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Superconvergence and Regge Poles. I. Odd-Signature Exchanges*
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A method is used in which the usual analytic properties of the mE scattering amplitude are exploited in a
more complete way to obtain information about p-type Regge poles. It is found that the low-energy data
determine the forward Reggeized p-meson-exchange parameters quite accurately. These are found to be in
complete agreement with high-energy analyses. We are also able to see that in the forward direction, only
p-meson exchange is allowed to a very good approximation. The evaluation of low-energy parameters and
the prediction of forward pion charge-exchange scattering are also discussed. A criterion is given relating
the validity of the "interference" model to the behavior of the general sum rule.

I. INTRODVCTION

'HE importance of analytic constraints relating
Regge-pole contributions to low-energy behavior

has been long appreciated. ' ' Only relatively recently,
however, have these requirements been cast into a con-
venient form. The step required was the introduction of
sum rules of the superconvergent type, the advantage
being that the Regge parameters then appear explicitly.
The papers of Igi and Matsuda' and of Logunov et ul. '
introduced a sum rule relating an integral over scat-
tering cross sections to a Regge amplitude, under the
assumption that there were no secondary trajectories
with intercepts above n= —1.It soon became clear that
the point o.= —1 did not really have any deep signih-
cance4 and that it was possible to write the sum rule in
terms of a complete set of Regge trajectories. At this
point the use of this type of sum rule was of value as a
consistency condition to supplement the high-energy
data, a single sum rule by itself being unable to define
the parameters of even a single Regge pole (which, of
course, involves two parameters, the residue y and the
intercept ot) The existen. ce of a second superconvergent
sum rule was shown'' to follow from the "inverse"
dispersion relation of Gilbert. 7 Olsson' was able to
demonstrate that this new sum rule combined with the
old one implied Regge parameters for the pion charge-
exchange amplitude consistent with those obtained
from the high-energy data alone.

Liu and Okubo' have shown how the m-E analytic
constraint can be generalized to include the ordinary
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dispersion relation and the Gilbert relation as special
cases. Using this technique, a generalized supercon-
vergence relation for the Regge parameters has been
derived by Olsson' and used to investigate in detail the
Regge p-exchange parameters in the forward direction.

In this paper, we discuss at greater length this
generalized sum rule (GSR) and its application to the
change-exchange (c.e.) process. Section II contains a
derivation of the GSR and a description of its properties.
To evaluate the GSR both the real and imaginary parts
of the c.e. amplitude are required from threshold up to
an energy in the asymptotic region which we take to be
5 GeV. The calculation of the real part ReT from the
imaginary part ImT and related topics are the subject
of Sec. III. The actual evaluation of the GSR is covered
in Sec. IV and the results are discussed in Sec. V.

The main conclusions of this analysis using the GSR
are twofold. First, a single Regge pole satisGes the
GSR, and the parameters derived using only low-energy
data are quite precisely deined and agree well with
analyses using high-energy data. Secondly, if the GSR
results are combined with the high-energy data, an
upper limit can be placed on the contribution of a
secondary p trajectory, the p', in the forward direction.
It is found that the strength of p' must be considerably
weaker than that of the p and makes more attractive
the suggestion" that the p' residue vanishes in the
forward direction.

II. GEN'ERAL SUM RULE

We shall be considering the amplitude combination
T(to) = T „(ro) 7+v(to)."Th-is am—plitude (charge ex-
change) is odd under crossing and is normalized by the
optical theorem to the total cross-section difference

& „=trt(sr p) trt(sr+p) —= (4srh'/k) ImT(co). (1)
At suKciently high energies the c.e. angular distri-

bution is well represented by the exchange of a single p

9 M. G. Olsson, University of Wisconsin Report No. C00-881-
119 (unpublished); Phys. Letters 26B, 310 (1968).IL. Sertorio and M. Toiler, Phys. Rev. Letters 19, 1146 (1967).

"The incident pion energy is cv, and its associated momentum
is k. The pion mass is p and the nucleon mass is M; energy units,
unless otherwise specified, are GeV. f'=0.081 and A'=0.389
GeV mb.
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Regge pole. '~ In the forward direction the Regge p-
exchange amplitude can be written as

T'(M) = (»/~) (~/~o) (z+«nl~~),

where coo is a scale factor arbitrarily'"' chosen to be
Mp= sp/235 with sp= 1 GeV'. The constants 7, the
residue, and the intercept n have values as determined
from 6 „and forw'ard x c.e. data" of roughly

y p
—0.33, o,p—0.57.

The existence of polarization in the x c.e. scattering
at high energy" requires an additional small contribu-
tion to the asymptotic amplitude besides the p. The
simplest assumption" is that there is a lower-lying
trajectory, the p', with the same quantum numbers as
the p. So, in general, we shall adopt the following ex-
pression for the high-energy amplitude:

2 (~l
T'(~) =—2 vl

—
l

(z+1»-.'~~)
3II (7 ) k(dpi'

2z 'y M)—
l

e '~~~' (2)
M (r, ~& cos—,'zro. cup)

Following the work of Liu and Okubo, ' we define the
quantity

P(pp)= (—zk) '—'T(a)).

The factor (—ik) ' ' has branch points at the elastic
thresholds ~= &p, and is real between them. Thus F (co)
has the same analytic properties as the amplitude T(co)
and hence a dispersion relation similar to (3) is valid for
the range 0.—2(e(1, where n is the leading trajectory
intercept. For a sufIiciently rapidly decreasing T(cu) at
high energy (i.e., if a& ReF-+0) a superconvergence
relation is valid. This condition is satisfied when the
leading intercept is less than e. The resulting supercon-
vergence relation is"

fs p '
~

—&'+'&Is 1,

1—
l

= dM ImP(M) .
p, '+' 4M'1 2zr

We now consider an energy or = ~ high enough that the
scattering amplitude can be replaced by a Regge ex-
pansion. Multiplying the above expression by Mm. co, and
dividing up the integration range into two parts, gives

(5)

dip ImF~(o)) .

2 1 7 t'co)
ImF~((o) =— g l

—
l

sin-,'zr(a —e).
3f k'+ (r, ~l COSszro!((up)4f 2M

ReT(pp) = +—P ImT(o)') .
GO g p M CO

(3)
The second integral in (5) can now be explicitly carried
out:

If T(pp) decreases rapidly enough at high energy,
namely, the leading Regge intercept is below —1, the
sum rule (3) can be converted into the superconvergent
form by multiplying by cv and letting or become large,
giving

sin-', zr (u —«)Is
(v, ~) cos-, xn coo

The integral is convergent by the assumption that n& e,
but cannot be carried out in closed form. However, if we
approximate'9 the momentum by the energy, which is
certainly accurate at energies above rp (which we will
take as 5 GeV in our numerical calculation), the integral

d(u ImT(a) .

"R.Logan, Phys. Rev. Letters 14, 414 (1965).
'3 The normalization is the same as in V. Barger and M. Olsson,

Phys. Rev. Letters 18, 294 (1967)."P. Bonamy et al , Phys. Letter. s 25, 5O1 (1966). A recent
measurement by D. Drobnis et at. , Phys. Rev. Letters 20, 274
(1968), is consistent with zero polarization at 5 GeV/c.

'~ R. Logan, J.Beaupre, and L. Sertorio, Phys. Rev. Letters 18,
259 (1967).

"M.L. Goldberger, Phys. Rev. 99, 986 (1955);R. Karplus and
M. Ruderman, ibid. 98, 771 (1955);M. GoMberger, H. Miyazawa,
and R. Oehme, zbzd. 99, 986 (1955). T(cu) is real for p&cu&+p-
except for simple poles at co =&pP/2M. At ~=~p there are branch
points. Crossing symmetry for T(co) is T(co) = T( ~)——"Ke have made the approximation cog((p in the nucleon-pole
term. Note that this well-known relation is convergent without
subtractions for 0,(.1.

~ The factors on the left side arise from the relation kg'
= —

z '(1—
z '/4~').

~~ A series expansion of the integrand allows an exact calculation
of the left side. The correction to I (p) is given by

where

It is easily verified that this correction is quite negligible in all
cases of interest to us.

It is not possible, however, with present accuracy in I = Mco de1 2
the high-energy data to learn much about such lower-

lying trajectories. At this point we shall use some
general properties of T(cp) to obtain additional informa-
tion about the Regge parameters.

The scattering amplitude T(co) has rather simple
analytic and reflection properties in the complex tp From (2) and (4) we find that
plane. " These properties imply a relation" between
ReT and ImT which can be expressed as'~
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is elementary with the result

(o sin-,'sr (n —e)

(y ~) cos2x'n Goo n —e

The first integral can be expressed in terms of T(cu) using

ImF(co) = (1/k'+') [coss7re ReT(co)—sin rssre ImT(a&) j.
Combining the three terms, our GSR is obtained:

'y o& slllssr (o.'—e)
I(e)= Z

(v ~) cos&mo. coo n —e

&& icos—sre Re2'(cv) —sin —sre ImT(&o) j. (6)

This sum rule is only valid in the region n(e(1, the

upper limit arising from the bad behavior of the
integrand" at threshold for e) 1.

We shall now argue that this sum rule actually holds
for all e less than unity. "The following points should be
noted:

(a) The integral converges and is of course finite for
all e(1; also, the nucleon-pole term is finite and well

defined for all e.

(b) This being true, we expect that there is a formula
in terms of n and e for the left side of (6) also when n) e.

(c) I(e) is analytic in n and e, which can be continued
from OI.& e to n& e.

(d) Hence I(e) as given in (6) is a valid formula for
all n& e.

There are several values of e which have particular
interest. The original sum rule studied by Igi and
Matsuda, 3 Logunov et al. ,

' and Horn and Schmid4

corresponds to e= —1.By (4) we see that, for this value
of e, F(~)= T(&o). The sum rule in this case (assuming
one Regge pole) reduces to

((u ) Msr M
I(—1)= ~

—
~

= — f'+ des ImT—(to). (7)
CK+ 1 (cop) 07 2os

The evaluation of this sum rule is straightforward since

by the optical theorem the integrand is proportional to
5 ~. The "higher moment" sum rules are given by
&= —3, —5, ~ -; however, in practice they are of little
use.

&0 A«=+1, F(ca) acquires a simple pole at co=+p which
introduces a subtraction constant. Sum rules near ~ =+1,however,
are of no value for the c.e. amplitude because of the rapid con-
vergence of the integrand and hence small Regge contribution
(see Ref. 24).

»The author would like to thank Professor C. Goebel for
suggesting this argument. Of course, the GSR can also be derived
using the standard methods of Refs. 3 and 4.

For the value ~=0 the GSR reduces to the sum rule
of Olsson' and of Meshcheriakov et al. :

a ~~f2 +2 —1/2

s(0)=-(-) t~~-;.~=- (i- )Q)p

This sum rule was evaluated by Olsson' with the aid of
forward sr c.e. cross-section data (do/dQ) which gives the
following" ReT (ro):

Qs do (qa
[ReT(a) f

= 2
Mh dQ k 4srh

(9)

The sign is defined by low-energy phase-shift analyses.
Evaluation of (8) by use of (9) combined with the
evaluation of the erst sum rule (7) provides two pieces
of information which then define the parameters of a
single Regge pole. It is interesting to note that the
Regge-pole parameters thus obtained were consistent
with those resulting from an analysis of high-energy
data. '

There is one further special value of e which should
be noted. If &=0;,—2, where 0., is the "leading" inter-
cept, then the corresponding Regge term on the left side
of (6) vanishes because of the zero of sinsrsr(e —a,).Thus,
if there were only one Regge exchange in the forward
c.e. amplitude and, further, if we knew from another
source (high-energy data) what the value of e, is, then
the proper evaluation of the sum rule I(n, —2) should
give a zero result. "If the result is nonzero, this is proof
of the existence of secondary Regge exchanges. Our
main result will be that indeed I(rr, —2) is consistent
with zero.

Some general properties of the GSR should be men-
tioned. As e becomes positive, the sum rule becomes
more convergent and the Regge term becomes corre-
spondingly less well determined. We find that in practice
the content of the GSR becomes seriously reduced for &

greater than 0.5 in the case of the c.e. amplitude. Note
that it is just this range (e)0.57) that F (co) is supercon-
vergent. A,t &=1 the sum rule as derived breaks down
since a new pole appears. "The GSR at ~=1 then be-
comes indentical to the ordinary dispersion relation (3)
evaluated at threshold. "

Qn the other hand, as ~ becomes negative, the
integrand becomes strongly inQuenced by the k—' term

's The quantity gs is the usual c.m. energy; q is the c.m. mo
mentum. See Ref. 11 for previously dined kinematic quantities.» Because of the small correction terms described in Ref. 19,
1(n,—2) does not completely vanish. The p-pole correction
contributes about 0.0015, which is much smaller than the experi-
mental error in the evaluation of 1(n~ 2)—

24 It has been noticed for some time that the dispersion relation
(3) evaluated at threshold has an extremely small high-energy
contribution D. Hamilton and W. Woolcock, Rev. Mod. Phys. 35,
737 (1963)j. This again illustrates the lack of content for the
GSR when e)a, (i.e., in the superconvergent region).
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The curve drawn represents a statistical Gt to the data involving 25 parameters.

which enhances the energy region near or = co. Now, since

T(o&) is well represented by the Regge expansion in this
region and since the nucleon-pole term becomes rapidly
unimportant, the GSR reduces to an identity in the
Regge parameters for sufficiently negative e. In our
case, we Gnd that for e( —2 little that is new is
obtained "

To sum up this section, we have derived a sum rule

which is valid for all values of a parameter e which are
less than unity. In practice only values of e not too close
to unity or not too negative will provide useful informa-
tion, . The question of how much information is con-

tained in the evaluated GSR will be dealt with later in

detail; however, it is physically clear why more informa-
tion can be provided by the GSR than by the original
sum rule at e= —1. To see this, remember that as e

varies, the integrand is changed by the over-all factor k-'
which takes various "moments" of the experimental
data and hence extracts new knowledge about the

Regge expansion.
Of course, the actual evaluation of the GSR requires

knowledge of both the real and imaginary parts of T(o))
from threshold up to or = or—=5 GeV. The most accurate
data available are the 6 ~ which tell us only about

"This question will be considered quantitatively in Sec. IV.

ImT((0). We could use the ReT(o)) as determined from
the forward c.e. data, using (9) as was originally done to
evaluate' I(0); however, we shall proceed differently.
The data for d„~ will be used to evaluate ReT(o)) by use
of the ordinary dispersion relation (3).As will be shown
in Sec. III, it is possible to determine ReT((o) from
threshold to 5 GeV without making important assump-
tions about the Regge expansion. The GSR can then be
evaluated and the Regge parameters displayed.

III. REAL PART BY A DISPERSION-RELATION
METHOD

In this section we discuss the parametrization of the
experimental data, by the use of a least-squares mini-
mization procedure, and how' this 6t to the data can
generate the real part up to 5 GeV. Our method has the
advantage that a realistic error can be assigned to not
only the real part at each energy but to any quantity
depending functionally upon ReT(o)) and Im(o)) ss In
the course of this process it is natural to reexamine
certain dispersion-relation calculations of threshold
parameters and of forward c.e. scattering in the light of
the most recent experimental data.

'6 A more detailed treatment of the error calculation is contained
in the Appendix.
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TABI.E I.The real and imaginary parts of the antisymmetric amplitude T (au) Las dehned in Eq. (1)) are tabulated as a function of the
pion lab momentum k. The units of )t are GeV/c, and T (co) has the units (GeV) . ReT (co) was determined from Im T (&o) by the dispersion
relation (3) and does not include uncertainty in the value of f' (here taken to be 0.081).

0
0.035
0.070
0.087
0.105
0.122
0.140
0.175
0.210
0.228
0.245
0.262
0.280
0.298
0.315
0.332
0.350
0.388
0.427
0.465
0.503
0.542
0.580
0.618
0.657
0.695
0.733
0.772
0.810
0.848
0.887

ImT

0
0.033+0.002
0.050&0.004
0.038+0.004
0 +0.005—0.082~0.006—0.227&0.007—0.83 +0.01—2.21 &0.015—3.34 &0.015—4.73 ~0.015—6.16 &0.015—7.21 &0.015—7.57 &0.02—7.23 +0.02—6.43 +0.04—5.61 ~0.05—3.8 ~0.1—2.3 &0.1—1.30 ~0.07—0.54 ~0.05
0.09 &0.05
0.78 ~0.04
1.66 +0.03
2.83 ~0.03
4.09 &0.03
4.66 &0.04
4.15 +0.035
3.45 ~0.025
3.23 &0.03
3.71 &0.03

RCT

1.65+0.01
1.53+0.01
1.17&0.01
0.91&0.01
0.60&0.01
0.24~0.01—0.17&0.01—1.11+0.015—2.05&0.015—2.29&0.02—2.12~0.02—0.13~0.03
0.16+0.03
1.91&0.03
3.56+0.04
4.77&0.05
5.50~0.06
6.52+0.06
6.70~0.06
6.62~0.06
6.54+0.07
6.56+0.06
6.67&0.05
6.77+0.05
6.65a0.04
5.87+0.05
4.40a0.04
3.26+0.04
3.08a0.04
3.51&0,04
4.05+0.04

0.925
0.963
1.002
1.040
1.078
1.117
1.193
1.270
1.347
1.423
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.40
2.60
2.gO
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.gO
5.00

ImT

4.92~0.03
6.48~0.03
7.33~0.03
6.60~0.03
5.06~0.03
3.65~0.03
1.79+0.03
0.59&0.03—0.47&0.03—1.35~0.04—1.44+0.04—0.44~0.05
0.67&0.05
1.55~0.07
2.31+0.08
2.89+0.10
2.97~0.12
2.61&0.13
1.86~0.08
1.43~0.05
1.4g~0.05
1.96+0.05
2.32~0.06
2.41&0.05
2.36~0.05
231~0.06
2.33&0.06
2.41~0.06
2.50+0,07
2.57&0.07
2.64~0.06
2.70~0.05

ReT

4.21+0.04
3.33~0.05
1.26~0.05—0.97+0.045—2.11~0.05—2.40+0.05—2.0g+0.05—1.57+0.05—0.90a0.05
0.28~0.06
1.84+0.07
3.21+0.07
3.63+0.08
3.64%0.08
3.41+0.10
2.84+0.12
2.08+0.13
1.59+0.11
1.52+0.11
1.93+0.10
2.60+0.10
2.89&0.10
2.81&0.10
2.66+0.12
2.61&0.12
2.70+0.12
2.84+0.13
2.96&0.14
3.05+0.15
3.12+0.16
3.18a0.17
3.25+0,18

result is shown in Fig. 3 and Table I along with repre-
sentative errors. "The values of ReT(re) near threshold
are of course influenced by the magnitude of f', the
direct-channel nucleon-pole term. Following the analysis
of Hamilton and Woolcock(4 we take f' to be 0.081
&0.002. The GSR values, however, are quite inde-

pendent of the value of fs To de.monstrate this last
statement it is only necessary to substitute Eq. (3) for
ReT(~) into the GSR and note that as co becomes very
large, the dependence on f vanishes; in practice, this is
nearly the case.

We have at our disposal data for 6 „up to 22 GeV/c,

8-

)
(D 2"

]

0

FIG. 3. Real part of T (co) calcu-
lated from the imaginary part of T (&o)
by use of the dispersion relation (3).
The errors shown are representative of
the error corridor obtained by taking
account of parameter errors and corre-
lations as described in the Appendix.
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so that in order to evaluate the dispersion relation (3)
we must make an extrapolation based upon the lower-

energy information. This turns out to be no problem,
however, since ReT(cv) is needed only below 5 GeV and
is not particularly sensitive to the high-energy extrap-
olation. To see this, we try the following variation:
Repeat the least-squares 6t to 6 „,except using a two-
pole Regge expression, the second pole being constrained
to have the same residue and to have an intercept one
unit below the p pole. The p residue and intercept now
adjust to give a good fit to the data below 22 GeV.
Using this new parametrization, the real part of T(to) is
computed. It is found that even at 5 GeV, ReT(to) has
not changed appreciably, remaining well within its
error. Thus we have obtained numerical values for
ReT(to) below 5 GeV in a model-independent manner.

Before using these expressions for ReT(&o) and ImT(co)
in a numerical evaluation of the GSR, let us examine
their relation to earlier work and discuss the general
situation regarding the low-energy x-Ã scattering
parameters. The determination of the m--E scattering
lengths and the coupling constant f' involves a rather
elaborate analysis, using low-energy angular distribu-
tions, and was originally carried out by Hamilton and
Woolcock. '4 In later" work, however, there has been
considerable variation in these parameters. The most
straightforward part of such analyses is the evaluation
of the dispersion relation (3) at threshold, which as-
sumes the following form:

tt ) tt dto

s (ar —us)l 1+—I= f'+ —I—mT(to),
'E M) 2tr „k'

where a~ —a3 is the wS s-wave scattering-length differ-
ence in inverse pion-mass units. The evaluation of the
integral in terms of our parametrized it to the most
recent data'~ results in the relation

ar —as ——5.22f'—(0.122&0.002) .

If Hamilton and Woolcock's'4 value for the x-E
coupling constant, f'=0.081&0.002, is introduced, we

get a~—a3——0.30&0.01, which disagrees decidedly with
their value a&—a3=0.265~0.01. This discrepancy has
been previously noticed by Hohler et al. ,' whose results
(which do not quote an error) agree reasonably well
with ours. Hohler et al.' were then led to remark that
perhaps f' is not so well determined as it appeared, and
we see that if f'= 0.074, Hamilton and Woolcock's value
for a~—a3 is obtained.

Much of the confusion about low-energy parameters
would be cleared up if there were some agreement among
more direct analyses of experiment. A recent experiment
and analysis of low-energy scattering by Donald e] al."
inds that a~—a3=0.29&0.015. Other less direct analy-

80 V. K. Samaranayake and W. S. Woolcock, Phys. Rev. Letters
15, 936 (1965);J. Hamilton, Phys. Letters 20, 687 (1966).

3' R. A. Donald, W. H. Evans, W. Hart, P. Mason, D. E. Plane,
and E.J. C. Read, Proc. Phys. Soc. (London) 87, 445 (1966).This
paper contains references to earlier work.
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FIG. 4. Prediction of the forward + c.e. angular distribution
using charge independence and the values of T(co) from 6 „data
Lusing the dispersion relation to obtain ReT(a&)g. The experi-
mental data shown are those of Ref. 33.

ses or more difFicult experiments tend to favor" ~ a
lower value of a~—a3—0.25. Apparently, the only
resolution of this discrepency will be the accumulation
of high-statistics data for elastic and c.e. scattering at
very low energies.

Since we know both ReT(co) and ImT(to) up to 5
GeV/c, we can then predict the forward s--charge-
exchange angular distribution (do/dQ) by charge inde-
pendence LEq. (9)j. Figure 4 shows this prediction
compared with experiment from threshold to above 1
GeV/c. s' In general, there is good agreement with the
data points and also with the curve of Hohler e$ al.2

Between 0.9 and 2 GeV/c our prediction agrees quite
well with that of Borgeaud et al.~ We have assumed here
a value of f'=0.081. The question arises whether it is
feasible to measure do/dQ (0=0) accurately enough to
get a good determination of f'. The best momentum to
use is when ReT(to) is large and ImT(&o) is small. This is
the case for 0.35(k(0.45 GeV/c. In this range we have

o(do/dQ) =12.58 (f') .

thus, if f' is to have an error of &0.002, the forward
differential cross section must be measured to ~0.025
mb/sr. There already exists a set of measurements" in
this range whose errors are +0.19 mb/sr, so st, the
present, f' is determined by the forward s.-charge-
exchange data to be f'= 0.08&0.015.

IV. EVALUATION OF THE GENERALIZED
SUM RULE

In Sec. III we showed how the 6 „data from thresh-
old up to 22 GeV/c allowed the calculation of the real

3' A. Donnachie and G. Shaw, Nucl. Phys. 87, 556 (1967).» The experimental data for da/dQ below 1 GeV/e are compiled
in L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965). Other data shown: Bulos et at. , Phys. Rev. Letters
13, 558 (1964); C. Chiu et al. , Phys. Rev. 156, 1415 (1967); P.
Borgeaud et al. , Phys. Letters 10, 134 (1964); W. S. Risk, Phys.
Rev. 167, 1249 (1968).

34 P. Borgeaud et al, , Phys. Letters 10, 134 (1964)."J.Caris et al , Phys. Rev. 1.21, 893 (1961).
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4-

TmLE II. Values of 1(e) obtained from the sum rule (6)
for e in the interval —2 &a &+1.These results have been plotted
in Fig. 5.

0=

0 = 0.5S,

~ a ~ s I i I I I l 1 I ~ I
I I I

0.6
0.5
0.4
0.3
0.2
0.1
0—0.1—0.2—0.3—0.4—0.5—0.6—0.7

3.53+0.58
3.25&0.44
3.09+0.34
2.97a0.27
2.86+0.22
2.75+0.18
2.65+0.11
2.51+0.10
2.35~0.09
2.18+0.07
1.99&0.06
1.79a0.06
1.59&0.05
1.38&0.04

—08—0.9—1.0
101
102—1.3—1.4—1.5—1.6
1.7—1.8—1.9—2.0

1.17+0.03
0.96~0.03
0.76+0.03
0.56+0.02
0.37~0.03
0.19~0.03
0.02~0.03—0.13+0.03—0.26~0.03—0.38+0.03—0.48~0.03—0.56+0.03—0.62~0.03

FIG. 5. Sum rules j(e) for —2&e&+1. The curves drawn
correspond to single Regge-pole predictions.

part in a model-independent manner below 5 GeV/c. We
shall now make use of this information to evaluate the
GSR formula (6) directly. The asymptotic energy t0 is
chosen to be 5 GeV. If this is indeed high enough, "we
do not gain additional information by varying co. Al-
though the GSR explicitly depends strongly on the value
of the wS coupling constant f' (at least for large e), we
have seen in Sec. III that it is not necessary to know f'
well since it is nearly cancelled by the pole term ap-
pearing in ReT(o&) from (3). We shall want to evaluate
the GSR for e(1 and down to a value (of e) below which
the integral is dominated by contributions near co. The
resulting values of the GSR must also be generated by
the Regge-pole expansion, thus determining Regge
parameters.

Using our expressions for ReT(o~) and ImT(o&), the
GSR can be numerically integrated, giving a resulting
set of values I(c) shown in Fig. 5 (for —,'o unit intervals
of e). We shall now attempt to answer the question of
how negative we can go in e. In Sec. III it was shown
that changing to a two-pole extrapolation above 22
GeV/c has a negligible effect on ReT(cu). If this two-pole
fit is substituted into the GSR, the resulting I(e) can be
compared with that derived from a single-pole extra-
polation. It is seen that the I(e)'s are quite similar until
e approaches —3.At e= —3 the two differ by a standard
deviation. "Thus we have evidence that by ~= —3 the
GSR content is becoming model-dependent.

A realistic error has been assigned to I(e) by keeping
track of all parameter correlations by means of the error
matrix. "The indicated errors in Fig. 5 are obtained in
this manner. Table II contains a tabulation of I(e).

"5 GeV is certainly asymptotic by the usual criteria: (i)
cv))masses in problem; (ii) above direct-channel resonances;
(iii) many absorbative channels open; (iv) cross section changing
smoothly."It might be noted that e = —3 corresponds to the first "higher
moment" sum rule of Horn and Schmid (Ref. 4), which thus, at
least for the forward nonflip amplitude, is not useful.

sin-,'s-(n —e)
I(e)= P

('Y ~) cossvrn Ms)

First, we might note that the integral used in the
evaluation of I(e) is always finite, and hence at right-
signature points (n odd) the residue must have at least
a simple zero. This is just equivalent to the usual re-
quirement that the Regge amplitude is always finite. 4'

In Fig. 5 we illustrate the I(e) expected for various
single-pole terms. It is seen that for y=0.33 and +=0.58
an optimum fit to the data results. If a single pole is
fitted to the experimentally determined I(e) by varying
its residue and intercept, the following set of parameters
results:

o p
——0.58&0.01, y p

=0.32&0.01. (10)

This is in excellent agreement with the results of single-
pole analyses of high-energy data. "~ The agreement of

'8 R. Kreps (private communication}.
39 TschebyscheG polynomials were chosen because of their rapid

convergence.
40 Qf course, we have only considered the leading term of the

asymptotic expansion of Q-~ r'(s). The next term lies two units
below and its residue is much too small to be detected. Real
evidence for the Regge picture is obtained if the set of power-law
coeKcients is rapidly convergent.' In particular, if T = (2y/M) (~/~0) (i+tan-', pro.), then y must
have a zero at. odd-signature points if TI' is to be finite.

4' Q. Hohler, J. Baacke, H. Schlaile, and P. Sonderegger, Phys.
Letters 20, 79 (1966); other more model-dependent analyses are
given in Refs. 43 and 44.

Because of the finite errors, the smooth variation of
I(e), and the limited range of e, the experimentally de-
termined I(e) contains only a finite amount of informa-
tion. A good measure of this content has been suggested
by Kreps. ss A polynomial seriesss is fitted to the I(e) and
the number of nonvanishing coeflicients (larger than
their error) measures the amount of information con-
tained in I(e). The result of such a fit is that there are
four nontrivial numbers which can be extracted from the
I(e) of Fig. 5 or Table II.

The I(e) curve must also be expressible by a set of
Regge parameters. e' In fact, by (6) we must have
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n p
=0.575&0.01.

When this is used in conjunction with the GSR result,
and if the p' intercept is chosen to be one unit below the

p, the result is

(11)1
Vp &zoVp

A similar limit could be obtained for o.p. =0.

V. DISCUSSION AND CONCLUSIONS

The existence of a p' trajectory has been suggested
among other things4' to provide a nonvanishing w c.e.
polarization" which is apparently observed at high
energy. '4 The forward helicity-nonQip p' residue in these
early models violates badly the inequality (11). Indi-
cations of this were noticed using a single sum rule, 4'

leading Sertorio and Toiler" to propose that the p' is a
conspiring trajectory of the type (Gribov-Volkov-P-
type)'I whose residue vanishes as Qt at the forward
direction. Our result strongly supports this hypothesis.
Recently, an analysis by Gajdicar eI, ul. 44 has demon-
strated that it is possible to explain the polarization
with an arbitrarily small helicity-nonAip p amplitude.
It seems reasonable to assume that since the nonQip
amplitude plays a minor role44 in explaining polarization
and since it must be quite small in the forward direction
due to the GSR, that it probably vanishes at 1=0.

ee R. J. N. Phillips and W. Rarita, Phys. Rev. 139, 81336
(1965);C. Chiu, R. Phillips, and W. Rarita, ibid. 153, 1485 (1967);
F. Arbab and C. Chiu, I'bt'd 141, 1045 (.1966).

~ W. Rarita and S. Schwarzchild, Phys. Rev. 162, 1378 (1967);
T. J. Gajdicar, R. K. Logan, and J. W. Moffat, University of
Toronto Report, 1967 (unpublished).

45 Rarita and Schwarzchild (Ref. 44) also propose an explanation
of the E+ c.e. angular distribution using a p'.

ee See Igi et at (Ref. 3) and Serto.rio et al (Ref. 10).One mu.st be
careful in evaluating the e= —1 sum rule. The data of Citron et gt.
(Ref. 27), which are used from 2.5—6.0 GeV/c, have a systematic
error far in excess of the statistical errors. Thus the neglect of the
large systematic error results in an unrealistically low error in the
sum-rule evaluation.

"V.
¹ Gribov and D. V. Volkov, Zh. Eksperim. i Teor. Fiz. 44,

1068 (1963) I English transl. : Soviet Phys. —JETP 17, 720
(1963)j.

the various methods for calculating the p Regge
parameters makes these parameters among the best-
determined numbers in high-energy physics.

Clearly, the addition of a second Regge pole will not
improve agreement with experiment and hence will not
determine any new parameters (see Fig. 5). However,
we can place an upper limit on the residue for any given
p' intercept. A particularly strong statement can be
made if we use some information from high-energy + c.e.
scattering. The angular distributions at high energy are
not sensitive to the existence of the p'. This can be seen
in a practical way by examining the parameters de-
termined from essentially the same m c.e. data by a
number of different investigators, some using a single-
pole fit~ ~ and others assuming both a p and p'.~ In
particular, there is complete agreement concerning the
forward intercept, which we take as~

3.0-
j FOLEY et el.

I GALBRAITH etal.

I.O-

As complicated as the situation may be in the non-
forward directions, there appears to be a certain simpli-
6cation at t=0 in that only p exchange contributes.
Another interesting aspect of the forward c.e. amplitude
is seen if the GSR is evaluated using only resonances.
To do this we set all the nonresonant (smoothly varying
background) parameters to be zero in the expression
for ImT(ot). Inserting this resonance part of ImT(ot)
into the dispersion relation (3) gives the corresponding
resonance part of ReT(te). The modified amplitude is
then used to evaluate the GSR. The result is that I(e)
is consistent with zero for all e. This unusual result is
equivalent to the fact that the interference modePS
works so well for the forward x c.e. amplitude. To see
that this is a reasonably fair statement we remember
that the interference model claims that down to low
energies

where TB(ot) is the asymptotic Regge expression. Using
for TB(ta) an expression which differs from (2) only at
very low energies, "we substitute into the GSR. 1(e)
then cancels with the integral over TB(ce) and implies
that the resonance contribution to the integral must
cancel with the nucleon pole, as is observed. We can thus
tell under what circumstances the interference model
will fail at low energies. Whenever resonances enter into
an amplitude in such a way that cancellation with the
nucleon-pole term is impossible, then the background
amplitude is badly approximated by the Regge ampli-
tude. This will be the case in the helicity-Qip c.e.
amplitude or the nonQip, non-c. e. amplitude where all
resonant contributions enter with the same sign. Now,
since the interference model is presumably always valid
above some energy, our criterion indicates that the tw'o
above-mentioned amplitudes violate the interference
model at a higher energy than in the more favorable

"Assume ImTa (at) = (2Y/M) (at/b) (b/ate) a.

I I I I I I I I

8 IO 12 !4 I6 I8 20 22 24

P~ b (GeV/c)

FIG. 6. Prediction of 6 „at high energy, using the Regge
parameters t Eq. (10)j obtained from low-energy data. The high-
energy measurements are from Refs. 27 and 52.
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case of forward c.e. scattering. This can be seen directly
from the fact that for s.+p total cross sections the Regge
amplitude does not represent the nonresonant back-
ground below 2.5 GeV/c. 4'

As for the basic reasons why the resonances and
nucleon-pole term exactly cancel in the expression for
the Regge amplitude I(e) in the case considered (for-
ward rr c.e.), we must rely on speculation. The explana-
tion might be as follows: p exchange dominates both
high and low c.e. scattering"; thus the "interference"
model is likely to work and hence the resonance
cancellation follows. In + non-c. e. scattering the reso-
nances cannot cancel and in fact add to give, through
the GSR, a large Regge background. Because there can
be no cancellation of resonances, the interference model
breaks down, and we know that at threshold the Adler
condition" makes the non-c. e. amplitude small. Similar
conclusions follow in the helicity-Qip c.e. amplitude,
since it is nucleon-pole terms and not p exchange which
dominate this amplitude at threshold.

Finally, it is of interest to plot our p-exchange pre-
diction for high-energy 6 „as measured in two recent
experiments. The parameters of (10) when substituted
into (1) result in the curve in Fig. 6. Also plotted are
the experimental data of Foley et al.2~ and Galbraith
et al."

In conclusion, we have evaluated a set of sum rules
which constrain the parameters describing p-like Regge
exchanges. These constraints are given in Table I and
should be used in future analyses involving p exchange.
We have explicitly written the I(e) expected for a
discrete set of Regge poles, but the generalization to a
continuous superposition of poles (or a Regge cut) is
straightforward.

4e V. Barger and M. Olsson, Phys. Rev. 148, 1428 (1966).
'0 At low energies it is well known that p exchange predicts the

correct s-wave scattering lengths /see J. Sakurai, Phys. Rev.
Letters 17, 1021 (1966)j; J. Hamilton, in Strong Interactions and
IIjgh Energy Physics, Scottish Universities' Summer School, 1963,
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964),
shows how the nucleon-pole contributions vanish for ~ c.e. near
threshold.

"S.Adler, Phys. Rev. 137, B1022 (1965).
"Galbraith et at , in Proceedsngs . of the Athens Conference on

Resonant Particles, Ohio University, Athens, Ohio, 1965, edited by
B.A. Munir (Ohio University Press, Athens, Ohio, 1965), p. 522.

APPENDIX

The assignment of errors and their propagation
through dispersion relations, sum rules, and other
derived quantities will be discussed here in greater
detail.

The available data for 6 „are Gtted by standard
least-squares techniques by an expression containing E
parameters Ip;I. The result of this process is a set of
"best" values of these parameters and their correlation
or error matrix" T,,=(Ap, hp, )„.Any function II(p,)
these parameters can be evaluated and the expected
error in II(p;) is determined by

M 7l Ig CO GO ctps'

Thus any function of ReT(co) and ImT(co) can be
assigned an error:

& BG BG
AG=Q T;;,

' s tip' r)ps'

where

r)G BG ct (ReT)

r)p, ct(ReT) clp,

c)G ct (ImT)

cl (ImT) rl p;

The function G is evaluated at a given energy and the
error applies to this energy. G may, for example, be the
forward m c.e. cross section or it may be a value of the
interband in the GSR tEq. (6)j. In the latter case,
the error in I(e) is calculated by integration of AG
from threshold to co.

'3The theory of the least-squares method is available from
numerous sources. Two references which might be mentioned be-
cause of their high-energy physics orientation are J. Orear,
University of California Report No. UCRL-8417 (unpublished);
F. T. Solmitz, Ann. Rev. Nucl. Sci. 14, 375 (1964).

We have in the course of the analysis calculated all of
the derivatives 8 ImT(to)/ctp, ; thus by means of the
dispersion relation we can find

c) ReT(co) 4f' 2co " ceo' 8 ImT(co')—P


