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!
(even)

5 odd [P.',[P,',ej]=[P.,[P&,n]j, f)=A or V.

APPENDIX II That the symmetry property is retained. is clear from

~e consider operators e+={V&,As)~(V&A&} which inspection. To see property (1), note that we may
are replace E' by F in the double-commutation terms on the

right-hand side, since

under interchanges of V and A. It is shown here that

(1) [P-',[P",f)'2= [F-,[P,8'll;
(2) double commutation with F,', Fs' does not

change the symmetry under V, A interchange.

Both results follow from the identity

I F.',LF",6'jj
=0[P.',[Fs', VtZ, As& ~(Vs,[F.',[Ps',A ~)j))
+(fVt LF.' [Ps' AsZ) +([P-' [Ps' Vslj At))
+(i[P.' Vtj [Fs'Asj)~l[F" Atj I Ps' Vsj))

+((LP ', V j,LF 'A 3)~i[P ',A jLF-' V3) (24)

For the single-commutation terms, since

[F,', V]=[F„Aj, [F,',A j=[F„V7,

replacement of Ii' by Ii must be accompanied by inter-

change of V and A, under which the symmetric case

(+) will just transform into the same terms with Fs
replaced by F, but the antisymmetric case (—) trans-

forms into minus the terms with Ii ' replaced by F. Thus

property (1) holds for 8+ but not for 8 .
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The radiative corrections to the Dalitz plot in E,30 decays are calculated assuming a phenomenological
weak E'-m vertex and using perturbation theory. The answer depends logarithmically on a cutoB, as is the
case for nuclear P decay. An interesting feature of these decays is that they offer a means of measuring the
q' dependence of the form factors f~(f'). The radiative corrections contribute an additional energy de-
pendence which cannot be separated experimentally. It is found that the radiative corrections are con-
siderable, i.e., greater than 3% in absolute magnitude, over a large portion of the Dalitz plot, and are not
particularly sensitive to a reasonable choice of cutoB. The corrections to the lepton and pion spectra, and
the decay rate are also given. A comparison with previous results for E,3' reveals that the E,3+ correction
is of the same order of magnitude but everywhere more positive. In particular, the ratio of the decay rates
I'(E,s )/P(lt, &+), which is equal to 2 according to the QI=zv rule, must be modi6ed by a factor (1+8) due
to the radiative corrections. It is found that S 1-',% and is independent of the cutoff.

I. INTRODUCTION

HE subject of this paper is the estimate of the
radiative corrections to the three-body leptonic

decays of neutral kaons, E~~' for short. The same ap-
proach is ad.opted as that used in previous papers'2
concerned with the radiative corrections to E~3+. These
estimates are relevant for several reasons. Recent
experimental interest in these decays will result in
measurements of sufBcient precision to be sensitive to
radiative corrections. ' Thus, in a measurement of the
energy dependence of the phenomenological form
factors f+(g'), one must allow for an additional, un-
avoidable q' dependence due to radiative eGects. More-

* Supported by the National Science Foundation.' E. S. Ginsberg, Phys. Rev. 142, 1035 (1966).' E. S. Ginsberg, Phys. Rev. 162, 15/0 (1967).' Princeton Conference on X mesons, Princeton, N. J., 1967
(unpublished).

over, electromagnetic interactions do not conserve
isospin; therefore, the radiative corrections will modify
predictions based upon isospin selection rules, such as
the hI=-', rule, which relate the experimentally mea-
sured decay rates of charged and neutral kaons. Finally,
the presence of an electromagnetic final-state inter-
action [Fig. 1(b)) in the Etsv (but not E'tv+) radiative
correction gives rise to an apparent violation of time-
reversal invariance in the measurement of the trans-
verse lepton polarization. 4 The numerical results pre-
sented in this paper depend upon the overwhelming
simplification which results from neglecting the lepton
mass (in particular, this excludes lepton polarization).
Thus, the numerical results apply only to E,3'.

4 N. Byers, S. W. MacDowell, and C. N. Yang, in Proceedings of
the Seminar in EIigh-Energy Physics and Elementary Particles,
Trieste, 1965 (International Atomic Energy Agency, Vienna,
1965), p. 953.
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where
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FIG. i. Feynman diagrams for the radiative corrections to K,g

to erst order in n; (a) zero-order process, (b)—(() virtual diagrams,
(g)—(i) inner bremsstrahlung.

The assumptions which underlie the present calcu-
lation may be summarized as follows' ': (i) Assume the
usual phenomenological hadronic contribution to the
weak E mvertex -Lthis depends on the form factors

f+(q )]. (ii) Calculate radiative effects using first-order
perturbation theory in a (iii) N. eglect the modification
of the form factors themselves due to radiative eGects
(electromagnetic corrections to strong-interaction re-
normalization graphs). And (iv) neglect the small qs

dependence of the form factors in calculating the radi-
ative corrections' (i.e., if the form factors are expanded
in terms of a small parameter ), neglect terms of order
)a and. higher). The simple model outlined above fails
in one respect, namely, that the radiative corrections
depend logarithmically on a cutoH. ' It is customary to
regard an estimate of radiative corrections as useful
provided the numerical result is not sensitive to reason-
able choices for the cutoA' (i.e., h. m„). For E,s', the
radiative corrections to the Dalitz plot and to the posi-
tron spectrum are not especially sensitive to A. (Because
of cancellation between various terms, the correction
to the pion spectrum and the lifetime is much less
certain. ) However, the radiative correction to the ratio
of the decay rates of charged and neutral kaons does not
depend on the cutoff (to first order in a) The calcu.-

lation is described in Sec. II and the results for E,3'

modes are given in Sec. III.

II. CALCULATION

The zero-order transition matrix element for the
Process Kiss LFig. 1(a)j may be written as

Ko= —i (2rr) 'mr't'(4ErrE, Ei) U'b('& (prr —p —p,—p„)—
Xf~N„Mo-', (1—its)si, (1)

' Present experiments are consistent with constant form factors;
S. H. Aronson and K. Wendell Chen, Phys. Rev. Letters 20, 287
(1968).

6 Some recent remarks on the logarithmic divergence in P decay
are to be found in Julian Schwinger, Phys. Rev. Letters 19, f501
(1967).

The notation is the same as in Ref. 2. Note that p,
denotes either the four momentum or the magnitude of
the three momentum of the ith particle, depending on
the context. Also m~ or m denote the mass of t.he meson

charge state appropriate to the process under considera-

tion, be it E~3' or @~3+. The same remark applies to
other symbols used in this paper and in Ref. 2, e.g., the
form factors f+(q') and (=f (q')/f+(q'), which a priori
need not be the same for miso and Eis+. In view of (iii)
and (iv) above, the momentum-transfer dependence of

the form factors will be suppressed. Throughout this

paper, any expression which is not explicitly I.orentz

invariant is meant to apply to the barycentric system,
i.e., the rest system of the kaon.

The lepton-pion energy correlation (Dalitz plot) of
the zero-order process is easily obtained from Eqs. (1)
and (2):

q =(p& p ) a"d Ji =(prr pi) . —(4)

Equation (3) simplifies in the barycentric system.
Recalling the notation of Ref. 2, we have

I'o(Er E.)=( ~) 'if+I'{I:2mxEi—mP Re(1—g)]E„
—(mg —;mPI1—~I )(W.—E.)). (S)

The contribution to the transition matrix element

from the first-order virtual diagrams LFig. 1(b)—1(f))
can be evaluated, and with a definition similar to Eq.
(1), is found to be

where

M;„„.i ——2prr y-', A —pi y(1 —&)-,'8, (6)

A = (a/s. )I ss ln(A/mi) —1+2 ln(mi/)i)+tt
——',tom '(1—&)/h'j (7)

8= (a/vr) L
—ss 1n(A/mi) —(7/4)+ 2 ln(mi/)~)+ ti

—2«/(1 —t)j (8)

and

it'= (pi+p )'=mx(mx —2E„).

In Eqs. (7) and (8), A is the ultraviolet cutoff and X is

the "fictitious" photon mass (infrared cutoff). It
follows from Eq. (6) that in the interference term of the

matrix element, A and 8 occur only in the combination
—,'(A*+8) (1—$). Therefore, to first order in a, only the

I'o(E„E.)= (2~) 'If+ I'(2Ex) '

X (((mrP+mis EP mP Re(—1—()—j
X (IP m.'+ q' mP)— —

—(mx' —lmPI1 —EI')(q' —mi')), (3)
where
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real part of fj contributes. It is found that

a a+2m o—6) fa+2mP a+m '+mp a+6
Re(ti) =—om'+2 Lio l+2 Li,

l l+2 1—ln—+ln — ln
a+2m '+a) ka+2mP+6) 2')m

( a+2m, '—6 ' ( a+2mP —6 '
+-,'l ln +-,'l ln —,(10)

a+2m '+6 k a+2mP+6
m, ra+2m. ' r a+a)to=in +l l

ior —ln
m. k a 5 2mgm.

where
a= m»' —H' —q' and 6= (a' 4m—Pm ')'" (12)

and Li~(Z) is the dilogarithm function.
As mentioned above, the imaginary part of to would contribute to the transverse lepton polarization (i.e., normal
to the decay plane) even if the weak interaction were invariant under time reversal (i.e., $ real).

The contribution of the virtual diagrams to the Dalitz plot is

I', (E Eg~) = (2or) 'l f+ l'(2E») '(l (m»'+m '—EP) (EP m, '+q—' mP) —m»'(q' —mP) j R—eA
—g'mP Rel (1—()(A*/B)j(H' —m '+q' —mP)y~gmP Real1 —(l'(q' —mP)}. (13)

The 6rst-order matrix element for inner brems-
strahlung LFig. 1(g)—1(i)j can be written

the so called "real" inner bremsstrahlung, may be evalu-
ated with k'= 0. The invariant integrals are defined' by

Kggg = —i(2or)
—'(min)'"(4E»E. EgE ) '"
X~i'i(p» —p.—pg

—p,—k)

Xf+u. g2 (1+iso)Mggg Vg, (14)
where

I, (p* p )='
2'

d'p d'k ~"'(P'» P- pg P—. k—)——

(p . .k)m(p ..k) n

pg
' o p~' o k'po''r where i and j run over E, /, and zr. The infrared-

Mggg ——L2p, p+mg(1 —])]~

~

(15) divergent integral is
pik p k 2pgk

+(2~) 'if+I'm» 9

Xg. (P;,P;)I...(P;,P;), (16)

where
x= (p» pg p-)'= (p.+k)—' — (1&)

is the invariant mass squared of the undetected parti-
cles, and

x- = (E P-+Pg)(E+P- Pg—) (1g)—

and k, E~, and e are the photon four momentum, energy,
and polarization, respectively.

It is assumed that the experimental apparatus will
detect the lepton and pion in the final state and that
their observed momenta are fit to three-body kine-
matics with zero missing mass. The kinematics of the
three-body (7rlv) and four-body (7rlvy) final states is
discussed in Ref. 2. Under these conditions the contri-
bution of the inner bremsstrahlung to the Dalitz
plot is

IIB(Eg,E )= (gg/or) Po(Eg E )Io(Eg & )

Io(E„E.) = lim —,
'

)-+0
d*L2Pg P-I , (gp gp-g)

ci, o(Pg,P,)=P» Pg(H' —mP+q' —m ')
+ (m»' H' q'—+x)c—' ,' (q'+ m

—P—)c",
co, i(Pg,P )= —P» P (IP—mP+q' —m ')

+ (m»' —II'—q'+ x)c'

+ go (2m»o —H' —2q'+ m.'+x)c",
c, ,(pg, p.)= —,'x(m»' —IIg —q'+ x) (c'y-', c"),

ci, i(pg, p») =3IP+2q' —2m»o —2mp —m '—x,
ci, i(p. ,p»)=H'+m. ' x, —
co, i(Pg,P») = ', mg'(EP mP+—q' —m'+—+xc'2), —
co i(P,P») =m '(m»' —H'+mP Re/ —c"),
c, , o(pg, p»)= —2,
coo(pg, p») =

, 2mgo,

where

(21)

mg'Io—o(pg, p.), m.'Io—2(pg, p.), g (20).

In Eq. (16) the coefficients c,„(p;,p;), which are differ-
ent from zero, are

As in Ref. 2, the first term contains the infrared diver-
gence; it is evaluated with k'=X' and then the limit
X —v 0 is taken. The remainder of the terms in Eq. (16),

c'=m»' 3P» p, p» p—.+m, 'Re—(1 () ,'x, — ——
c"=m»' ——,'-mP l1—(l'. (22)
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The right-hand side of Eq. (20) can be evaluated by noting that terms such as Xvx, X4, etc., do not contribute in

the limit X —+ 0. After several judicious changes in variables and a certain amount of brute force, the result is

a w, 6 a+i4i w,„+26 (w, +26)A
Ip(Ei E ) 2 ln +ln—ln —ln ln

2'�)m 2A

a+6 wp—ln — ln
26$$8$g 28$~vr

where

a—6 ) a+A~ ~ a—
A~

+2Li,(
—

~

—2Li, —
~

—2Li, — +-'Li,
~

—
~

——'Li, ~~—
a+8,l w,.+2m k w, / 5 w

(H' —m ')(q' —mP) a+6+w .„' ( a+6 ' mim
+ln + ln —

I
ln —ln

&me,x 2m, m. I 2m, m.

w,„=2:,„—a+ [(a+x,.)'—4mpm. '1'i',

. =5 21'(a+A)[a(H' m')(q—'—m') —m (q' —mP)' —mP(H' —m ')'O'I'

am '(q' —mP)'+am '(H' m')' —4—m 'm '(H' —m ') (q' —m ')

a (H' m.—') (q' mP—) mx—'(q' mP—)' mP—(H' mx—')2

(23)

and a and 6 are given by Eq. (12). It is easily verified that the infrared divergent terms in Iz n( E,zE) exactly
cancel the corresponding terms in I'„(Ez,E ), as required. The remaining invariant integrals I,„are given in the

Appendix of Ref. 2 for the case O'= X'=0
The evaluation of the "real" inner-bremsstrahlung contribution to Fzg by analytic means does not appear to be

feasible. A numerical integration is always possible, however. In the limit of vanishing lepton mass, useful analytic
results can be obtained. In the remainder of this paper the discussion is restricted to E,3 modes, for vrhich nz~ ~ 0
is a good approximation, and the subscript l will be omitted from the lepton variables.

The total radiative correction to the E,p Dalitz plot is obtained by combining Eqs. (13) and (16):

I'Rc (E,E.) = I'.(E,E.)+ rz]3 (E,E.)

where

If+I' '
= (n/vr) I'p(E,E )Tp+ Q T;

4(2vr)2 4=L
(25)

Tp=2 1n(A/m)+2vr2 —1—Li2(q)+in(q —1)+ln[(H' —m 2)/q2]+2 Li [2mxpm, '(1—4EE/q2)]
—2 Lip[m 2x (1—q) zj+2{—1+in[m.m z(g —1)j) ln(x, /q'),

Tz 4E(E +p )(mzr ——4E+2W mzr—'E(E +p—,))(Lz+Lp),
T2=2(mzrm, 2+2H2E )(Li2[mzr(E, +p ) '5 vr /6+L—i,[m. '(mx 2-E)(E—.+p.)j Lzp(H —m )) v

Tp —[(H2 m 2)(4E 3E+2E +W) 2m 2E jln(vl 2g (H2 m 2)
—2)

T4 2(2L2 L2)[mzr zn P——+Px(4—E„+3E —2E)+n P '(E (2x —m+n ) E,(2n +—m ))j,
Tp= [4mzrE(E E)+q2(mrs —2W+—2E)j[Li2(f')—vr2/6+(in/)2+lnl 1 (n/q2m)g2,

Tp ——[2mzr (E'—E„'+4EE„)—q2 (mzz+ SE—4W—qpmvr z) jina',

Tv= (2LL+L2)[22mzz(E„E+p )—(3E„—3E p)+2m (2E —E„+4mzr zvr, ~)j—,
T2 3mzr (E„E+p, )E——, —

(26)

(5) can be written2

1=2E(E„+E+p ) ' q=m 2(mx2 —2mxE„), (27) I'p(EE )= (2vr) 'I f+I'2mzrE(W E)X, (E»m) —(28)

--=E-E, p-(E p-), ~.-= p.E,-E.(E p.), -- = (2vr) 'I f+ I22mzrp 'X(1—X), (q'»m') (29)

E„+E—p E +p
Li ln(2E/m), Lp=ln—— , Lp=ln

E„E+p m—
where

(P Emin)/(Emax Emin) (30)

(E E min)/(E max E min) (31)

To the same approximation, namely rn& —+0, the and the reader is referred to Ref. 2 for the relevant

zero-order contribution to the Dalitz plot given by Eq. kinematics.
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IIL RESULTS

The radiative corrections to the E,3' Dalitz plot
given by Eqs. (25)—(27) have been evaluated on a
computer. The corrections are appreciable, averaging
greater than 3% in absolute magnitude over a good
portion of the Dalitz plot. A sampling of these results is
shown in Figs. 2—4. The fractional radiative correction
to the Dalitz plot is

250
0
z
CQ
K
K~ 200-
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K0
CL
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l02 52 p I
I 5.I 4 22a2

-6.2- -8.2
-2.9 -5.8
-2.8
~ 2~7

«2e?
-2.6
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In Fig. 2 the fractional correction in percent has been
plotted, for various lepton energies, as a function of X
(pion energy normalized to unit interval). Figure 3
shows a similar plot of A~g versus X for various pion
energies. A more comprehensive graphical view of the
radiative corrections is obtained by marking discrete
values of DR& directly within the boundaries of the
Dalitz plot, as in Fig. 4.

In the numerical computation described above, the
ultraviolet cutoff A. has been taken equal to the proton
mass. The effect of varying A. is evident from Eq. (7)

20- ~

p IO--
O
I-
tgJ 5

5v 0.
hl0

Cl

lL -10--

20I

I/4 I/2, 5/4
(E E~g) /(Emax E min)

FIG. 2. Fractional radiative correction to the E,3 Dalitz plot
in percent as a function of x . Curves are labeled by positron
energy in MeV.

&no(~,Z.)= rRG(@ @ )/FO(@ + ) ~ (32)

In terms of 6R&, the experimentally measured Dalitz
plot and the zero-order Dalitz plot are related by

I50-
I f

50 IOO l50
POSITRON ENERGY (MeV)

I

200 W

Fxo. 4. Fractional radiative correction in percent at various
points in the X,P Dalitz plot (indicated by the corresponding
decimal points).

(hr/r) rr,o= —Fao/l'~~ —0.80%. (34)

and has been noted previously. '' Doubling the cutoff
adds only 0.24% to the computed values of Dao.

Equation (25) can be integrated numerically to give
the radiative corrections to either the pion or positron
spectrum. ' Figures 5 and 6 show' the results of this
calculation. The corresponding spectra for E,3+ are also
plotted for comparison. (The zero-order spectra differ
slightly for E,3' and E,3+ due to the difference in phase
space, but this is not shown in the 6gures. ) The radi-
ative corrections to E,3' are noticeably different from
E,3+, being everywhere more positive than the E,3+

corrections. The radiative corrections to the positron
spectrum are large enough to be relatively insensitive
to reasonable variations in the cutoff, but the correc-
tions to the pion spectrum are an order of magnitude
smaller and are therefore less certain.

A 6nal integration over the positron or pion spectrum
gives the radiative corrections to the decay rate F. The
present calculation results in a fractional change in
lifetime' of

20--

l5--
2.

lKI-
C7

V)

0OKI-
cn
O
L,

"2
0 5?5 I I5 l72

POSITRON ENERG Y (MEV)

I/4 I/2 3/4
(E. E min )/(E m4x Emits)

Fro. 3. Fractional radiative correction to the E,3 Dalitz plot in
percent as a function of x. Curves are labeled by pion energy in
MeV.

Fxo. 5. Zero-order positron spectrum and radiative corrections for
A. =m&,' E,30—present calculation; X,3+—Ref. 2.

7 Expressions for the zero-order spectra are given in footnote
26 of Ref. 2.
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I4
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I-

tA 2
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O

0
D. C

0 32.5 65 975
PION KINETIC ENERGY (MeY)

t

I50

FIG. 6. Zero-order pion spectrum and radiative corrections for
h. =m„; E,s —present calculation; E,a+—Ref. 2.

I'. vt= I'o+I'ac= I'o(1—~r/r),
it is found that

(36)

The corresponding number for K,o+ (recalculated' with
slightly greater numerical precision than in Ref. 2) is

(ar/~)x„.=+0.45Fo.

These numbers are sensitive to variations in the
cutoG, but the divergent term is of the same form for
both; namely, —(3n/2m) ln(A/m„). This implies that,
to 6rst order in a, the radiative correction to the ratio
of the decay rates for E,3' and E,3+ is independent of
the cutoG, provided that the same value of A. is used in
both corrections. Using a notation analogous to that
in Eq. (33),

where y is the ratio of the AS= —AQ and AS=AQ
amplitudes. To lowest order in the CE-violating param-
eter e, the hS= —dQ factor in Eq. (39) reduces to
l1—Xl'. Using Eq. (37), one finds

I' v„(Er,~s+e+v) I'o(Eo —+ s e+v)
= l1—xl'(1+5)

I'.„v„(E+-+ m'e+v) I'o(E+~ vroe+v)

(40)

I'o(lto ~ vr e+v) 2i/&A (1)+.A (s) s

I'o(E+ ~ a'e+v) A (-', )—2'"A (-')
(41)

There is good reason to believe that the AS= —EQ
amplitude and the AI=~3 amplitude are both small
compared to the AS=AQ and AI=isamplitudes,
respectively. In that case the right-hand. side of Eq. (40)
may be expanded to 6rst order in small quantities with
the result that

1.73~0.10=2C 1—2 Rex+3K2 Re(A (ss)/A (s))+83.
(42)

Equation (40) shows that the combination of E,s decay
rates which is experimentally measurable contains a
factor of (1+5) due to radiative corrections, where, on
the basis of the model assumed here, 5 is given by
Eq. (38).

It is not the purpose of the present paper to discuss
the application of Eq. (40) to existing experimental
data, but a fevr brief remarks are in order. According to
the compilation of Rosenfeld et al." the left-hand side
of Eq. (40) is 1.73+0.10. The factor on the right-hand
side involving the zero-order rates can be expressed in
terms of the DI= —,

' and —,
' amplitudes:

where

I',va(Z. s') I'o(&,so)

(1+8),
I',.v, (Z„+) I'o(z.s+)

S= (S~/~) „+ (ar/r)x. ..=1—

(37)

(38)

It is clear that Eq. (42) does not furnish a value of both
Rex and Re(A (ss)/A (—,')) seParately; however, the
following crude estimates can be made. If the hS = —AQ
amplitude is neglected, then

I',„v&(Ez,—+ a.+e+v) t' pq*X*
= 1—4 Rel + l

x
l
', (39)

&IPI'+lql'I', vt(Eo —+ vr e+v)

8 In Ref. 2, the sign of A~/r should be positive.
'T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340

(1957).
io T.T. Wu and C. N. Yang, Phys. Rev. Letters 13, 380 (1964).

It is plausible to assume that the AS=EQ and
ES= —EQ amplitudes have the same general Lorentz
covariant form as in (i) above. Then the fractional
radiative corrections to the decays E' —+m e+v and
Eo —+a. e+v are identical. (Of course, the values of
ra& may be quite diHerent since there is no reason to
suppose that the form factors for AS=BQ and dS
= —AQ are identical. ) Using the TCP theorem' and the
standard notation" for the long- and short-lived kaon
states, the decay rate for EI„ into both charged modes
m+e+v is easily related to the E,so decay rate:

Re(A (-,')/A (-,')) —0.03&0.01, (no hS= —AQ) (43)

and if the AI= ~ amplitude is neglected"

Reg 0.07&0.03, (no AI = ,') . —

A further application of Eq. (40) to the existing experi-
mental data is discussed elsewhere. "
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