyzed by
closely following the general considerations given in I.
It is shown that, in the Landau gauge, the unrenor-
malized photon propagator D„„&becomes

In this model, the total electromagnetic current operator
g„& becomes

—i(e/es)'q '(8„,—q 'q„q,), as q' —+ 0

—iq-'(8„„—q-'q„q„), as q' ~~
(1.14)

fs= (-,')'"f cos8. (1.7)

In Sec. 3, we study the general form of the total
Lagrangian which includes all interactions: weak, elec-
trolnagnetic, and strong. The usual canonical commuta-
tion rules imply that g,& satisfy the following field
algebra:

and

where 8'„' is related to the components of H/'~' and
Willis by

W o 2 i@i(W~ Wi—i")„ (1.6)

and fs is a constant related to f and the Cabibbo angle'
8 by

fs'~4e'nss M 'os (M')dM' (1.16)

where fs is related to f by (1.7) and os(M') is the
spectral function of the 8 „'propagator. If one neglects
O(e'), O(f'), and all higher-order corrections, but keeps
all powers of (e/f)', then the inequality (1.16) becomes
simply

where eo and e are, respectively, the unrenormalized
and the renormalized charge and q„ is the 4-momentum
of the photon. The unrenormalized charge eo is found
to be 6nite, bounded by the inequality

1~es/e~ v2.

Furthermore, the serniweak coupling constant f'
satisfies the inequality

where X and ) ' are c numbers. These relations together
with the conservation law

(8/Bx„)g„=0

require that the operator

fs'~ 2e',

and in the lower limit fs' ——2e' one has

80 =28

f =se sec 8,

m s = 4(s7ru/Gr) '"2"4sec8 m~/n, —

(1.17)

8—(vac
i g„~(r,t), g„&(r',t) i vac) —=0. (1.12)

8$

Thus, by using the general method developed by
Sjorken, ' one proves the finiteness of all second-order
electromagnetic corrections.

where n is the fine-structure constant. These results
suggest that f' may be of the same order of magnitude
as e'. Therefore, the O(f') terms in the hadronic mass-
shift calculations should be discussed on the same basis
as the O(e') terms, in accordance with the above condi-
tion (b).

lt is natural to identify the SUs triplet (W+, WzP, W e')
as the CI' conjugate of (W,W~', We' ).The decomposi-
tion of W~' and W~' into their Hermitian components

' N. Cabibbo, Phys. Letters 10; 513 (1963); M. Gell-Mann and
M. Levy, Nuovo Cimento 16, 705 (1960).

~ J. D. Bjorkeu, Phys. Rev. 148, 1467 (1966).
Details will be given in a separate paper by T. D. Lee and

K. Y. Ng (to be published).
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8"' and S"',

(War')x=2 '"(W) "+iW~')

In terms of the lepton fields ltq(x) and f„,(x), one has
the familiar expression

CP(W') =+CI'(W") . (1.20)

Such a mismatch implies CI' nonconservation. As will be
discussed in Sec. 6, since W„' is the source of the elec-
tromagnetic Geld, the magnitude of such CE-nonron-
servation amplitudes becomes related to the fine-
structure constant o.. Another interesting feature is that
the CP-violating amplitudes in radiative weak decays
may become bigger than those in the corresponding
nonradiative weak decays by a factor e-'.

Some further experimental consequences of such
heavy intermediate bosons are briefly discussed in Sec. 7.

In Appendix A, the general solution of various
possible models consistent with the three conditions
(a), (b), and (c) is given. For clarity of presentation,
most of our discussions in the text are given explicitly
only for the simplest model. It will become clear, how-
ever, that many of our conclusions are also valid for
other models.

2. MODEL OF INTERMEDIATE-BOSON FIELDS

From (c), it follows that the interaction between
8"+ and the known hadrons and leptons is of the form'

fAW~ fA—,*W~+, — (2.1)
where

J Q J t W;+= (W;-)',
J4*=—J4t, W4+= —(W4 )t, (2.2)

and the superscript dagger denotes Hermitian conjuga-
tion. All known leptonic, semileptonic, and the BSWO
nonleptonic weak processes are described by the
second-order "effective" Lagrangian density

(1.18)
(W~o)) 2-r &s(W„o iW),o),

then leads to opposite CI' values for 8" and 8'"; i.e.,

CI'(Wo) = —CP(Wo') ~ (1.19)

Yet, as will be shown in Sec. 2, in order to satisfy (b),
both t/t/"' and 8"0' are coupled to the two S=O neutral
members of the same hadronic vector current, which
requires

j~""(f)= —i Z O'V4v~(1+Vs)f. i,
l e,p

(2.5)

where y~, y2, . , y5 are the usual dve anticommuting
Hermitian Dirac matrices. The hadron part jq"~(h)
consists of the usual ~S=O and AS/0 vector and
axial-vector currents.

In the following, for simplicity, we assume that the
field-current identity concept can also be extended to
these hadron currents. ""We may then regard jz"~(h)
as a basic field variable and write

The 8'-lepton part is

Zw ) fP'~ Pip——(pe), (-1+ps)y„+H.c.j
+foW), o P iVFyngh, (2.8)

where the sum extends over /= e and p, . The 8'-hadron

jhow" (h) = —2'"(m '/g ){cos0(pq++aq+)

+sine L(E'v+)),+(E~+)gj}, (2.6)

where, for pure convenience, jhow"(h) is resolved to a
linear combination of pq+(x), a&+(x), Kv&+(x), and
K&z+(x) which may, respectively, be referred to as the
Geld operators of p+, Ai+, Ey~+, and E~~+ mesons, m,
is the mass of the neutral p meson, and g, is the
p coupling constant, g, '/4s —2.5.

Both conditions (a) and (b) require the presence of
neutral intermediate-boson Gelds. " To be consistent
with (c), the second-order eRects of these neutral boson
fields on the hadronic system are restricted only to
AS=0 nonleptonic weak processes, of which very little
is known at present.

The general solution of various possible models that
satisfy (a), (b), and (c) is given in Appendix A. In this
section, we only discuss the simplest one. As will be
shown in Appendix A, the intermediate-boson system
forms an SUs triplet (1.3) and its Hermitian conjugate
(1.4). The weak-interaction Lagrangian can be written
as a sum of three terms:

(2.7)

cCeff(x) = fs Jz(x)D),„(x—x")J„*(x')d'x', (2.3)

where Dq„(x x') is the covaria—nt propagator of W+
and Jq can be decomposed into a sum of the lepton
part jz"~(l) and the hadron part jq"~(h):

A= je"(i)+j.""(h). (2.4)

' Throughout the paper, all repeated indices are to be summed
over. The Greek subscript ) denotes the space-time index; X=i
(or j, or k) refers to the space component, ) =4 is the time com-
ponent, and x4 ——it.

0 N. M. Kroll, T. D. Lee, and Bruno Zumino, Phys. Rev. 157
1376 (1967). The field-current identity concept gives, in the
language of the local Geld theory, a precise formulation of the
vector-dominance idea discussed by Y. Nambu, Phys. Rev. 106,
1366 (1957);W. R. Frazer and J.R. Fulco, ibid. 117, 1603 (1960);
J. J. Sakurai, Ann. Phys. (¹Y.) 11, 1 (1960);and M. Gell-Mann
and F. Zachariasen, Phys. Rev. 124, 953 (1961).

~~ T. D. Lee and Bruno Zumino, Phys. Rev. 163, 1667 (1967).
'2In the literature, quite often neutral intermediate-boson

fields are introduced in order to satisfy the ~nl~ =q rule, or the
octet dominance, which is a diferent motivation from the present
one. LSee T. D. I,ee and C. N. Yang, Phys. Rev. 119,1410 (1960);
B. d'Espagnat, Phys. Letters 7, 209 (1963); M. L. Good, L.
Michel, and E. deRafael, Phys. Rev, 151, 1194 (1966)g. In the
present case, the

~
al

~

=$ rule is not satisfied; instead one has the
simple (current && current) form (2.3).
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Zs 0' ——f sine (2/2p2/ge)2'/2[(E1/++K~+)/W/,

+%v +I~A )x(Ws')& j+H.c. , (2.10)

where W/, ' and (Wq')' are the two Hermitian fields
related to W//0 and W&' by (1.18). In the above ex-
pressions, we have extended the field-current identity
to at( hadron currents, where, just as in (2.6), pi, ai,
(Kv)/„and (E~)i are, respectively, the I=1 vector,
I=1 axial-vector, I=-,' vector, and I=-', axial-vector
strongly interacting meson fields (or the corresponding
hadron currents), and the superscripts +, —,and 0
denote their charges. The m), '6eld is the eighth member
of the same strongly interacting vector meson octet
field. Because of the SUp breaking interaction, v),' is a
linear combination of the e//0 and 0/0 meson fields.

The electromagnetic interaction will be introduced in
Sec. 3. As we shall see, the 8'~' field will turn out to be
the source of the electromagnetic field; i.e., (1.5) is
satisfied and fo is given by (1.7). The free intermediate-
boson system, of course, is assumed to satisfy the SU3
symmetry (or, more generally, the S00 symmetry).
The electromagnetic interaction singles out the 8'),' field
and thereby breaks the SU3 symmetry. The weak inter-
action (2.7) also violates the SU2 symmetry.

It is interesting to observe that 2 ~ ~,
' preserves a

subgroup of SU2 symmetry by regarding

(2.11)

as SV2 doublets. Similarly, Z~ ~ also preserves a
(different) SU2 symmetry, provided that one identifies

+&8
g0

8

p+
1(vo 31/22/0)

P

and

H/"+

S' .
(2.12)

as SU2 triplets and

parts are given by

Z ~ 2 f——cose (2/2, '/g, )2'"f (pi++ a/+) W/,
—+ (p/,-+12/-)

XW/, ++[(4)"'(3 '"/ /,
'—0/, ')+ ll/, '7(W/, ') '

+(2)1/2( 0+3—1/22/ 0)W 0) (2 9)
and

2a+/2 +aoao, (2.15)

and both terms conserve the usual isospin. Condition
(b) is then satisfied. From the explicit form of Z„„l„one
sees that condition (c) is also satisfied.

In the above discussion, only the isospin transforma-
tion properties of the hadron currents are used. Thus
the validity of the intermediate-boson model is clearly
independent of whether these hadron currents j/, "~(h)
and j/, &(h) are, or are not, basic field variables.

3. TOTAL LAGRANGIAN

To introduce the electromagnetic field A„, it is con-
venient to separate out the 8"),'-dependent part in
2„„1,. Equation (2.7) can be written as

& -1,= foW/, 0[(2/2e2/g, )(p/, 0+3 1/21//, 0)

+i 2 4'1 7474'l j+~eeee/e q (3 1)
l

where 2 „i,' is independent of 8),'. Let us define

0 (2) 1/2(/1 0+3 1/22/ 0) (3 2)

W/'= W/'+ (/'0/fo)~i, (3.3)
and

P/, '= 0/. ' (fo/go) W/, '—, (3.4)

where e0 is the unrenormalized charge of the electron
(eo(0), fo and go are both f//oite coupling constants,
given by (1.7) and, for reasons which will become clear,

So= g.(-')'". (3.5)

The total Lagrangian of the entire system is assumed
to be of the form

1P 2 1(2/2 W 0)2 1(1+~)(W 0)2 1(2/2 y 0)2

++2(4//v /De////6)+~1(4'l/lle4L)'
+gs (W/, +,B„W/p)+2„„1,', (3.6)

where q is a constant' connected with the renormaliza-
tion problem of W/, 0, P/, refers to all hadron fields except

respectively, proportional to

2v+// +1 (po 31 /22/0) 2+1(31/2po+ 2/0) 2

= 2&+// +/V+2/'2/' (2 14)

—,'(3"'po+2/') and W' (2.13)
8 l9

8'„,0= 8'„0— F'„0,
~&gc ~Tv

(3.7)

as SU2 singlets.
To evaluate the O(f') hadronic mass shifts, there

are three terms due, respectively, to the products
and Z~ ~2~ I,. The first

term Z~ A,
'Z~ I,

' conserves the usual isospin. The
second term Z~ ~2~ ~' violates the strangeness con-
servation; therefore, it does not contribute. In the
third term there is no interference between the vector
and axial-vector fields because of parity conservation;
thus, Z~ AZ~ I, only gives two terms which are,

8 8
4'0'

~&y ~&v
(3.8)

t9 8
F„„= (3.9)8' BXv

D.~.=(e~*,+'~.a.~;)~., (3.10)

B,pl= (8/Bx„—i foN'„0)pl, (l= e or /1 ) (3.11)
B.Wz+= (oj/Bx„+ifoW, 0)W/, +, (3.12)
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—-'m '(4 ')'+&o(4 p.',D4 pA o) (3.13)

As shown in Ref. 11, the requirement of the field con-
servation law pj's„o/»„= 0 determines the general
structure of the strong-interaction Lagrangian which,
in turn, leads to the appropriate non-Abelian field
algebra" satisfied by p+, p, v', etc.

The charge lepton part of Z~ has the usual form

—Q Pity4(y„8„+mi')Pi, (3.14)

and Q& is the charge of fo. For clarity, we do not ex-
plicitly exhibit the v& dependence in 2&, nor the depen-
dence on 8'8', 8 q', and 8"' in 2 ~.

The usual strong interaction is given by the ep= fp=0
limit of

variable. In the latter case, the 5' hadron couplings
are completely contained in the mass term —o(m, Qzo)'.

By using (3.3) and (3.4), one finds

—k(m, 4")'=foW"(m, '/go)4~'

+epAi(m& /g p)Qi, epfp—(m, '/go')Wi, 'A&,

lm, 'r—(~~')'+V'oW"/go)'+(eo~. I/go)'j

in which, on account of (3.2) and (3.5), the first term

foWi, '(m '/go)4~'= foWi. '(m '/g )(px +3 &x )

is the same H/' hadron coupling term given by 2 .„k
(3.1).

The equations of motion for 2„, 8'„', and 8'„+ are
given by

BF„„/Bx„=—eo(ms '/fo) W.', (3.20)where m~ is the unrenormalized mass. The H/+ part
of Z~ is given by 8

1 g) W„„'—ms 'W„'
8$p, = jot j, (l)+j, (h)+j, (W)j, (3»)

8
(1+v) "+ m~'W. +=—fLi "'(l)+j ""(h)j (3.22)

BXp,
(3.16)

p(1+—n)(G"+G" +G.. G..+)
(+

—-'ms" (W +W +W, W„+), (3.15)
and

where, in accordance with (3.12),

From (3.13), it follows that the zeroth-order (therefore,
q=0) magnetic moment of W+ is

p s ——(e/2m s ) && (spin) s .

As a result, the O(e') mass renormalization of W+ will

turn out to be finite.
Under the local electromagnetic gauge transformation

P ~ expLiepQA. (x)]f, (3.17)

where P denotes all charged fields fp, Pi, and W„+, and

Q is the appropriate charge, the neutral fields @io, Wi, o,

and Aq transform according to

where

j.'(l) = &4'v v.4.—iV.'7 vA—,

j„(h)= —(mp'/go) P„',

(3.23)

(3.24)

j,&(W) =i,' (1+rl) (W-„G„„++G„-„+W„G„„W-„+--
—W„+G„, ), (3.25)

and j„""(l)and j„""(h)are, respectively, given by (2.5)
and (2.6).

The equations of motion for other fields can be readily
obtained by using (3.6). For example, p„o satisfies

and

4~o~4~o,
8'),' —+ S'),',

Ai, o —+ Ai, o—BA/Bxi, .
Therefore, one has

(eo/go) ~A/»—),

(3.18)

where

8 M@ Mo)
ojxp Bljbpp Dppp )

BZy,
S„= i Q — Qq4

a r1D„fo

(3.26)

(3.27)

and (3.19)
W),o ~ Wi,o (ep/f p) BA/»), ,. —

The gauge invariance of the total Lagrangian (3.6) is
then obvious.

We note that if the gauge-independent field g&,
o is

regarded as an independent hadron field variable, then
in the total Lagrangian (3.6) all W hadron couplings
are through the gauge-covariant derivatives D„go and
P„„o.On the other hand, one may choose, instead of Pi,o,

the gauge-dependent field gqo as an independent

Q=i
mg

8'4od'r
fp

i fj 4 r(—l)+j 4&(h)+j4&(W) jdor. (3.28)

By equating

and the sum extends over all Po.
From (3.20) and (3.21) one sees that the total charge

operator Q is given by

"T. D. Lee, S. Weinberg, and Bruno Zumino, Phys. Rev.
Letters 18, 1029 (1967).

j4)/ h d'r=I, ~ V, (3.29)
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one finds the familiar relations

5$p
p4'd'r =I„

1Ãp

s pdsy —(s)1/2y'

(3.30)

(3.31)

satis6es the field algebra (1.8)—(1.10) to all powers of
e' and f'; i.e.,

[8 (r, t),8 ~(r', t)]= [8/ (r, t),8 (r', t)]=0,
[gp(r, t),yp(r', t)]=) V,ao(r —r'),

where I, and I' are, respectively, the s-component
isospin and the hypercharge, and, similarly to (3.2),
the gauge-independent 6eld gqo is related to p&,

' and s/,
'

by

)t= ms '/fp' ———s,42(G/; cos'8)-'

X'= XmO2,

(4.10)

(4.11)

[(8/at) Jp(r, t) iV—4t"(r, t),go'(r', t)]= i) '—a, ta'(r —r'),

where the constants X and X' are given by

yio —(s)1/2(p„0+31/2s 0)

4. FIELD ALGEBRA

(3 32) and
~o'= ~w'[(1+ v) '+(eo/fo)'] (4 12)

p(j,') =i(az, /8 j,,o) i(az—,/8j„'),
P(W, +)=i(1+r/)Gt;+,

P(h) = —i (8Zs/8D4fs),

(4.3)

(44)

(4.5)

To quantize the Lagrangian (3.6), it is convenient to
use the Coulomb gauge and choose

A,", W/', j, W, +, Ps, iP/

as the generalized coordinates; their conjugate momenta
are, respectively,

P(g tr) —. / tr. (4.1)

P(W/o) = iW4/o(1+ t/) = (1+t/) ~
W/ i V,Wt —~, (4—.2)

at

As shown in I, @so may be regarded as the mechanical
massof N x.

The hadron currents jz"~(h), j&,&(h), etc., or the cor-
responding 6elds pi,+(x), pro(x), etc. , can satisfy the
usual SU2, or chiral SU2&(SU2, or chiral SU3)&SU~
Geld algebra; these algebraic relations have already
been discussed in the literature. ""

lt should be pointed out that the validity of the equal-
time commutation relations (1.8)—(1.10) satis6ed by the
total electromagnetic current operator ri„&(x) is, how-

ever, independent of whether the hadron currents

j,""(k) and j„r(h), are, or are not, basic field variables;
i.e., whether these hadron current operators satisfy the
non-Abelian field algebra, or the corresponding current
algebra. '4

and

(4 6)

5. PROPAGATORS AND INEQUALITIES

P(&)=V ', Let as (M') be the spectral function of W, de6ned

by
where A,"is the transverse part of the vector potential,

o.w(M') 8„.—M '

which satisfies (vac
~
[W„'(x), W„'(0)]~

vac)
V~A '~~= 0 (4 7)

and E;"= 8A;"/at is t—he transverse part of the
electric Geld.

By using the equations of motion (3.21) and (3.26), where
one finds

a2

~X@,~&v-
Asr(x)dM', (5.1)

and

'['V,P(~ ) -g.2 P(h) g.—S.] Asr(x) = i(27r) ' —(q'+M') "'[sin(q'+M') "'t]
(4 8)

Xexp(iq r)d'q. (5.2)

Wto= mar s{iV;P(Wro)

-f.[~ (h)+~ (t)+~ (W)», (49)
where

From the canonical commutation relations, one finds
that, '" to all powers of e' and f'

and

jt (I)= —(m~'/go)4 ',
jt~(t) = P(e)0. P(p)0. ,

— —

j4~(W) =P(W,+)W~+—P(W;—)W;—.

3SI 2O-gdM2=mg '

o wdM'= (r/to/mw)'.

(5.3)

As a result of the usual canonical commutation relations,
the total electromagnetic current operator

rl, "=—(ms '/fp) W„o

'4 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics I, 63
(1964).

'o K. Johnson, Nncl. Phys. 25, 435 (1961).
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The covariant W' propagator D„~ is defined to be the
sum of all connected I'eynman graphs with two external
8" lines. In terms of 0-~, D„„~is given by the familiar
expression "dM'o zr(M2) ( q„q„

D" (q) = —
I b, + , (5 5)

o q'+M' is—k M'

where q„ is the 4-momentum carried by the external 8'
line and e is a positive infinitesimal. Since the sum rule
(5.3) implies

D„,~(q)= —ims 2b„„at q„=0,
where zrzzr is the physical 5'+ mass, D„,~(q) is well
defined at q„=O. Thus, as discussed in I, there is no
wave-function renormalization necessary for 8'.

The unrenormalized photon propagator D„„& is de-
fined to be the sum of all connected Feynman graphs
with two external photon lines. By following the
general method developed in I, it can be shown that
(see Appendix B) to all powers of e2 and fs,

(D„„&),.„—+ iq
—2(8-„„q—'q„q„) as q' —+ 0

i (—ep/e) 'q '(o-„„q—'q„—q„)
as q (5.12)

(5.13)s(Fpv) r en = soFpv ~

Thus, in terms of (F„,)„, the Maxwell equation
becomes

(5.14)

where g„& is the total electromagnetic current operator.
The total charge operator Q is given by

Since the asymptotic behavior of (D„„&)„can, in
principle, be experimentally observed, so should be
ep/e.

The renormalized electromagnetic field (F„„)„ is
related to the unrenormalized electromagnetic field
Ii„,by

qpqv)

q2 ) Q = —i ri4&dsr (5.15)

X 1——my 4
( )

(5.u)
o M2(qs+M2 —ze)

e2 (e 2—=1—
I

—res 4 M 4orrdM'.
e0' 0 0

(5.8)

where, for convenience, we have chosen the Landau
gauge. The asymptotic behavior of the unrenormalized
photon propagator is given by

D„„&(q)—& z(%p) sq 2(8—„„q'q„q„) as—q' —& 0
zq '(~" q-'q. q) — as q'~" (5 7)

By taking the q' —+ 0 limit of (5.6), one finds that the
unrenorrnalized charge e0 and the renormalized charge e
are related by

~g 4 M 4OgdJI/I2 (5.16)

(e I Q I
e )= —1, (p I Q I p) =+1, etc.

Therefore, g„&has well-defined matrix elements between
the various physical states. We emphasize that in order
to have finite matrix elements for the renormalized
field (F„„),. between any two physical states, one zrzzzst

require the finitude of sp/e; otherwise, the Maxwell
equation (5.14) is not mathematically defined. "

The inequality (5.10) sets a lower limit on the semi-

weak coupling constant fp, and therefore also on f.
As 3f ~ Oy it can be shown" that (7~ —+ c3/I" where c
is a constant. As M' ~po, because of the sum rule (5.3),
azr —+ 0. Thus the integral jo"3II~dM2o vr must exist.
The precise value of

As will be shown in Appendix 8, the following in-
equalities can then be established: is not known, especially since the integral

and

/so)

fos) 4ezzrzrr4 M 4rrrrdM2.

(5.9) (5.17)

may diverge, corresponding to a possibly infinite
mechanical W mass 22zp.

& (Dvv )ren= &o Dvv ~ (5.11)

These inequalities are valid to all powers of e2 and f';
they are stronger inequalities than similar ones ob-
tained in I.We 6nd that not only is e0 finite; its value is
limited to between e and %2e.

The renormalized propagator (D„„&)„ is, by defini-
tion, related to the unrenormalized propagator D„„~by

"As M' —+0 o~(M') is determined by the product of the
phase space of 3y, with a total energy M in its rest frame, times

I (vacI W'I3v) I'. The former is given by the integral oi
3

II d'k;s'(p h;)b(p Ik;I —M),

and it is proportional to M'; the latter is proportional to
(M51'm~ ')'=Msesg 4, where the factor as~ 3 is due to the
propagator of Wo which satishes D„.~(g=O) = zzgrr 'Sv„—
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In the usual power-series expansion, we would regard

v=0(f'), (5.18)

even though, as shown in I, this 0(f') term does ex-
plicitly contain divergent integrals. Nevertheless, we
may assume the power-series divergences to be simply
manifestations of the presence of possible terms such as
f'lnf', or f'", etc., in the theory. For example, if q
is indeed 0(f'lnf'), then in a formal power-series
expansion the coefficient of f' would naturally be
infinite. Therefore, for small values of e' and f2, such an
assumption enables us to keep all powers of (e/f)', but
neglect all 0(e') and 0(f') terms iiicludiNg rt The .sum
rule (5.4) then becomes

(ms )2 (8p)2
I
=&+I —

I

&ms) E f()J
(5.19)

f 2) 2g2

Furthermore, at its lower limit, one has

f 2 g2 2e2—

(5.22)

(5.23)

By using (1.1) and (1.7), we find, to the same
approximation,

(5.24)f') —,'e' sec'0

ms )4(37m/Gp)' '2't seco, (5.25)

where, as discussed in I, m~ is the physical mass of lV'
and m~ that of H/'+. In the same approximation,

o s ——(ms/ms)'5(M' —ms"), (5.20)

and therefore both sum rules (5.3) and (5.19) are
satisfied. Consequently, (5.10) becomes

fo )4g D+(go/fo) (5.21)

which, as shown in Appendix 8, can be reduced to

$1Sg my
(5.27)

q2(q2+m 2)(q2+m~2) E q2 )

where ms is given by (5.19).As q' ~~,
X)„„&~ —iq 'mir'ms 2(8„,—q 'q„q,), (5.28)

in contrast to the corresponding asymptotic behavior of
the photon propagator D„„&, or (D„„&)„„asgiven by
(5.7) and (5.12). This q

' behavior of the effective
photon propagator provides the necessary convergence
factor for obtaining finite second- and higher-order
radiative corrections.

6. CP ASYMMETRY

It is natural to assume that the SU3 triplet (W+, W~',
Wz') should be related to its Hermitian conjugate
(W,W&', WB') by a CP transformation. Under such a
CP transformation, one has

8'+

.~'8'.
WgP

.Ws'.
(6 1)

The decomposition (1.18) of W~' into its Hermitian
components tV' and 8"leads to

CP(W') = CP(W") . — (6.2)

Qn the other hand, according to (2.9), both Wo and8" are coupled to p' and v', which requires a different
CP assignment, called CP', where

of propagators

X)„,&= (W„'—y —W, ')
A+ (W„'—y —Wg' —y —W.')+ .

Neglecting higher orders in e' and 1', but keeping all
orders in (e/f)', one finds

where 0 is the Cabibbo angle and n is the fine-structure
constant. It is interesting to observe that numerically

CP'(W') = jCP'(W"). (63)

4( '7m/Gp)'"2-' ' scca—137mii .
Thus the lower limit of nsg is

5$ g —0,'m~. (5.26)

The inequality (5.10) suggests at least that f' may be
of the same order of magnitude as e'. Therefore, the
electromagnetic interaction should be studied in close
connection with the weak interaction, and the 0(f')
terms in the mass shifts should be treated on the same
basis as the 0(e') terms, in accordance with our basic
condition (b).

From the general Lagrangian (3.6), one sees that the
electromagnetic field A„ is coupled to the charged
particles only through TV„. Following the discussions
given in I, it is convenient to define an effective photon
propagator S„„& Lsee Eq. (4.5) in Ij. In terms of
Feynman graphs, X)„„&represents the sum of products

The mismatch
CPgCP' (64)

implies CP asymmetry.
This mismatch can also be stated in a slightly dif-

ferent form. The couplings between 8" and the known
particles are completely determined by the electro-
magnetic interaction Z~ and the 6eld-current identity
between g„& and W„'. Thus, through 2„, the trans-
formation properties of 8" under the charge-conjuga-
tion operation C~ and the corresponding space-inversion
operation P7 are given by'~

and
C~S C~ '= —8;-'

P 8"-'P -'= —8"
(6.5)

(6.6)

' For a general discussion of C~, P7, and the related time
reversal T~, see T. D. Lee and G. C. Wick, Phys. Rev. 148,
1385 (1966).
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One may regard the mismatch as simply

CP&C~P~. (6.7)

For Wo, CVP„=CP'=+1; i.e.,

C~P,WP(C,P~) '=+WP. (6.8)

Such a mismatch between CP and C~P~ can arise if

CPW o(CP) '= —W.o (6.9)

K W, , W,

2'lT Of 3'

w' W

f
2w Of 3m

and
W„,= (8/Bx„)W„(8/—Bx„)W„

W= Wo, or W", or Wiv', or Wivo.

(6.11)

To necessitate the CP assignment (6.2), or (6.9),
we may include in the total Lagrangian (3.6) any
general function

F(W+,Wiv, Ws'; W,Wiv, Ws') (6 12)

provided that (i) F is invariant under CP, (ii) F is
not invariant under C,P~, or CP, and (iii) F preserves
the field-current identity

g„&=—(my '/fo)W, '. (6.13)

Otherwise, the function F can be of an arbitrary form;
it may also depend on other 6eld variables P&, P&, etc.

As a simple example, let us consider the quadratic
function

F= f't (K' ')„„('W ')„„+(W ')„„(W ')„„j, (6.14)

where s is a constant, and (Ws') „„and (Ws') „,are both
given by (6.11) in which W denotes Ws and Ws,
respectively. Of course, in order to preserve the field-
current identity (6.13), we must replace in (6.14)

by Wi, o——Wi, o+(eo/fo)Ai, . (6.15)

It follows from 2s s', (2.10), that Ws' is the CP
conjugate of Ws', consequently, (6.14) implies W&' to
be also the CP conjugate of Wivo, and it leads to the CP
assignment (6.9), in conflict with C„P~.

The mismatch between CP and C~P~ necessitates
CP asymmetry. Since t/t/"' is the source of the electro-
magnetic field, such a CP-violating amplitude be-
comes related to the fine-structure constant 0.. This is
illustrated in Fig. 1.The CP-violating amplitude in the
nonradiative nonleptonic dS~O decays, such as IC
(or Eo) ~ 27r, becomes proportional to either

We emphasize that the identidcation of 8'~' to be
the CP conjugate of Wsr', or WP to have CP =—1, must
be implied by some ieteractioes, since both assignments
(6.2) and (6.3), or (6.8) and (6.9), are consistent with
the free Lagrangian.

—s (1+ii) (Wiv') s.(Wiv'), .—~w'(Wiv'), (Wiv'),
=—-'(1+ )i (W.")'+(W..')'j

—sm s 't (W„")'+(W„')'j, (6.10)
where

K Ws Ws W

e
f

FIG. 1. Examples of CE-nonconserving transitions.
fF is given by (6.14lj.

and it exists in both
~
EI

~

=—', and —,
' channels. Because

of (6.15), there will be CP-violating amplitudes pro-
portional to

(6.17)

in the corresponding radiative weak decays, such as

K' (or E') -+ 2vry. (6.18)

A characteristic feature of such a mismatch is that the
CP-violating amplitudes in nonradiative decays may
be smaller than those in the corresponding radiative
decays by a factor e. To the same lowest powers of f'
and e', there is eo CP asymmetry in the usual semi-
leptonic and leptonic weak processes, all of which
involve neutrinos, and, furthermore, the neutron does
not have an electric dipole moment.

As another example of Ii, we may consider the cubic
function [with the replacement (6.15)j

8
F=ihf' (Wsr') e(Ws')„(W's') e—H.c. , (6.19)

8$p

where X is a constant. Under CP, V, ~ —V;; and the
intermediate-boson fields transform according to (6.1).
Therefore, F is CP-invariant, and it requires H/' to
satisfy the CP assignment (6.9), in conflict with C~P„.
To the lowest order, the resulting CP-violations in a
hadronic system occur only in AS= &2 processes, and
the CP-violating amplitudes are proportional to Xf4e',
Xf'. Such a function F would lead to a special model
of the "superweak" interaction. '8

ln these order-of-magnitude estimations, we have
tacitly assumed that, to lowest order, each power f'
should be accompanied by a multiplicative factor
(mdiv/ms)'. These factors can be due to the W prop-
agator, or they can be explicitly included in the coef-
ficients ~ and X.

Note that (6.14) and (6.19) are only the two simplest

ef'e' or zf4, (6.16)
L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964); T. D. Lee

and L. Wolfenstein, Phys. Rev. 138, 1490 (1965).



examples's of a large variety of possible function F. A
systematic study of the general case lies outside the
scope of the present paper, and it will be given else-
where. In the same connection, we may recall that the
general question of fourth-order terms 0(f',f'e', e') is
also not analyzed here. The magnitudes of these terms
depend not only on the explicit powers of f' and e', but
also on the powers of (mdiv/ms)'. These higher-order
terms determine the E~'-E2' mass difference; from the
present view, depending on the model, they may also
be relevant to the problem of CI' nonconservation.

y2~ 0(es) (7.1)

These intermediate bosons are of extremely short life-
times; they can decay into both leptons and hadrons.
The decay rates into leptons are given by

re=rate(W' —+y++y )—rate(W' —+ e++e )
= (1 2s-)-'fssrrss, (7.2)

and
r+ rate(W+ ~——@++i „)=rate(W+ -+ e++v,)

=Gym''(6~2)-', (7.3)

where m ~ and m~ are, respectively, the 8'+ mass and
the W' mass. If we take the lower limit (5.23)

fs' 2e', ms =v——2ms

and the approximate value

5$@—Q mN )

then these lepton decay rates become

and
ro= sV2miv —1.4X10"sec '

r+/rs =Grmiv'/87ret' 1.0. —
(7.4)

(7 5)

These intermediate bosons, if they exist, may give
important contributions to the very-high-energy muons,
such as those recently observed in cosmic radiation. 'o
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"In both examples, F is proportional to either f' or f'. It is
clear that the inclusion of such a weak interaction F is consistent
with our basic condition (b), nor does it change our conclusions
about the 6niteness of other radiative corrections. So far as the
CP-asymmetry problem is concerned, F may very well also con-
tain strong-interaction terms between the W's. However, in such
a case, one must reopen the question of whether the radiative
corrections to, say, weak decays are, or are not, finite.

'0 H. E. Bergeson, J. %. KeuGel, M. O. Larson, E. R. Martin,
and G. W. Mason, Phys. Rev. Letters 19, 1487 (1967).

'V. PRODUCTION AND DECAY

In the present theory, the mass of the intermediate
boson is unusually heavy. At present, they can only be
produced in cosmic radiation. In a very high energy,
say, p+p collision with a suKciently large momentum
transfer, the fraction of 8" production can be crudely
estimated to be about

MXRNMX A

LV„-(x),V„-(0)j= PA„-(x),A„-(0)j (A2)

is independent of n.
To find the various possible solutions of the inter-

mediate-boson system, the simplest method is to adopt
the general idea of the schizon scheme. "We first regard
these 16 Hermitian fields V„and A„as all inde-
pendent, and then introduce linear relations between
these fields to reduce the total number of independent
Q.elds.

Following the general schizon idea, we require that,
in the absence of these linear relations, the weak inter-
actions between V„, A„, and the hadrons conserve
both isospin and parity. The isospin symmetry implies
that (b) is satisfied. Our problem is to study all possible
linear relations between these fields so that the resulting
model becomes compatible with (a), (b), and (c).

The isospin symmetry requires

Cv'= Cv2= Cv',
Cg'= Cg'= Cg')

C5 C6 Cv

Cg'= Cg'= Cg'= Cg')

where the SU3 supercript n follows the usual conven-
tion with n= 1, 2, 3 denoting the isosvector components,
and u=4, 5, 6, 7 denoting the hypercharge I'=&1
components.

Condition (c) requires that the charged W+ field is
given by

Wi+=2 '"(Vy' —ivy') =2 '"(Vy' —iv), ')
=2 "(Ag' —iAy')=2 '"(Ai, iA7, '). —

The 0(f') mass correction does not contain any term

"T.D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960).

In this Appendix, we give the general solution of the
various possible models which satisfy the three condi-
tions (a), (b), and (c). The hadronic part of the weak
interaction Z,~(h) is expected to be a linear function
of the eight vector and the eight axial-vector hadron
currents, or their corresponding strongly interacting
meson fields v„and a„where a=1, 2, , 8. We may
write

Z„,.s(h) =Q Cv V„(x)s„~(x)
+P Cg "A„(x)a„(x), (A1)

where C 'V '(x), Cz'A '(x) Cv'V '(x) C~sA 8(x)
represent the appropriate cofactors of such a linear
functional dependence. These functions Cv V„~(x) and
Cg A„(x) will turn out to be linear functions of the
appropriate intermediate-boson fields. For conveneince,
we choose V„(x) and A „(x) to have the same
normalization so that, e.g., for the free fields, the
commutator
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which violates either parity-conservation or strangeness-
conservation; thus (b) remains valid. Condition (a)
requires that the source of the electromagnetic Geld is,
apart from a multiplicative constant,

W 0 —(8 )1/2 (V 8+3—1/2 V 8)

The Lagrangian density (A1) becomes

@week(h) +/V 8+—~W—8 (A6)

Zs 8
——C)(p1,++a/, +)W/, +(p/, +a/, )Wi,"

+a 0A 8+(8)1/2(p 0+3-1/22/ 8)W 0

+ (8) I/2(3 —1/2p 0 1/„8)W 0 ]+C~pai8A 1 (A7)

and
C,C',C~' are constants

(W 0)i (8)1/2(3—1/2V 8 V 8)

(A9)

(A10)

p&„(Kv)&, and vip are, respectively, the I=1, I= ,', and. -
I=o components of the vector hadron octet current
(in the text, 2//,

8 ——2/1). The I=2 component of the
axial-vector hadron octet current is (K~)&„ its I=1
components are a/, + and a/, 0, and its eighth (I=O)
component is a~'.

Thus the maximum number of independent (Hermi-
tian) fields is 10: Wi+, W/, , Wi', Wi", Ai, ', Ai' Vt, '
Vz~, Az', and A &~. It can be readily veriGed that all three
conditions (a), (b), and (c) are satisfied. These 10
fields can be further reduced by imposing any number
of the following identities:

Zw —8'=C $(Kv++K~+)/W/, +2 "'(Kv')/,
X (Vip+ i V/, 2)+2 »2(-K/0)/,

X (A1,'+ iAg')+ H.c.f, (AS)

where

N= 41+(1+2/)(ep/fp)'3 '

the Lagrangian (3.6) becomes

2=20+21,

(82)

(83)

gp= —-'p „'2—-'(1+g)N(W»')' —-'2miv'(W ')' (84)

gi —— ~2(mey„p) 2+28($»O, D„$8,$8)+Xi($&,8,$1)

(W,+,8,W&+)+Z .,&', (85)

PV

BXy

and

8
8 „o— 8'„',

8$y
(86)

8
~py Av

BXp ~+y
(87)

Let P denote ag, fields, except A„' and W„'; its covariant
derivative 8„$ is defined by

8„$=(8/820„+ifpQgW„O)P, (BS)

where Q~ is its charge and

W„'=W„'+(ep/fp)A„=NW„'+(ep/fp)N'"A„'. (89)

For f=f/ and W/, +, this definition of 8.f is identical
to that given by (3.11) and (3.12). For /=$8, one finds

that, on account of (3.10), 8„p8 is related to D„$8 by

APPENDIX B

To derive (5.6), we follow the same method given in

Appendix C of I. By using the transformation IEq.
(C1) of If

A '=N '"A +N'"(1+2/)(ep/fp)W ' (81)
where

and

A),'——0, (or, Cgp ——0) (A11)

(A12)

(A13)

Thus Z~ is of the form

where
Z =12 (1P 18$,W»)0,

De/8 —8vf8+ 2gpQ8/t/e $8 ~ (810)

(811)

(A14)

which are all consistent with (a), (b), and (c). The
simplest model discussed in the text is one in which all
of these four identities (A11)—(A14) are used. The
constants C and C' are given by

C= 2'"f cos8 (m '/g )

C'= 2'"f sin8 (m '/g )

Equations (A7) and (AS) then reduce to (2.9) and
(2.10), respectively, where

(W/8')/=2 '"(Vt' —iV/')=2 "'(A/, '—iA/')

(W ) =2 '"(vy +iv/2)=2 '"(Aip+iA/2).

8 „8
8 „,o= 8 „o— i„o.

Xy ~XV

(812)

&»"(q) = iq 2(b„„+Xq 2q„q„—), (814)-

where g„ is the 4-momentum and X depends on the
gauge.

Let D»~~(q), D ""(q), D»~~(q), and D»~" (q) be,
respectively, the sum of all Feynman"propagator graphs

Ke shall consider the perturbation series by using

Zo as the zeroth-order Lagrangian and Z~ as the per-
turbation. The zeroth-order 8'„' propagator and A„'
propagator are given by

6 „~(q)= i)(1+2/)—Nqp+m8v'j

XPBu.+m vt/ 2(1+2/) Nq„q„] (813)
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in which the (initial, 6nal) fields are (W„P,W„'), (A„',A„')
(A„',W„'), and (W„',A„'). These are, by de6nition,
covariant functions and D„„WW(q) is the same D„„W(q)
given by (5.5). We have

where mp is given by (4.12) and 0(q„q„) denotes the
gauge-dependent part.

The photon propagator D„,&, used in the text, refers
to the propagator of A„. By using (81), we find

D.&=ND „""—N'"(1+iI)(ep/fp)(D "w+D w )
+N'(1+v)'(ep/f p)'D .ww (824)

WW(q) D W(q)

The interaction between W„', A„', and f depends only
on the combination e 2 epg-1/1 (1 2~)1/2j (825)

(816) wherefpW„'= fp'W„'+ep'A',

fp' Nfp
——ep' N'"e——p.

where t'" &

$= 2( —imw4 cV 4o wd3II2. —

(f,pi
(826)(817)

There is a one-to-one correspondence between the set
of all Feynman graphs in D„„~~ and those in D „~~'
to each Feynman graph in D„„~~there is a correspond-
ing graph in D„„~"which differs owly in the external
lines. Thus one Ands the identity

As e2 ~ 0 at fixed fp', $ ~ 0 and therefore

2 ~ g2

This limit requires us to choose in (825) the negative
branch —(1—2$)' ', instead of the positive one. Since
ep' is real and positive, we must have

D AA. —g A+(e ~/f ~)2+ A(gw) —1

&((Dp,ww Dp, w) (Dw—) 'eke " -(818)
5&2,

where (Aw)-'„„ is the inverse of A„.w, given by

(Aw)-'„p if(1+g)N——(q20 q„q„)—+mw28 p$. (819)

Similarly, one can establish

D Aw —(e I/f ~)g A(gw)-1 (D ww g w) (820)

i.e.,

(827)fp2) 4epmw4 3II 4pwd3P.

As $ varies from 0 to x2, the ratio (ep/e)' varies from 1
to 2. Thus we find

P'W ( q pqu)

q2+M2 —ip 5 Mp i These expressions enable one to express D „& in termspV

of D„„ww or its spectral function 1r w. The result is (5.6).
From (5.8), it follows that

ep')
D A"= g 1 ——

(
mw4

q2 ", f,'i q'+M' —ie

(1 1 q'
1+ dM2 +0(q„q,) (822)

(M2 mp' mp2

D wA=(e'/'f ')(D ww 6 w)(hw)-1, 6 „A. (821)

By using (815) and the sum rules (5.3) and (5.4), we
obtain

1&(ep/e)'&2. (828)

fp2
)

4e2L 1 + (ep/f p) 2] 1

At the lower limit, $ is 2 and therefore

cp =28

(829)

(830)

Both inequalities (5.9) and (5.10) are then proved.
If we neglect 0(e') and 0(f') terms, but keep all

powers of (e/f'), the inequality (827) becomes (5.21);
i.e.,

and
ep')

AW D WA im 2

f ii q'+M' —2P

Because of (828), the inequality (829) implies

fp') 4e'I 1+2(e/fo)'j '

1'1 1~
~dM'+0(q„q, ), (823)

mp2 %pi

or simply

which is (5.22).
f 2) 2e2 (831)


