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Quantized Gauge Field Theory of Chiral Symmetry*
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It will be shown that a consistent quantized gauge Geld theory of chiral symmetry can be formulated
within the framework of the Giirsey models. The freedom of unitary transformations is emphasized, espe-
cially with respect to the problem of the decoupling of the 2&-meson Geld from the pion Geld. In the lowest
order, our theory reproduces the same results as those calculated from other approaches. However, the
higher-order terms are diferent.

I. INTRODUCTION

A FTER the many successes of current-algebra
calculations, ' various Lagrangian models with the

correct commutation relations and the PCAC (partially
conserved axial-vector current) condition have been
formulated. ' ' The major aims are several: (1) It is
easier to read oR the matrix elements from an interacting
Lagrangian. (2) They can be used to understand the
off-mass-shell corrections, about which current-algebra
technique makes no statement. (3) The different

exchange mechanisms involved in the processes become
transparent in a Lagrangian language. (4) The singular
behav'iors of the commutators can be partially answered.

In all these approaches, it has been emphasized
repeatedly that only the "tree" graphs need be taken
into account. In fact, exact current algebra and PCAC
are not necessary. For a particular process we need to
have these algebraic constraints only to the order of
the "tree" graph.

In view of the success of the universal coupling of the

p meson, ' it has been very tempting to speculate on

formulating a gauge theory' of SU(2)XSU(2)1. This
program received even more impetus after the cel-

ebrated Weinberg spectral sum rules' and the ~+-vr

electromagnetic mass calculation' appeared. As has
been explained by Lee, Weinberg, and Zumino' (LWZ),
if the algebra of currents is replaced by the algebra of
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6elds, the gauge theory provides us with more informa-
tion about the Schwinger terms. "Besides, it makes the
Weinberg sum rules come out as a result of the canonical
conunutation relations (i.e., kinematics).

In the work. of LWZ, it was assumed that the pion
field would cause no complication in the formal com-
mutation relations. Thus it becomes necessary to
demonstrate that the incorporation of the pion GeM

can indeed be carried out, " and what further con-

sequences may follow.
In this paper, we shall show that we can formulate a

consistent quantized gauge theory within the framework
of the Gursey models. "In Sec. II, we shall discuss the
general transformation properties of the nucleon field

and the pion Geld which characterize the different
Gursey models. '" Lagrangians are also constructed
here.

Section III is devoted to the quantization of such
models. %e shall show that a consistent canonical
scheme can be devised if proper fields are chosen as the
independent ones. The coxrUnutation relations of LKZ
follow.

In all these Lagrangians, bilinear coupling appears
between the A~ field and the pion 6eld. In Sec. IV, we

therefore choose as an example a particular model to
demonstrate how a unitary gauge transformation' can
be carried out to decouple them. In the lowest order,
our transformed Lagrangian is the same as the ones
discussed by other authors. 4 However, the higher-order
terms according to our approach are different.

In this section and in Sec. V, we emphasize the
importance of identi6cation of fields with particles.
Equivalently, we argue that unless further dynamical
principles are assumed, the gauge transformations to
decouple the A&-x fields are not unique. Because of
different choices of the symmetry-breaking Lagrangian
to maintain strong PCAC conditions, they give rise
to different higher-order processes. The r terms" are
also discussed here.

"J.Schwinger, Phys. Rev. Letters 3, 296 (1959);T. Goto and
T. Imamura, Progr. Theoret. Phys. (Kyoto) 14, 396 (1955)."See also Ref, 4, especially the paper by J.Wess and B.Zumino."F. Giirsey, Nuovo Cimento 16, 230 (1960);Ann. Phys. (N. Y.)
12, 91 (1961); in Proceedings of the 1960 Rochester Conference on
Higlz-Energy Physics (Interscience Publishers, Inc. , New York,
1960), p. 572."J. Schwinger, Ann. Phys. (N. Y.) 2, 407 (1957);M. Gell-Mann
and M. Levy, Nuovo Cimento 16, 705 (1960).
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() '+p'q') =o,
$~2

II. GI)'RSEY MODELS It can easily be shown that these two conditions

As is well known, "the mass term in the I.agrangian
of a free isodoublet fermion field is not invariant under
the chiral phase transformation

@~ ggy5g~ hatt@
~

)

to make it so, we write the Lagrangian as' "
18' -M@—U(q)e,

which is equivalent to the unitarity condition (6).
In general, 68 is not along the direction of p. Therefore

we shall parametrize a general transformation on the
pion 6eld as"

5q=PM+qq M(p,

where U(q) is a unitary matrix function of the pion
6eld p and satis6es the transforxnation property

where p and q are functions of q'. Let us consider the
case when PAO and M q&0. Equations (7) and (8)
lead to

U (q1) ~ 8 vv8 f r —88 U ( )8 vs 8 r 88— (2)

If we now make the transformation parameters M

space-time —dependent, we must introduce additional
6elds V„and A„,' which transform as

and

8(lnp) —
q

2(p+q~')

—gh=pP.

V„v V„+gMXA v

A„—+ A„+gMX V„8„58—
The Lagrangian

(3)

1
Z2= @q„8v@—3f@-U(q)e—+~q 'r%" Vv-

+ipYy„ys-,'rO Av (4)

is invariant under these combined transformations.
We digress to discuss the transformation property of

the unitary matrix U(q). In general, it can be written as

U(q') =&+y pq'

where ) and p are functions of y'. The unitarity condi-
tion is

That is, for a given set of p&0 and q, we can determine
X and p by these equations together with the unitarity
condition. " A particularly simple case is when q=O.
Then, with p= constant, or with a proper choice of scale,
we may write p= g/888 and

U = (1—(g2/m2) qsj112+ys(g/888) (p r.
When P= 0 but M q &0, we have from Eq. (8)

—g»8=i 2 qqr2+qp irp Mq.
5 8q2

Hence, if M is not along the direction of y, it follows
that g'A=O. Upon imposing a physical requirement that

)i= 1+0(g)+ ~

)2+p2q, 2

The transformation property in Eq. (2) gives

5U=( gy822r M, )1+y—spy

ghysr M+gp(p —M.

On the other hand, direct variation of Eq. (5) gives

9 8p@=2 r 8r+rs 2 r err +pbr ),$~2 $~2

which implies the consistency conditions

(6)
which means that we should recover the free massive
fermion Lagrangian as g

—+ 0, we infer that g=0. This
implies that there is no chiral symmetry in our system,
which is not a desirable result. %e therefore assert
that when P=0 and b8 q /0, M must be along q. For a
given q the quantities ) and p are determined by the
unitarity condition and

9
gp=2 gv

$~2

An example in this case is

9
gp&~. v =2

$~2
7

which gives

U' —g
—2(g/$$) +57 ~ p

by= 28NM=288M q q/2qs.

(10)

Bp—g»8=2 q 8q82+p8q.
$~2

"We use the metric (—1,1,1,1) p„v=0,1,2,3, k,l= 1,2,3,

symbols a,P,y=1,2,3 are isospin indices. Dot and vector products
refer to the isospin space.

Finally, when M q =0, we have for p) 0

p g/ (p2+ g2 q2) 1/2

"This is also independently observed by L. S. Brown (Ref. 3).
«J. Wess and B. Zumino (Ref. 4) considered a particular case

in this class.
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and

p/ (p2+ g2 ~2)1/2

We shall abbreviate

Ul/2 ~ py

It can be shown that we have the condition

o.2+ 2/2
—1

where

g(
v2 m&1+~

( g2 )1/2

m'

From the transformation property

8q = —maM

we have
80= ——

gg M

82/= ~go '$q be/+ (o'—2/2)88'

= 2go '$(b8X2/) X2/+o288 j.

For example, if U is given as Eq. (9), we have

o = (1+~)'/'/v2,

(12)

transformation

V» ~ V» g—b»& V»+8»b~,

A~ —+ A —g~orXA,

Furthermore,

and

q
—+ q

—g~~Xq.

V"~ V" 8~X—V"+8»b~

A"~ A'~ —gb~XA'~.

Under chiral isospin transformation, besides Eqs. (1),
(3), and (13) for (14)j, we also have

V"~ V"+b8X V" a»b8, —
A'4-+ A'4+b8XA'4,

where

'ir b—g-

b8= go. '(88X2/).

(19)

We must add to the Lagrangian other parts which
contribute to the kinetic energies of the 6elds V&, A&,

and q. As usual, the combination

V».2+A»„2,
where

On the other hand, when U is given by Eq. (10),
we have

5q= ~go.M

and

V„,=B„V,—B,V„+g V„XV.+gA„XA.

A pv= dpAv —dvA p,

f= U'/2%. (15)

It shall be taken as the field operator that describes the
nucleons. Then, the Lagrangian (4) becomes

~2= 4b'41/&84+~34—+eh&42r4' V'4

+&gPV»&22~0 A'" (16)
with

V'4= V4+(2/g)d»gXg+2~A»Xq,
A'"= A "+(2/g)o'd»(o. '2/)+2(A»Xg) Xg,

and

80= ——'gg M.

It is seen that we can obtain this from Eq. (13) once we
are reminded that now 88 is along the direction of y.
LAlthough the transformation relations (13) are
obtained from a particular unitary matrix (9), we
suspect that they have general validity. )

From this point on, we shall limit ourselves to these
two models specified by matrix (9) and matrix (10).As
was mentioned before, Eq. (13) covers the transforma-
tion properties in both cases. We de6ne a new fermion
Geld P through the relation

is invariant under SU2XSU2, while the combination

2m»2 (—A „'+V„')
transforms as

mp A„B"80

under chiral 5U2 and as

—mp'V„B~Bco

(20)

(21)

+2gfq»q;,"fA» ', V (8»V 8V»+—g—V»XV—

+gA "XA")+gV,V""—-'A (d"A" d"A")—
+,'A„,A»" 'm '(A A-»+V V»—)-

——,'m'A 'A "+Z', (22)

under isospin 5U2.
We still need an extra piece in the Lagrangian to

correspond to the kinetic energy of the pion. Tenta-
tively, let us assume that this term is ——',m'(A'4)',
where m is some mass scale. The complete Lagrangian
is then

d"—=8»+gV»X. where 2' is so chosen that it provides us with the pion
mass and that, after the unitary transformation which

This Lagrangian is invariant under the isospin we shall introduce later on, we shall have the strong
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PCAC condition. We shall return to this point in the
subsequent sections. At this moment, it is only necessary
to say that 2' is a function of ys (with no derivatives).

Because of Eqs. (20) and (21), respectively, we have
the PCAC condition"

—B„A}"—const)& y (23)

and the conserved-vector-current (CVC) condition's

B„V&=0.

III. QUANTIZATION

We shall assume that V~, Al„and q are independent
variables. It follows from the Lagrangian (22) that we
have the equal-time canonical commutation relations

Lvs'(~), V,(*')]=i5„5(x—x'),
LA"(a),A i(x') 1= ibi(h(x —x'),

and

Q'(x),r}(x')]= i5 (x—x') . (25)

In the last expression, we have defined

p'= (2m'/g) (o.A "+o 'r} A "r}) (26)

which is seen to be the conjugate momentum to the
field g.

The Euler's equations, which follow from variations
with respect to Ap and Vp successively, give

m sAo= dsAo'+gVo"X—As+sg~o~, r

lgo 'L(o—' n') p'+n —p'n].

After some algebra, it is also verified that

$m, 'A '(x), m, 'Ass(x')g=ig e tr~m, 'V~'(x)5(x —x'), (29)

and the other commutation relations listed in Ref. 9.
Another interesting coDUnutator is

$m, 'A '(a) ry(x') j
sr—iga '$-(os r}—')5 p+r}„r}p]8(x x—'), (30)

which differs from that of the 0. model. "
Before we go on to Sec. IV, let us stress the impor-

tance of choosing V~, Aj„and g as independent variables.
If we first redelne new variables4

A„—+ a„—(2/g)d„t)

and treat Vs, as (as the Ai-meson Geld), and r} indepen-
dently, we can show that the quantization procedure
cannot be carried through. Rather than presenting the
actual algebra, let us argue by noticing that transforma-
tions which depend on derivatives in general change the
commutation relations of the fields. Therefore there is
no guarantee that the commutator algebra will be
preserved after such transformations. On the other
hand„ if one is interested only in the S-matrix elements,
then such transformations can be justifiably performed. "

IV. A MODEL

In this section, we shall assume a certain form for the
unitary matrix. The reason for doing so is only to fix
the scale m. We must remark that our general approach
is independent of such a specific choice. We write

and

m 'V'= —r) V's+gV'sX V +gA'sXA
+gt('&'srP+gP'Xr}. (27)

It is clear that
U —~

—2(gtm) ps~ q

q ~ 9+srm50

(31)

(32)

We have here expressed the dependent variables A'
and V in terms of the independent ones. It takes little
effort to show that

1
i m 'A'88d'x and — ns, 'p Rodex

z o =cosh(( —g'to'/m')"') . (33)

under an infinitesimal chiral transformation. The
explicit forms for the parameters in Eq. (11) are

(g/m) 9»nh(( —g'9 '/m') "')

(—g'~"/m') "'
and

are the generators for the chiral SU2 and the isospin The symmetry-breaking part of the Lagrangian can be
SU2, respectively. That is, taken as

and

m, 'A'8|}d'x, r} =-,'go '((o' —r}')8|}+r}Mqj, etc. , where p will become the mass of the pion. The PCAC
condition (23) is

r}„A"=(mp, '/Sm —ps) y. (35)

m, 'V' B~d'x, g = —gb~)(g, etc.
Z

'r M. Gell-Mann and M. L6vy, Nuovo Cimento 16, 705 (19
Y. Namhu, Phys. Rev. Letters 4, 380 (1960)."R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958); S. S. Gershtien and Ia. B. Zeldovitch, Zh. Eksperim. i
Teor. Fiz. 29 698 (1955) LEnglish transl. : Soviet Phys. —JETP
2, 576 (1956) .

'9 S. Kamefuchi, L. O'Raifeartaigh, and A. Salam, Nucl.
Phys. 28, 529 (1961); H. J. Borchers, Nuovo Cimento 15, 784
(1960).

(28) The approximate signs here mean that Z' should be so
chosen that after the unitary transformation, which we
shall introduce below, Eq. (35) becomes Eq. (44).

The term —-', m'A '"A „' in the Lagrangian (22)
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iG=i ag A'
g mp

(37)

can accomplish this purpose. We shall elaborate more
on unitary transformations in Sec. V. It is now
evident that we are essentially performing a chiral
transformation, with

b()= (2/g) a~ms/m, ' (38)

In general, of course, the various fields after this
transformation will become very complicated. We shall
use as examples the problems of p~ 2', Ar ~ p+s,
and w+-w electromagnetic mass difference to show
what the program is. Then, the relevant parts are

As= e"aA I,e "g As —(2/g—)adj,r),

eAGPe %8g~ip+aP

e" qe " —q+at)
and

pq= e"aVre "—a Vs+2ar)—XAI, (2/g)a't)—Xdtr), (39)

in which
ge (77b/m p)

Jn addition, the combinations VIP+A sP and A s'

are both invariant. Substituting all these into the
Lagrangian (22), we have

g—gieG gg—i6G

,'(r)sU—„—r)„V„+—gV„XU„+gA„XA„)'
—-', (c)„A„—r)„A„+gV„XA„—gV„XA )'

sm, 'L(A. —(2alg)d. n)'—+p' j
—sm'LA. +( /g) .n+ (A.Xn) Xn]'

—sp'(a+ad)' (4o)

In order to retrieve Weinberg's mass relation, ' 2m, '
=m~', we put

fA =mp .

contains a cross term

—(2m'/g)a'c)" (a-'r))A . (36)

Such a term implies that the kinetic-energy matrix of
the A Geld and the q Geld is not diagonal. Therefore it
is necessary to deGne new Geld variables. ' From the
structure of Eq. (36) we deduce that a unitary trans-
formation with the generator

2m 'm'

they are

and

y x meson,

A„A~ meson,

p„p meson.

It is especially important to make the last identiGcation
if one wants to couple the p meson directly to the
photon (vector-dominance hypothesis) ss For the CVC
condition is now

whereas

The relevant parts of the Lagrangian in this description
are

k (r)ypv r)~pu) 4 (r)sA ~ r)vA s)
(c) ~)2 rmsp 2 rm~sA 2 rpsis2

—gp, (ipXc)"y) ——',g'(p, X9)'+ (g/2m~)

X (r)„p„—c)„p„) Lq X (8"A" r)"A")j (g—s/4m~')—
XI (~sp ~ pu)Xpj'+(g/2m&)(~sp ~ p )
X (&"pXA"—r)"q XA")—(g/2m~')

X (r)„p, r)„p„) (—D yXD"rp). (43)

This Lagrangian is the same as the ones proposed by
several authors. "However, we must once again point
out the difference in approach. The higher-order terms
by this method are diBerent. The PCAC condition
(35) becomes

in this new description. Condition (41) is necessary to
guarantee gauge invariance.

It is also noted that we should equate

m2=8m 2
P

or

m 2m+

in order to have the correct factor for the kinetic energy
of the pion field in the Lagrangian (40).

We make use of Eq. (39) to express

V„=p„—(g/m~)ipXA„+(g/2m~s)yXD„rp, (42)

where now

D„=—&,+gp„X

However, note that this is not a necessary condition
for consistency in the theory.

To eliminate the term (36), we clearly want

(m' m' p'

kggm~ (44)

or
~= ln2.

We must now identify the various fields for describing
the diAerent particles. We make the assumption that

2 M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961); S. H. Patil and Y.-P. Yao, ibid 153, 1455 .(1967);
N. Kroll, T. D. Lee, and B. Zumino, ibid. 157, 1376 (1967);
T. D. Lee and B. Zumino, ibid 163, 1667 (19.67); see also Ref. 3
for further references.

"G. C. Wick and B. Zumino, CERN Report No. 67/1082/5-
TH.826, 1967 (unpublished); L S. Gerstein, B. W. Lee, H. T.
Nieh, and H. J. Schnitzer, Phys. Rev. Letters 19, 1064 (1967).
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where the axial-vector current is

mtr mts tt'

~

A"— D"o+sdditioost terms) . (45)
g g& mg

These additional terms are not present in the other
approaches. In principle, they can be detected.

V. FURTHER COMMENTS ON UNITARY
TRANSFORMATION 8

principles can be devised to supplement and implement
this program.

As an illustration that different unitary transforma-
tions give different physics, because we insist on a
strong PCAC condition and hence the 4"s are different,
we now look at the commutator in Eq. (30). We shall
calculate the right-hand side to order p' only, Therefore
we must calculate e"age "0 to order q'. After some
elementary but tedious computation, one finds that the
transformation (37) and (38) leads to

—z tt' 7 g'
1—— q' ~.s

m~ & 12m~'

Both I=0 and I= 2 2x s-wave contributions appear on
the right-hand side. This commutator has been used in
describing the process q —+ 3z.24 Here, in order to obtain
a good fit for the energy dependence of the odd pion,
it is noted that the commutator [d4 ', ys] should contain
only an I=O contribution. Equivalently, only I=O
s-wave enhancement should exist. Within our frame-
work, we can accomplish this by choosing

in Sec. IV. This means that we want

(46)

We can instead assume that

In order to eliminate the cross term (36), we made a
unitary transformation (37) as expressed by the gauge [A '(x), vs(x')]=
parameters (38). However, we would like to emphasize
that the choice of such a transformation is not unique.
Different unitary transformations which get rid of the
term (36) do give the same Lagrangian (43), but they
give different higher-order terms. Besides, we have
imposed the strong PCAC condition

B„A~=const)( q

then we have
$2+2 '~

g„A &= const)& y. and
be'= (2/g)o.

—'"'r)

However, after a unitary transformation, we shall
have some generalized PCAC condition

Then,

iG= i mp'A'80'. (48)

r)st"= aP+bgts+

There is a distinction between these two approaches. In
the former case, because g' must be different for various
choices of the unitary transformations in order that
Eq. (46) holds, we get different on-shell and off-shell
matrix elements. In the latter case, different choices of
unitary transformations give different off-shell matrix
elements. However, they give the same on-shell
amplitudes. " We do not know which is the correct
approach; all we can conclude is that at this stage, the
algebra of currents (or fields) and PCAC are not
sufhcient to determine many processes, e.g., pion-pion
scattering lengths. "It is hoped that further dynamical

'3 This point has been discussed by 8, Zumino, Phys. Letters
258, 349 (1967); S. Weinberg, Phys. Rev. 166, 1568 (1968)."Y.Tomozawa, Nuovo Cimento 46, 707 (1966); S. Weinberg,

[~-' ~~j= ( z/m~) (1 —z~')~.~
— (49)

Various low-order calculations based on this model
[Eq. (43)] can be found in the existing literature. d

We are looking further into higher-order detectable
processes to differentiate our approach.
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