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Phonon-Quasiparticle Interactions in Dilute Solutions of He' in
Superfluid He'. II. Phonon Boltzmann Equation

and. First Viscosity*

GosDorz Bavmt Aruz W. F. SaAMt

DePartment of P/zyszcs, IInzoerszty of Ittznozs, Urbana, Illznozs 6I80I
(Received 2 January 1968)

We construct the phonon Boltzmann equation taking into account previously calculated phonon-He'
scattering and absorption processes; when phonon-phonon interactions can be neglected this equation is
exactly soluble. The 6rst viscosity of solutions containing I.3 and 5'P0 molar concentrations of He is
calculated from this equation for 7&0.6'K.

I. INTRODUCTION

HIS paper is a continuation of recent work' on the
eGects of phonon-He' quasiparticle interactions

on the transport properties of dilute solutions of He' in
superfluid He' at low temperatures. Introducing He'
impurities into pure He' changes the transport proper-
ties of the superQuid in two ways. First, the He'
quasiparticles, carrying energy, momentum, and spin,
provide a new mechanism for transport. At extremely
low temperatures, where the thermal excitations of the
He4 are negligible, the contributions of the He' dominate
the transport coeScients. Second, transport by the
elementary excitations of the He', phonons and rotons,
is limited by their interactions with the He', either by
the scattering or by the absorption or emission of
excitations by the He'. In the temperature range up to
about 0.6'K for a few percent He' concentration, where
rotons can be neglected, the mean free paths of the
phonons are determined entirely by their interactions
with the He' (except at very low temperatures where

boundary scattering is important). One of the purposes
of this paper is to construct the Boltzmann equation for

the phonons in this temperature region, taking into

account essentially exactly the absorption and scat-

tering of the phonons by the impurities.
The scattering of phonons from He3 leads to a com-

pletely tractable collision term in the phonon Boltzmann

equation. There are several reasons for this. First, the
He' quasiparticle excitations have a particle-like energy-

momentum relation

so = so+p /2 zzz z

where m=2.34w3 is the He' effective mass; and they
have typical velocities much smaller than s, the velocity
of first sound in pure He at zero temperature; the

scattering of phonons from He' is basically elastic.

Furthermore, the average scattering rate has the
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particularly simple form

xsq4

&(g,e) = (—1.4+0.69 cose)'
Sme4

involving only s, p and d waves; 8 is the phonon scat-
tering angle and q is the initial and final wave number;
e4 is the number density of pure He4 at T=o, and
cc= zzs/zze is the He' molar concentration, where zzs is the
He' density. The scattering rate (2) has the q' depen-
dence characteristic of Rayleigh scattering. Lastly, since
in the temperature region (above roughly a tenth of a
degree for a few percent He' concentration) where

phonons become numerous enough to play a role in
transport processes, the He'-He' scattering rates are
suKciently rapid that one may, in calculating the
phonon transport properties, make the simplifying as-
sumption that the He' quasiparticles are in local thermal
equilibrium. At extremely low temperatures the phonon
contributions to transport can generally be neglected.

The absorption of phonons by the He', which becomes
kinematically possible because of He'-He3 interactions,
is the mechanism responsible for ultrasonic attenuation
at very low temperatures. The absorption rate, calcu-
lated in I in terms of the He'-He~ scattering times, is

proportional to q' at long wavelengths, and there it
dominates the scattering rate of Eq. (2). Consequently,
at low temperatures the phonon contributions to the
transport coefficients are quite sensitive to the size of the
absorption rate.

The one application of the phonon Boltzmann equa-
tion we make in this paper is to the calculation of the
erst viscosity of dilute so1utions. In the temperature
region below 0.6'K, to which we restrict ourselves,
rotons and phonon-phonon interactions can be ignored.
To lowest order in x and p„h, the phonon normal mass

density, the erst viscosity is a sum of a Hes contribution

q3 and a phonon contribution q~h. Ke emphasize that
this latter contribution is very unlike that in pure He4,

because here the phonon mean free paths are determined

by the He'-phonon interactions. The viscosity in the
higher temperature region has been calculated by
Zharkov, ' including roton eBects as well as phonon-

~V. N. Zharkov, Zh. Eksperim. i Teor. Fix. BB, 929 (1957)
)English trausl. :Soviet Phys. —JETP 6, 'I14 (t958lg.
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PHONON BOLTZMANN EQUATION AND FIRST VISCOSITY

phonon interactions; however, that theory fails to in-
clude the important phonon absorption mechanism, and
is not applicable, for a few percent He', to the tempera-
ture regimes where our calculation is valid.

IL PHONON BOLTZMANN EQUATION

In this section we derive the phonon Boltzmann
equation for dilute solutions, starting from the expres-
sions for phonon scattering and absorption rates calcu-
lated in I. The phonon Boltzmann equation has the
general form

K&,—Kr, =bs(q —q'), while to lowest order q= q' in the
scattering. Hence, we need take into account only the
deviations of the distribution functions from their
equilibrium values. Using the fact that the scattering is
elastic in lowest order, we may set q =q' and p =p' in the
equilibrium parts of (5); after linearizing, (5) thus
becomes

- «= — ~ «.+~.—~' —~q ) l(p'q'I 2'lpq& I'

X{f„'(1—f„')Pn,—5n $

Bnq/8$+VqMq'Vvnq Vrcoq'Vq nq='Ip ph+Iph pa& (3)

where e~ is the phonon distribution function and or~ is
the local phonon energy; in the presence of a superAuid
Row with velocity v„ the phonon energy is given by

Mq= sq+q' vv,

where we have written fp= fpa+sf p and n, = n, a+8 n.q
The transformation back to the laboratory frame is
trivial. Since the phonon momentum q is independent of
the reference frame in which it is measured, we have
a~= n~; furthermore, the rate of change of this distribu-
tion function is the same in both frames so that

where the sound velocity s may depend on position and
time. I3» and I»» are the impurity-phonon and
phonon-phonon collision operators, respectively; I3 ~h

includes both the scattering and absorption or emission
of phonons by the He'. We shall neglect boundary
scattering throughout.

It is simplest to construct the collision integrals in the
frame in which v, =0; we denote quantities measured in
this frame by a bar. Then the rate at which phonon-
impurity scattering changes e~ is

I„,vv,
= —2 g 2vrB(p + pp q u—.) I

(y—'q'I TI yq& I

Xln, (1+n, )f,(1—f;)
—(I+nq)nq (I—fp)fp j (5)

where (p'q'I Tl pq) is the matrix element for scattering
of a phonon of momentum q by a quasiparticle of
momentum y to 6nal states q', p'; the factor of 2 is
from the sum over spin states. (The generalization to
independent spin up and spin down fermion distribu-
tions is trivial and not necessary here. ) fp is the He
distribution function and ~~ the quasiparticle energy in
the laboratory frame, and we let the volume of the
system be unity.

We shall need only the form of (5) linearized about
global equilibrium. Since v, is a small quantity, the
transformation back to the laboratory produces only
6rst-order deviations from equilibrium. In equilibrium
the square bracket in (5) times the 8 function vanishes
by detailed balancing. Thus the deviations of the
matrix elements from equilibrium do not contribute,
and we may take for (p'q'I Tl pq) its equilibrium value
(1.24). Furthermore, the deviations of the phonon and
quasiparticle energies from their equilibrium va.ues lead
to terms of relative order p/s in the collision integral; p

is a typical quasiparticle thermal velocity. For example,

Iscatt = Iseett ~

In addition, fp= fp+ „„where pnp is the bare He' mass.
Thus in the laboratory frame

I- «= —2»~~(q.+~.—"—~')1(y q I
2'I yq& I'

X{f„'(1 fp')[—bnq 5nq. ]—+n,'(I+n, ')

XPfp+mgvv pfp'+mgvv]} ~ (8)

In the temperature regions where scattering of
phonons by He' plays a role, the He'-He' scattering
times are suKciently short that we may assume the He'
to be in local thermal equilibrium'; thus we have

fp+-3 .= {exp&p'I &o'+P'/2~
—p (v —v.)—8 'j+1} ' (9)

where the primes denote local equilibrium values and v3
is the local mean velocity of the He' distribution.
Linearizing (9) implies that

&fp+m, v, afp~+mvv, —
= —P(p —y') (v.—v )f '(1—f ') (1o)

Furthermore, it is sufEciently accurate in the tempera-
ture region in which (8) is important to neglect the
exclusion principle for the He' both in the matrix
elements and in the 6nal states. Thus, if we write

(p'q'I 2'I pq& =4+q.p+q 2'(q, e),

where 0 is the angle between q and q', (8) simplifies

8 The temperature characterizing the local equilibrium for the
He' quasiparticles is not the same as the temperature charac-
terizing local equilibrium for the fermion-phonon system as a
vrhole. This point is discussed further in Sec. III.
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to calculated in I, Eq. (42), is

I„,tt= —ns P 2rcb(sq sq—')
I T(q 8) I'

q/

88q
(q —q') (v.—v,)X ~e,—~~, —

BCO q

dQq.
P(q,8)

2

BNq
)& bn, be;— —(q—q') (v,—vs), (12)

807 q

bn, = (Be,'/Bt», )qc (q)

and expand C (q) in spherical harmonics

(13)

where 1'(q,8) is given by (2).
Since q=q' in (12), the eigenfunctions of the scat-

tering operator are simply spherical harmonics. We
write

r.b, (q) = 1 4 mtPf(T)

r. (q) 3 m'nt

(1+ct+bm/m4)'q'r„[1+ (Asq/2scKT)']
X (2o)

$1+(hsq/2scKT)'j'+s'q'r„'

where bm=m —ms, mt is the bare Het mass and P&(T) is
the pressure of an ideal Fermi gas of effective mass m
and density I» n is the fractional excess molar volume of
He' in He4, and r„estimated in I, is the He'-He' scat-
tering time appropriate to viscosity. When the He' is in
local equilibrium at temperature Ts' and velocity v3, the
absorption process causes the phonons to relax to local
equilibrium at temperature T3' and velocity vs. We
write the net rate of absorption I,b, (q) as the difference
of an emission and absorption rate,

I,b,= —n,Z)(q, &»,')+ (1+n~)Z((q, c»,'), (21)

where

c'(q) = E c t(q),
lM

where Z& and Z( are the separate absorption and emis-

(14) sion rates, and t», ' is the local phonon energy. Using the
detailed balancing relation that holds when the He' is in
local equilibrium4

4 t(q) = P 1't (0,)C t„(q) . (15) Z((q,~)=e-a'&"-&'stZ) (q ~) (22)

Then, making use of the addition theorem for spherical
harmonics we 6nd

and writing

F,b, (q) = (1—expL —Ps'(c», '—q vs)$)Z) (q,t», ') (23)

where I.b.= —(n.—n.'")/r. (q)
where

Bn q q ' (vs —vp) ~ C't (q) we 6nd that the net absorption rate isI...tt= —
q + Z (16)

rt(q) t-& rt(q)—
(24)

r t(q) d cos8L1—Pt (cos8)]I'(q,8), l) 1. (17) n, i'&= {expels'(t», '—q vs)1 —1) ' (25)

The net effect of the vt terms in (16) is to urge the
phonon distribution to relax about va, the local He'
velocity. Because F(q,8) contains terms only up to
Ps(cos8), all of the rt(q) ' for 1)3 are equal to

is the local phonon equilibrium distribution that is
characterized by the local He' temperature and velocity.
Using Eqs. (11) and (2) and linearizing the local
equilibrium distribution, viz. ,

n, &"=n, '+q(Bn, '/Bc», )Lb(P~'s)+g (v,—vs)1,

70
—1 d(cos8) 1'(q,8) . 18

we find that the absorption term in the Boltzmann
equation becomes

Numerically we have

re =5.48n4/xsq4,

rt 4 35e4/xsq', —— .
rs 5.96n4/xsq'. ——

We turn now to the contribution I,b, to I3 pQ due to
absorption or emission of phonons by the He' quasi-
particles; this is the mechanism that attenuates ultra-
sound at low temperatures. The net absorption rate, as

Bna'@(q) P'b(P ' )—ssq (v —»—)'
I b.=—

q
BCO q 7 Q

(26)

On the left-hand side of the Boltzmann equation
we may write V,n, =sqbn, o/Bc», and V~q= qQ„s
+V„(q v,). Assembling all the pieces, the phonon

'See, for example, L. P. Kadano8 and G. Baym, QNuwtlm
Statcstt'cat kfechamcs (W. A. Benjamin, Inc. , New York, 1962), Eq.
(10.5).
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Boltzmann equation becomes anally

BSq BSq
+V qcoq' Vreq scI' Vr(sg+q'vr)

Bt BMq

Be,' C (q) P—-'b(Ps's)+q (vs —v,)

Bcoq 7.(q)

0 (vs-v. ) - Ci(q)
+ + 2 +I.h-" (27)

»(c) i=i «(c)—
At present we shall not specify a form for I»». At
temperatures below about 0.6'K, where I»» may be
neglected, the Boltzmann equation (27) is exactly
soluble. The essential reason for this is that q &(g) = rs(q)
for l&3.

III. STRESS TENSOR AND FIRST VISCOSITY

In order to calculate the viscosity coefficients of the
dilute solutions we must first construct the form of the
stress tensor for the system. The stress tensor is de-
termined from the equation of motion for the total
momentum, which is given by

Is=+ Pfs+P qeq+nsqesv, .

Adding (33) and (34) to the equation of motion for the
super Quid

we then derive

Bv,
nss +Vtc4=0,

Bt
(35)

The right-hand sides of (33) and (34) are equal and
opposite in sign due to over-all momentum conservation
in collisions.

To put (36) in the form of a Navier-Stokes hydro-
dynamic equation we must isolate the terms in the
equation representing the deviations from local thermal
equilibrium for the combined fermion-phonon system.
The temperature T characterizing this local equilibrium
is determined from the requirement that the variations
in the total energy as determined from the exact
distribution functions be the same as those determined
from the local equilibrium functions. Explicitly the
variation in total energy 8, for fixed v„ is

Bg
+esV &o+n4Vts4+pphsVS

at

+V.
l Z mqeq+Z —fs l=o (36)
( PP

kq
'

~ ns')

The phonon momentum can be written in linear order as
BE=tc48e41Q q„Bfs+Q coqlnqr' (37)

Q qn, =p»(v„v, ),—

thus defining the phonon normal velocity and normal
mass density; the phonon normal mass density is given
by the Landau result where 8fs"and Bnq" are the local equilibrium deviations

for the impurities and phonons, respectively. As we
mentioned earlier, at the temperatures and concen-
trations of interest, the He' tend to come into local
equilibrium themselves, at temperature Te', much before
common He-phonon equilibrium is established. Be-
cause of He'-phonon energy exchange via phonon ab-
sorption, the common local equilibrium temperature T
differs from the initial T3'.

Proceeding, we note that the local equilibrium dis-
tribution, eq", obeys

cIs Be,' 2srs (KT)'
ppir =

3 Bcoq 45 s'A'
(30)

g can alternatively be written as

g =P (p+bnsv, )f„+p»v„+p,v„ (31)

where the superQuid mass density is given by

(29) thus to first order the local equilibrium distributions
obey

( f f ')+2 ~—(~ —~n ")=o ( g)
P q

p —5$4S4 p» SmS 3 (32)

When the He' are in local equilibrium g„(p+Bnsv, )f„=nsnsvs. From the phonon Boltzmann equation (27) we
find the linearized equation = —spohVS+SohV 7, (39)

sg Bsq 1 '$Pph
V p syqnq"=p — -V (psq) = 'V(ps)—

q q 3 BcoqP

8
E qn q+ V r ' Z sctqnq+ p pcs V$

Bt q q

PP P Bfs' I
V 2 fu"=Z —-V9("—ps")j

s ns s 3ns Bq„PFrom the He' Boltzmann equation in I(A2) we have

where S»=ssp»//T is the equilibrium phonon entropy
per unit volume. Also,=g q(I.,cs+I.b.) . (33)

PP t'Bfsl—Z pf.+V. Z f,+n Vqo=Z pl
—

l
. (34)

Bt s r ns p EBt)s»

=SsV2' —esV (qs —tss") r

where Ss= L-',Py(T)1(qs —tss)esj/KT is the He'entropy.
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In local thermodynamic equilibrium the Gibbs-Duhem
relation is

aP(ns, n4, T) =nsalzs "+n4&lz4 "+SbT, (41)

where I' is the local thermodynamic pressure, p4" is the
He chemical potential for local equilibrium, and S=S3
+Sph is the total entropy density. Combining (36) and
(39)—(41) we obtain

1000

100
hC4

LI

1.3%

(ag/at)+V vs=0,

where the stress tensor is

(42) A

I
VaI-

e 10
O

P&PJ sq;q;
(fp fp")—+P (n,—n, ')

p m q q

+8,;[P+n4(lz4 1z4')—] (43)

The difference of p4 from its local equilibrium value
can be found by 6rst noting from (37) that

I.01

TEMPERATURE (4K)

1.0

(asE y
ap, =

I I
ans+pl

I
an,

tan4'i. , , f s ~an4~. , f„
aep

+El I ~fp (44)
p Ean4) ~r, fp

Thus, to first order,

(as& v)
~4—7 4"=El

I
(n.—ns")

s tan, &., „
(aep'i

+XI I (f f ") —(45).
p kan4). ,

Equation (43) is the general form of the stress tensor
from which the viscosity coeKcients of the solutions can
be inferred.

In the hydrodynamic limit'

p(p ~)
(fp fp")=—»L~'vs—+s&(&»)), (46)

Fro. 1. Phonon viscosity lifetimes in 1.3 and 5'P0 solutions of
He' in He4.

viscosity measurements utilizing capillary Qow, s slowly
oscillating disks, ' low-frequency second sound attenu-
ation, ~ or a rotating cylinder viscometer. ' On the other
hand, in an AC viscosity measurement, ' where one
observes the damping of a crystal immersed in the
solution and oscillating in a transverse vibrational mode
at frequencies on the order of 10 Kc/sec, a new situation
appears: the He' impurities can be treated hydro-
dynamically but the phonons must be treated in a low

frequency but intermediate to high wave number regime.
We assume that all spatial variations occur in the s

direction only and that all velocities are in the x direc-
tion. Because a transverse probe cannot excite longi-
tudinal variations in linear order, all longitudinal
variations such as v„bP, bs, and bP are zero. Neglecting
phonon-phonon collisions at low temperatures, the
Fourier-transformed Boltzmann equation becomes

where r)s=Pr(T)r, and r, is the He'-He' quasiparticle
collision time appropriate to viscosity. More generally,
whenever vk« lro+i/r„I where p is a typical He'
velocity, r)s in (41) is replaced by r)s(1 —ir~) '. The de-

tailed form of the phonon contribution to the stress
tensor is determined by solving the phonon Boltzmann
equation I 27j for ns ns". —

In this paper we confine our attention to a transverse
driving force on the system corresponding to a measure-
ment of the first or shear viscosity. Because of the
relatively long phonon mean free paths in very low-

temperature solutions the results of a shear-viscosity
measurement depend sensitively on the frequency of the
driving force, and we must consider the AC and DC
cases separately. For zero, or very low-frequency condi-
tions both the impurities and phonons may be treated
hydrodynamically. This limit is realized, for example, in

(1 1) Cs
i y vsI

—q—
I

———
7 g 7']. Tp

(1 1) (1 1
++

I

——I++ I

—— (47)
Err rsi Er,

This equation is readily solved in general for C (q) by

~ F. A. Staas, K. W. Taconis, and K. Fokkens, Physica 26, 669
(1960).' J. G. Dash and R. D. Taylor, Phys. Rev. 107, 1228 (1957).

'K. N. Zinov'eva, Zh. Eksperim. i Teor. Fiz. 31, 31 (1957)
/English transL: Soviet Physics —JETP 4, 36 l1957)].

A. D. B.Woods and A. C. Hollis Hallett, Can. J.Phys. 41, 596
(1963).' See, for example, R. W. H. Webeler and D. C. Hammer, Phys.
Letters 19, 533 (1965).
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dividing both sides by the square bracket on the left and
taking angular moments to solve for the explicit 4z) on
the right. Since

q vs ———(2)r/3)'"(F)t —Ft, t)vs,

the driving term in (47), and hence 4z, contains only
m=+1 components and 4), g= —C)g.

We 6rst construct the solution of (47) in the hydro-
dynamic, i.e., eu and k —+ 0 limit. For ru and k=0 we have

4'(a) = —0 vs; (48)

the phonons equilibrate at the local He' velocity. To
determine the next order in o) and k, we substitute (48)
for the coeKcient of o)—sg k in (47). Thus

(ro—sg k)(—g vs)

O.

I
CO

lA
0

I S I I I I I I I I II

10.01
) ) ))))1

.l
TEMPERATURK (oK)

l.0

Fzo. 3. Hee and total viscosities in a 5 /0 solution of He' in He4.
I

I 1
+ Z@')I —+—

i

~,„,.i (49
where, for any function A of q,

and by comparing coeScients of the various spherical
harmonics we see that only C ~,~~ and 42,~~ are nonzero
and that

1 q' Be,o
(~)—=— Z — ~(q).

pph ~ 3 Bbp y

(52)

C (II)= gv)(—1+))sr„)+is) kg v)r„, (So) Tllus

n.h= sS P.h(r.&
1

Bey 4= —XSS kV)pph(rz))rph, zz=S Q qzqz
BG) g

s)l,hkv—), (51)
1000 I I I I I III.

where r„(q)= (r) '+r, ') ' is the lifetime for phonon
thermal conductivity and r, (q)= (r) '+ro ') ' is the
lifetime for phonon viscosity. Then the phonon con-
tribution to the stress tensor, the sum over q in Eq. (43),
is given by

The average lifetime for viscosity (r,), evaluated nu-
merically, is shown as a function of temperature for
13 and 5% He' concentrations in Fig. 1. Note that as
in the calculation of thermal conductivity, (r.) diverges
if v is neglected.

We see from (48) and (29) that in the hydrodynamic
limit the phonon normal velocity e„equals the He'
normal velocity vs, then (51), (46), and (43) imply that

)r,„= s()I)+—)Ivh) kv)

The 6rst viscosity of the solution is then

100 ))tot )I)+)Iph +s(T)re+ ss pvh(rz) ~ (55)

CO
O
CP
lO

10-

1.01 1.0

)I).) is plotted in Fig. 2 for a 1.3% solution and in Fig. 3
for a 5% solution. Although )I is plotted up to I'K, these
calculations are valid only below 0.6'K since we have
neglected rotons and phonon-phonon interactions.

%'e should point out that discrepancies between the
high-temperature phonon thermal conductivity calcu-
lated in I and measurements of the thermal conduc-
tivity" above 0.65'K do not appear to be attributable
entirely to the neglected rotons and phonon-phonon
interactions. This suggests that v „for high temperatures
was considerably overestimated in I. A reduction in r,

TE;MegRATURE (ow j
F&G. 2. Phonon, He, and total viscosities in a 1.3% solution of

He' in He'.
')T. P. Ptnirha, Zh. Eksperim. i Teor. Fis. 40, 1583 (1961)

[English trsnsl. : Soviet Phys. —JETP 13, 1112 (1961)g.
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would lead to a decrease in both qa and mph. Measure-
ments of the viscosity below 0.6'K would serve to
clarify this situation. At present the viscosity has been
measured' in the hydrodynamic regime down to 1'K;
the results are of the same order of magnitude as our
calculated values but also suggest that the theoretical
v, is too large.

The hydrodynamic expression (51) for the phonon
stress tensor is valid for oI(r,) and sk(r„)(&1.A zero fre-
quency experiment is in the hydrodynamic regime for
smaQ velocity gradients. For nonzero frequencies co and
k are related by combining the results (42) and (54) to
yield"

(oup )IIs
k= (1+')I

E2rifg&fl

where p„ is the normal mass density, given to lowest
order in the concentration by

(57)

in the regime where rotons may be neglected. Thus, in

order of magnitude we have

s I k
I
(r„)-sLo)rnn, /rj, g'Is(r, }

-I:(s/&I) ((r.}/r.)'"j(~(r.))'I' (5g)

Since r„(((r.) and s/sr 10, the inequality sIk I(r,)(&1
is extremely hard. to satisfy even if co(r.)(&1.Usrng (56)
and our numerical results for q&,t we 6nd that the purely
hydrodynamic result is valid to within. 10% over the
range 0.2 to 0.6'K, in which phonons are important,
only for frequencies of the order of 0—10 cps. The fre-
quency restrictions become slightly less strict as the
temperature is increased. The hydrodynamic result for
the Hea viscosity, valid for ~7 „&&j, and eykr, &&j. only
requires frequencies smaller than about 100 kc/sec for
r&0.0&'K.

As mentioned above, typical frequencies used in high
frequency AC shear viscosity experiments are of the
order of 10kc/sec. For this, frequency, over the tempera-
ture range where phonons are important, we still have
ce(r,}&(1but sk(r, }))1,except near 0.6'K where sk(r, )
& 1.To find rr~I, in this regime we must solve (47) in the
low frequency but high w'ave number limit. In this limit

D2n/3)"sssr I+4 II4 'J(l'II —F'I.-I)+4 'C'sr(&sr —&s.-r)
c(q)=

r,-I+is% y

for simplicity we have written r, '=rs '+r, ', ir '
—~0-1 ~ —1 and ] -1—~0

—I ~ —1

ment of (58) implies, for skr, =skr,))1,

be evaluated analytically as

(r1 ')=3 9X10"(xT') sec-' ('K)~ (66)

3s - t'2Ir)'I' ss 4 II- i5'I'C sr

I

—
I

—+
4sk E 3 J r„ ir skis

while the/= 1)m= 1, moment of the Boltzmann equation

(47) yields

(61)III+i5 IIsskr„@sr=-(2Ir/3)IIsss.

Thus from (60) and (61) we find

(10rr/3)IIsss 5'"4
42j,= -= &~i)

ask 7, Bmi

fo1' la1ge sly', and small Mv, .The phonon contrlbutlon to
the stress tensor is then

. .=(—'o)'" (C' )=— ( . ')k " (63)

ln addltlon

To a very good approximation (r„')=(rr ') which can

» Equation (56) is a standard hydrodynamic result. See, e.g.,
L. D. I.andau and E. M. Mshitz, J"lNid 3Iecheeics (Addison-

%esley Publishing Co., Inc., Reading, Mass. , 1959),p. 89.

e„=(3/2e)IIs(CII) =3rrss(r. ')/4sk (64.)
'lllI'e now use (42) to relate ce and k; the e„contribution

to g can be neglected for pph&&~+Q

ks= (inrnsre —p,h(r.-I})/ns. (65)

This result is considerably larger than (r,)—' or (r„)—' in
the temperature range of interest. Thus below 0.3'K for
oI=10 irc/sec we may approximate k' by insnsoI/res, and
we 611d that tile condltron sk))(rg) Is satlsaed OIlly Ilp
to 0.2'K. The temperature range 0.2'—0.6 K is an
intermediate wavenumber, low-frequency regime, in
which the relation between k and eu can be found only by
extensive numerical calculation; such a calculation has
not yet been carried out.

The stress tensor, for T&0.2'K, is, from (65), (63),
and (46),

s'ss = skrisL1 pph(rc )/ssnsns j'ps skis'vs. (67)

Thus in the low-frequency and high-wavenumber limit,
the phonon contribution to the viscosity is completely
negligible; this effect extends to higher temperature the
range over which v, is measured directly. As can be seen
from Fig. 2, the disappearance of the phonon viscosity
in an AC experiment. is most noticeable in the 1.3%
solution at 0.2'K, where the reduction from the
hydrodynamic result is about 20%.
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