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Current-current models of CP violation of the types discussed by Glashow and Alles are applied to the
decay IC —& 2', using current algebra and partially conserved axial-vector current. It is found that the
CP-violating amplitude may violate the A7=$ rule even though the CP-conserving amplitude does not.
It is not, however, possible to predict the ratio E'I.—+ m ~ to EI,~ m+~ in a model of this type.

I. INTRODUCTION

~
XPERIMENTS on the CP-violating decay

~ E' —+2m, ' specifically, the rate of El,' —+~'7t-', '
indicate that the CP-violating amplitude may also
strongly violate the AI=-,' rule. In this paper, we wish

to explore the possibility of violating the BI=2 rule
in models of CP violation.

We assume CP violation to occur in the weak
Hamiltonian, so that we may write

K„=K„++K„, with CPA„+(CP) '= &3C„+,

where CP is defined by the strong interactions. In Sec.
II, we examine the relation between the quantities
which might be calculated from particular models of
3C and the phenomenological parameters e and &'

which can be experimentally determined.
We then turn our attention to models in which both

X + and 3C„have a current-current form, meaning that
they are constructed from linear combinations of equal-
time anticommutators of the usual vector and axial-
vector currents, ' so that they are vulnerable to analysis
using the techniques of current algebra and partially
conserved axial-vector current (PCAC). e For the usual
CP-conserving interaction, it has been shown by several
authors that a hI= —,

' rule is predicted for the nonlep-
tonic E decays. ' In Sec. III, using %einberg's tech-
niques, we rederive this result, but in a form which

clearly reveals the isospin structure of the decay
amplitude.

Section IV examines the particular structure of the
usual weak Hamiltonian that yields the hI=~ rule,
as well as exacting isotopic spin predictions for more
general current-current forms. Finally, in Sec. V, we

* National Science Foundation Predoctoral Fellow.
' C. R. Christenson et al. , Phys. Rev. Letters 13, 138 (1964).' J. W. Cronin et a/. , Phys. Rev. Letters 18, 25 (1967); J. M.

Gaillard et at. , ibid 18, 20 (1967). Rec. ent reports (T. Kamae,
invited paper at Chicago meeting of APS, 1968) have cast doubt
on the conclusions of these references. We shall use the published
results in speci6c numerical calculations here, but the theory is
concerned with the general question of the AI=~ rule in CP-
violating models.' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

4 See, for example, M. Suzuki, Phys. Rev. Letters 15, 986
(1965); H. Abarbanel, Phys. Rev. 153, 1547 (1967).' M. Suzuki, Phys. Rev. 144, 1154 (1966);D. K. Elias and J. C.
Taylor, Nuovo Cimento 44, 518 (1966); W. AL&es and R. Jengo,
ibM. 42, 417 (1966).' S. Weinberg, Phys. Rev. Letters 17, 336 (1966).

discuss specific current-current models of CP violation
which have been proposed by Glashow and Alles. ' '

II. GENERAL CONSIDERATIONS ON MODELS
OF CP VIOLATION

We can construct two linear combinations of ~Ep)
and ~EP) (call these ~E~) and ~E )) which are respec-
tively even and odd under CP.' If (2ir; I=I'

~

represents
the two-pion standing-wave state of total isospin I', we
define the following parameters:

(2ir; I=O(X„+(0)IE+)=Ap,
(2ir; I=2iX +(0) iE+)=PAp,

(2ir; I=O(X (0) ~E' )=inAp,

(2; I=2(3C.-(0) ~Z )=t XA„

where A p, n, P, and X are real by CPT. In addition to the
CP-violating quantities n, X, we need one additional
parameter defined by

(E (X(Z,)=—z~',

where m' is real by CPT, M being the conventional
"mass matrix. '" In terms of matrix elements of the
weak Hamiltonian, we find

(E fX„fn)(e[X fE'+)—m'=P g (2)

7S. Glashow, Phys. Rev. I etters 14, 35 (1964).
W. Alles, Phys. Letters 15, 348 (1965).

~ Section II closely follows a talk by L. Wolfenstein, presented
to the Seminar on the Problems of CP Violation, Moscow, 1968
(unpublished).

'0M, I' are dehned by T. D. Lee and C. S. Wu, Ann. Rev.
Nucl. Sci. 16, 471 (1966), as 2X2 Herrnitian matrices such that
id' /dt = (3d' ——,iT)f, where P is a two-component object describing
the E', E system."T. T. Wu and C. N. Yang, Phys. Rev. Letters 13, 380 (1964).
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where e runs over all possible intermediate states.
It should be emphasized that the phase convention

employed is not the conventional one of Wu and
Yang. " Instead, we use 3C + to define our phase con-
vention. It is, of course, possible to express the Wu- Yang
quantities e and e' in terms of our parameters, and in

Appendix I it is shown that

e—e"(Q-,') (—m'/&ttt+n),
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with

B,= tan 'I —26m/Ayj —stir, e'=(Qsi)rrxe'to~'~&~&, (3)

where 6m=m~ —m2 is the mass difference, ~y=y~ —y~
is the difference in widths, and we have assumed that
P«1. These numbers e and e' can be calculated from the
experimental values of Irt+ I, I olpoI, and 9~+ . As shown
by Kolfenstein, " two solutions are possible, but the
ambiguity may be resolved by charge asymmetry
experiments. "

We ask what a theory of CP violation is expected to
yield. There is a class of theories in which a is zero. This
category includes the superweak interaction and other
models in which 3C„does not contribute to the parity-
violating nonleptonic decay amplitudes. Such theories
are, of course, excluded if the experimental results of
Ref. 2 are correct, although recent reports have cast
doubt on their validity. We do not propose to discuss
this class of models. Instead, we consider models in
which CP violation and P violation can occur simul-
taneously, so that 0, is nonzero. Then, of the three
CP-violating parameters 0,, X, and m', only X can be ac-
curately predicted in the models which we discuss. Since
only virtual states are involved in the summation in Eq.
(2), m' cannot be accurately calculated. The parameter rr

will depend in general on some as yet unknown phase
angle or some other parameter l which measures the
relative magnitude of the CP violation. Then, given a
theory, we may be able to calculate X but must fit n
and m' to the empirical values of e and e'. We are thus
given little predictive power for E~—+ 2x in that we are
unable to calculate the branching ratio I'(Er, —o orsoro)/

1(Z,~w+w-).

Unfortunately, as mentioned earlier, the experi-
mental situation with respect to IrtooI is unclear. If,
however, the two published results, which require

I eI
and

I
e'I to be of the same order of magnitude, are ac-

cepted, then it is generally argued that theories which
yield X«1 (the CF-violating decay amplitude for E-+ 2or

satisfies a AI= ,' rule-on the mass shell) or X))1 (the
CP-violating decay amplitude satisfies a AI&~~ rule
on the mass shell) are excluded. We wish to emphasize
that, while this is reasonable, it is not required. Thus,
even if x«1, we could choose n))

I
e'I and m'/(num)

=1+0(X), whereas if X))1, we could choose ts« I
e'I

and m'/(adam)=0(x)))1. Our inability to quantita-
tively evaluate sums over virtual states prohibits ruling
these cases out. In order to resolve this uncertainty, we
require an independent evaluation of either m' or f, as
could result from an analysis of experimental evidence
for CP violation in some other process, such as E—+ 3x.
Until this is found, we can at best state that, accepting
the published values for IofooI, theories which yield
X~O(1) are favored. "

we have

9.(x)= (1/iF.m. ') B„A~(x),

III. GENERAL FORMALISM AND
CP-CONSERVING DECAYS

In order to discuss K~ 2m, we employ Weinberg's
method' of taking both pions oG the mass shell, "
although the fact that (orIK„(0) IE) is not physical
dictates one slight change. Reducing the pions in the
usual way and using the definition'

(—Vs+m ')(—p'+m ')
(4-~.)'"(-,"-.'I~.(0) I&.-)= d xdoy e '~""(012'(cl.A."(x)a A s"(y)Se (0)) I

&s")

where (a', b', rt) are isospin indices, (q,p, k) are the appropriate momenta, and B„A,&( )=xe~' B„A&(x).Now Weinberg
showed that

2(B„A,"(x)B„Ap"(y)X„(0))= 2"(A,"(x)A "(y)K„(0))—5(xo—ys)2'(LAss(y), B„A "(x)jÃ (0))
x 8$

/ f) cl i 1 ci ci——,8(xo—yo) 2'
I + ILA, o(x),A &"(y) jX„(0) +— — 8(x'—y )T(I A, '(x),A &"(y) j3!„(0))
Ef)xr ay"i 2 ax" ciy"

—~(y') T(~.A "(- )LA '(y),&-(0)j)—~(*')2'(~ A "(y)LA.'(*)~-(0)j)
—l~(*')~b')LA. '(*),I:A 'b) &-(0)jj—l~(*')~b')LA 'b) LA-'(*) 3'=(0)jj. (4)

Now the first term, being of second order in the momenta, vanishes in the limit (q, p) -+ 0, and the third vanishes
because of the conserved vector current (CVC) hypothesis. The second is the well-known o commutator and is

"I.. Wolfenstein, Nuovo Cimento 42, 17 (1966)."D. Dorfan et al. , Phys. Rev. Letters 19, 987 (1967); S. Bennett et ut. , ibH. 19, 993 (1967)."Ifit turnsout that ~itpp~ W 2~s+ ~, ourspecificconclusionsmayhaveto be somewhat modified. If, forexample, ~otoo~=~it~ ~, then
the charge asymmetry experiments suggest a solution with

~

o'
~
&&

~
o~. In this case, arguments as in Sec. 11 would favor theories with

x«1, although another possible solution would be x 0(1),a V2~o'~, m'/(atom) —
~
o/o'~))1.

"Note that this involves a violation of total energy momentum conservation in the unphysical region. We shall reinstate this
principle at a later stage.

"In the quark model we use Ato(x) =iI(x)ol~;ioy'ip(x), so that our Goldberger-Treiman relation is F = i3Egz/g, —
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assumed negligible. '~ Weinberg treated these last 6ve terms and obtained fair agreement with E,4 decays. In his

case, however, he could use experimental results for (zr[ ri"(0) [E), whereas, for our calculation, we note that

B(y') T(B~A."(x)[As'(y))X~(0)])= (BIBx")h(y') T(A."(x)[A s (y) ~X~(0)]) 8(x )B(y )[Ao'(x) ~[A s'(y) ~X~(0)]]

The first term contains a pion pole, but vanishes in the soft-pion limit. Thus we have, 6nally,

T(B„A &(x)B„As"(y)X„(0)).
= (terms which vanish in soft-pion limit)++a(B/Bx" B/—By")8(xo yo)—T([A,s(x),A 4"(y)]X (0))

+ s B(x')&(y')[A-'(x), [A s'(y),X-(0)]]+s B(x')B(y') LA s'(y), [A.'(x),X-(0)]].
Defining

F.'(f)=— d'x A.'(x,f),

we 6nd

{4~~.)"'&~."~.'I X-(o) IK~"& —- (1/2F.s) (O[([F.s(0),[F,s(0),X„(O)7]+[Fss(0),[F.'(0),X-(0)]])IKs")
c,u

—i(q —p)„d4x e'«+»'ie. s.(0[T(V."(x)X (0))[Kk"), (5)

where the last term was kept because in the soft-pion limit, it has a kaon pole term in which the E first interacts
with the vector current, propagates as a E, and then disappears through X„(0) into the vacuum. Such a term is
zeroth order in (q,p) and must be retained in this approximation. This term yields

k (p—
q)

eb.( q p), —(0[X (0) IE") (-', r') „(2k—p—q)" =-,'ze. s, (0[x„(0)IK )r„„'. (6)
(k p—q—)' M—x'+ie k (p+q)

We have gone as far as we can without assuming a speci6c form for X„(0).Forgetting about CF violation mo-

mentarily, we assume that CP-conserving decays are given by the usual current-current interaction:

x-( )=(G /~2)l(8"(*),8'( )},
where the curly brackets denote an anticommutator, 0&= 1.0&(10 ' M„' is the usual vector coupling constant,
and, according to Cabibbo,

g(x) = cos8 [V -"(x)+A -"(x)]+sin8 [Va-"(x)+Azr-"(x)]+j"t.,z.„;..
Now it is well known that"

[F.(o),x.(o)]=[F.(0),x„(0)],
where F,(0)=J d'x V '(x,0) is by the CVC hypothesis just the ath component of the isospin operator. Now
instead of commuting Ii, with K„, just let it operate on the vacuum and kaon, respectively, yielding

&o[LF.(o),LF (0) x.(0)]]IK")=(&OIF.(0))[F,(0),x„(0)]IK"&—&0I [Fs(0),x„(0)](F.(0) IE"&)=-!t-.&ol[Fs(0),x-(0)]IE'&=!(".)-(Olx.(0) IK"&

Thus, finally, "
k (p-q)

(4~ )"& " ' IX.(o) IK.-) —
= B.s+z "s" &O[X.(0) [E-&.'" '4F.' k (p+q)

Since r rs=b +ie 4'r', while rsr =8 —ie 4'r', the above result reproduces the fact that the limit as (q,p) —& 0
depends on the order in which the limits are taken':

(4~,~,)»(~,"~,s'[x„(0)[K,-&:(1/4F, z)(.-.s)„„(0I x„(0)IE -)
= (1/4F. )(...)„„(Olx.(0) [E-).

' This is in line with Weinberg's work and is justified in Ref. 6.' W. Alles and R. Jengo, Ref. 5.
'~ This form is equivalent to the result for E~ 2~ obtained by H. Abarbanel, Ref. 4.
"Such behavior was also seen in the treatment of E.4 by C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153 (1966), and

was subsequently shown by Weinberg in Ref. 6 to be due to a similar pole term.
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Thus, it yields the well-known Nambu-Hara relations for X~ 27r,"which have been shown by Sakurai to follow
from a vector-meson-pole model, "and also by Schechter to follow from a certain type of SU(3) symmetry breaking. "
&~+~o; q(~+) =olx„(0)IE+&

= —&~+~'; ~(~s) =olx.(o) IE+)= &~+~-; &(~+)=olx„(o)IE,o&= &~+~-; «~-) =olx„(o)IE, )
=(1/2P. )& +Ix„(o)IE+&,

&~+
I x-(o) I

E+)= —(I/~-) &0 I L~--'(0),x-(0)DIE+)= (v'l)(1/~-)(o
I
x-(o) IE') (10)

1 51~I pl Q~

— b' —i
4P 2

gC bC7-C

x&0lx.(0) IE-). (11)

In the SU(2) limit, m, '=ms s and only the 8~ term
can contribute. This represents the I=O state of the
2m system and thus we have the DI=-', rule, even though
X„(0) contains both DI=st and BI=as terms. This is
just a result shown by several authors using different
methods. ' We shall examine this feature in more detail
in Sec. IV.

If we use the observed pion masses, then we find

(+ six.(0) IE+&

&~+~-Ix„(0)IEts&

which divers by a factor of 2 from the Nambu-Hara
or Schechter expression, obtained from SU(3) consider-
ations. Such a relation has also been discussed by
Okubo, Marshak, and Mathur. '4 For the remainder of
this paper, we shall assume the SU(2) limit, however,
so that we need not worry about the contribution of the
pole term.

IV. WHY AI=-,'
One of the most interesting predictions discussed

in the previous section is that of the AI= ~~ rule for the
usual current-current Hamiltonian. It is of interest to
see just why such a result is obtained. We deal here with
current-current structures, deined as linear combina-
tions of anticommutators of the usual vector and axial
currents. Ke shall be discussing only the strangeness-
changing combinations, so that these forms can onlyhave
isospin —,'or ~. Since, in the previous section we have
related the amplitude for X~ 2x to the matrix element
between X and the vacuum, one might riaively think
that the 2I= ~3 part is always therefore suppressed. To

"Y.Namhu and Y. Hara, Phys. Rev. Letters 16, 875 (1966)."J.J. Sakurai, Phys. Rev. 156, 1508 (1967)."J.Schechter, Phys. Rev. 161, 1660 (1967).
'4 S. Okubo, R. Marshak, and V. Mathur, Phys. Rev. Letters

19, 407 (1967).

Let us now reinstate momentum conservation and use
PCAC, which suggests that the results on the mass shell
are not very different from those obtained in the soft-
pion limit. We then have

(4(u~ )'~s&s "s s'IX„(0)IE.p"&

see what is involved, however, suppose we resolve a
particular current-current structure 3'.„into AI = ~~ and
BI=2 parts:

x~=nx~'"+ pxess".

Now a double commutator with F, , ~5, where for the
case of interest (aP) are isospin indices involved in
neutral X decay, must yield again a current-current
form with the same parity, strangeness, and I3 quantum
numbers. That is, we must have just a new linear
combination of 3! '" and K '" If X '"—=K„' and
K '"=—BC„2, we can de6ne a 2)&2 matrix C,q'& such that

2

LF,s, IFs',x '))=AD C.s*'Jx &.

Then it is clear that a necessary and suKcient condition
for a AI= sr rule is that (Cs,+C,s)"=0, for, if

0)
(Cs.+C.s) =

I

he ai
we have

(4(e~ )t/S& e' S
I X t+pX SIE a&

— —:(2p.s)-'&0 II ~qx„t+ («+gp)x sj IE")
q, y ~P

=(I/2z. )&ol ~x„, IE-&

Similarly, the condition for a AI =
~ rule is that

(Cs,+C,s)"=0.
For the usual current-current interaction, we get a

DI=-,' rule, since we can replace F,, &' by P, &, which
are just isospin operators. Now the corrnnutation of an
isospin operator with an isotensor operator of rank I
cannot change the value of the rank, so that C q and
C&, are separately diagonal and we predict a b,I=2
rule. Since we shall need the results in a later section,
let us see how this applies to the case of a current-
current parity-violating, AS= —1 interaction. We can
de6ne then two types of AI= 2' and hI= 32 operators:

L'"=(V'-'){V '"~ -"}—(v'-'){V '"~~'")
Ls"=(V's){V-'",~x-"}+(V's){V ",~Z ")

(13)E'"= (V'-') {Vx-" 2 +")—(V'-) {Vg 0" A o")

E'"= (V'-'s) {Vx-",A +")+(V'-s') {Vj;o",A, o")

where I' can be constructed from X' by merely inter-
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changing V and A. Under double commutation with
F, b', any of the above operators goes into a linear
combination of itself and the other three. Thus, in the
basis, 4)&4 C matrices are needed. If, however, we use
the linear combinations (E'+L') or (E' L')—, which are
respectively even or odd under the interchange V+-+ A,
it is shown in Appendix II that double commutation
with F, b' cannot change this symmetry, and thus we
have then two types of 2X2 matrices —C,b&+)'& or
C, b& "&. Explicit evaluation yields

2Coo(+) =! !, C+ (+)+C +(+&=!

/ 19/6 4&2/3)
(—)=

(4'/3 11/6

19/6 —2%2/3~
(—)+C (—) —

!
5—2v2/3 5/6

(14)

Thus the symmetric combination will yield a AI=-,
rule, whereas the antisymmetric will not. This is clear
from the fact that for any such symmetric combination

P'.', I:Po',(Sym }2=LZ.,P'„(Sym.}]j,

as shown in Appendix II. The symmetric combination
appears, of course, in the usual current-current Hamil-
tonian, while the antisymmetric combination appears
in certain models of CP violation to be discussed in
Sec. V.

V. SPECIFIC MODELS OF CP VIOLATION

We examine in this section two particular models of
CP violation which have been formulated within the
current-current model, to see whether they can account
for the experimental results. Since 3!„~{g,g„t}, any
current such that CPg(CP) '&e'~r)„t, with n an
arbitrary phase, is suitable. One such model is that of
Glashow, ~ who merely inserts arbitrary phases on the
axial currents:

g(x) =cos8 LV -"(x)+A -"(x)e'&1

+sin8 Pvtr "(x)+A)r--"(x)e'&j+j "i„g„;,.

This is the most general way to add phases, since the
over-all phase, as well as the relative phase between
AS=0 and AS&0 parts, is unobservable. Using trigo-
nometry, we 6nd

K„+(P-violating, AS= —1)
= (Gv/2v2) cost) sinHLcos(-', -((p+)&t)) cos(-,'(y —f))({A +",Vtr-"}+{V~+",Ar(-"})

+sin(k(rp+P)) sin(k(/p —P))((V ",A r(-"}—(A ~ ",Vtr-"}));
BC„(P-violating, AS= —1)

= i(G v/2@2) cos8 sin8! —cos(oi (q+&t/)) sin(io (y—f))((A „+",Urr-"}+(V +",A )r-"})
+cos(o(9 —4))»n(-'((p+4))({V- ",~x-"}—(~.+",VX-"})3.

(15)

In order to evaluate X for this theory, we may use the results of Eq. (14).Since (V +",A z-"}= (g'o)L'"+ (gio) L"',
we 6nd

(s+7r-IX;!E )R=
(s 7r !3'.„-!E)

cos(o(&p+P)) sin(o((p —f))r+ Tr(C+ (+&+C +(+))M+cos(-', ((p—f)) sin(2(rp+f))r Tr(C+ ( &+C ~( ))M

cos(o(q+f)) sin(-,'(p —f))r+ Tr2Coo+ M+cos(io(&p —f)) sin(-,'(q+f))r Tr2Coo( )M

where M is the 2)&2 matrix Using Clebsch-Gordan coefficients, we 6nd

/v2 Oq
o)

Oi

1—R Spt
X= —(V'k), = —(V'k)

-', +R 3+19pt
(17)

~X=+o~(~+4)t.

r,=(0I({a.",v~- }~(v. ,~~- })IEo). where we have defined p=—((p+f)/((p —
&)t) and t= F /F+. —

The function X(pt) is plotted in Fig. 1. In the same way

Carrying out the traces and expanding the sine and
cosine terms to first order in g, &p yields (18)

r+(v 4')+5F-(o +0)—
R=

r,(~—p)+9r (~+y)

We discuss two cases which are of particular interest.
The Qrst is that of p=0 or (p= —

&&t, which yields X=0
and gives the same results for Er, —+ 2m as the super-
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~ 1g

~ l

FIG. 1. The function x (pt)
de6ned in Eq. (17).

„8ge &
L I

~03

~ a

~ ~ &g

weak model. 's In fact, from Eq. (15) we see that X„
(P-violating, AS= —1) differs from the usual 3C„+
(P-violating, DS= —1) by only a factor s tan+. This
case may be distinguished from the superweak model
in that it predicts CI' violation in E—+ 3m.

The second case is that of 1/p=0 or y=f, which
yields x= —(Qs)XS/19. This choice is of interest in
that the total weak current is connected to its strange-
ness-conserving part by just an SU(3) rotation, as in
Cabibbo's original proposal based upon universality.
Another feature is that no strangeness-changing,
E-conserving, CE-violating sects are predicted. For
this case, we have Gtted 0. and m' to the values of e and

given by Truong' and list the results in Table I as a
function of q+, since this angle is not well determined.
The data on the charge asymmetry have been used
only to rule out the small e solution. For each value of
y+ we have two solutions, corresponding to the
ambiguity of x in 82—80.

In order to determine a specific value for the phase
angle q, we note that

(~o~s~ae.-[Z )=—s9«( o o~3..+[a,)
= inA QL

—(/s)+ (gas) X)= —inA e(ps) X27/19.

Since (s s. ~K„+(E+)=—(Q~~)As, we 6nd y= —3n/
19t."Now we expect that ~t~ O(1) and an explicit
calculation, using the SU(3) sum rules's and the con-

"L.Wolfenstein, Phys. Rev. Letters IB, 562 (1964)."T.Truong, talks presented at the Symposium on the Present
Status of CP Violation, Argonne, Ill., 1967 (unpublished)."We see from Eq. (18) that, independent of the value of p,
(rp+P) is just twice the magnitude of y obtained from Table I
and Eq. (19).

~8 S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967).

q&=n/13. 0. (19)

In order to decide whether y= P is the correct model, we
must seek evidence for CP-violating, E-conserving
processes such as E+ -+ 3x'.

A similar model is that of Alles, "who proposes that

g(x) = cosef V -"(x)+A -"(x)1
+ sine( Vx-"(x)+Ax-"(x)j
+iz(cost)'fV. -"(x)—A.-"(x)J

+sin8'LVx-"(x) —Atr-"(x) 1).
Tsar.E I. Values of 0. and m' resulting from the e and e' of

Truong, & as a function of q+ and for each of the two possible
values of 82 Bo F00=—2.0;.e, e',

( goo (, and a are measured in terms« le+

s+-
0' 0.93 0.74

30' 1.29 +0.41

45' 1.33 +0.33

60' 1.29 +0.41

90' 0.93 +0.74

-154'
26'

173'
—7
135
450
97'

—83'
64'

—116

—3.5
+35—1.9
+1.9
+1.5—1.9
+1.9—3.5
+3.5

m'/nm

—4.8
+22

7
+0.1—3.4—0.4—37
+O.i—4.8
+22

Reference 26.

~' S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 205 (1967).

'OReference 8. Alles chose the value tI=8', but this is not
favored, since it would predict e'=0.

vergent intermediate vector-boson model of Glashow
Schnitzer, and Weinberg, "yields

t——2.05.
Thus we have
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We then find that

Se (P-violating, AS= —1)
= i(Gi /2v2) li(cos8' sin8+ cos8 sin8')

)&[{V "A&-"}—{A " V&-"}j (20)

This Hamiltonian is thus dynamically equivalent to
that for the case y=g in Glashow's model, since both
involve just the combination

({V '"A~-"}—{A '" V~-"})

which is antisymmetric under the interchange V &-+ A.
Thus Alles's model yields X= —(Q~&)XS/19 and is
"favored. "In order to determine ) and 8', it is necessary
to look for other manifestations of CI' violations, such
as the parity-conserving decays, where the choice
8=8' would predict (3''IBC IE~&=0.

We conclude then that models of CI' violation within
a current-current framework are able to account for the
experimental situation in Kl, —+ 2x, and that the
employment of the current algebra enables one to
evaluate previously unknown parameters in these
theories. Before leaving this section, we remark that one
other model of CI' violation has been treated in this
way, this being the model of Zacharisen and Zweig. "
One can show that in this theory X= —(g-,')-', ,

"m»ing
it also a "favored" one.

We take the view that we append experimental x-x
phase shifts onto the current-algebra results. "One can
show that io our representation the mixing parameter
5 is given by'4

Fp +i2Mp

dy+i2hm
(21)

where 6m=m~ —m2 is the mass difference, Ay=p~ —y2
is the difference in widths, and I' is the Hermitian
"decay matrix" whose matrix element is given by

—;r+ ——~g (E+Ix.I~&(~Ix.IE &8(z~—z„).

6 as defined above is such that

IEi'&= IE+&+8IE-) IE2'&= IE-)+8IE+&.

Using Clebsch-Gordan coefficients and Eqs. (1), we find
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APPENDIX I

Amp(E, ' —+ or+sr )= —(+3)A oe"o—(+6)PA oe'"+0(8n)

Amp(E2' —& 7r+s. )= —(Q ', )inA Oe"0 (Q-6) inXA p—e'"—(+3)8A pe'"+0(bP),

Amp(Ei' -+ s'm') = —(g-,')A oe"0+2(Q-,')PA Oe" +0(8n),

Amp(E2 ~s. ~ )=—(+3i)inAoe'"+2(/6)iaXAoe''" "—(Q—')hApt, '"+O(8P),

Amp(E2O —+ m+~ ) = e+ e'= in+ 8+ (Q ')nXe'&'~'0+'2-i+0(P8)
Amp(Eio —+ 7r+m=)

Amp(E2' ~ 7r'm')
= e—2e'= in+8 —2(Q-,')nXe'"~"+ ~'&+0(P6) .

Amp(E, o ~ ~o~o)

(22)

Clearly, e'=(+2i)nXe'&~~~o+ "i while e=8+ia We find . = %22Am—e ' '4j,
then

(Ay+i2&m) e= [—F+ —i2M+ +inh7 —2nhm].

We write specifically the contribution from the 2x I=0
state. Then

F+ = CAD&&inAO —i&& (Remainder),

where C is some phase-space factor. But we also
have hy —y~—4AOXA0, where C is this same
phase-space factor. Thus [using Dy+i2hm hy(1 i)——

"F.Zachariasen and G. Zweig, Phys. Rev. Letters 14, 794
(&965).

"This corresponds to the value R =-',- derived by F. Zachariasen
and J. C. Pati (unpublished).

E= [2m' 2nhm+—i Remainder)/( 2v2hme —'~'4)

=e' '4(g —',) (—m'/Am+ n —i Remainder/2hns) . (23)

If we now use the argument of Wolfenstein that
argo —-', s.,' we may neglect (Remainder/26m) and the
result follows.

"The current algebra seems to show that the m.vr phase shifts
vanish in the unphysical limit of q(71-~'), q(7t-b') ~ 0. Since the ex-
perimental phase shifts are rather large, as shown in Table I, it
is improper to ignore them. We instead assume that as we continue
into the physical region, the magnitude of the matrix element
remains unchanged, but that it acquires the appropriate experi-
mental strong-interaction phase shift.

"This is derived in the E', Z' representation in Ref. 7.
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!
(even)

5 odd [P.',[P,',ej]=[P.,[P&,n]j, f)=A or V.

APPENDIX II That the symmetry property is retained. is clear from

~e consider operators e+={V&,As)~(V&A&} which inspection. To see property (1), note that we may
are replace E' by F in the double-commutation terms on the

right-hand side, since

under interchanges of V and A. It is shown here that

(1) [P-',[P",f)'2= [F-,[P,8'll;
(2) double commutation with F,', Fs' does not

change the symmetry under V, A interchange.

Both results follow from the identity

I F.',LF",6'jj
=0[P.',[Fs', VtZ, As& ~(Vs,[F.',[Ps',A ~)j))
+(fVt LF.' [Ps' AsZ) +([P-' [Ps' Vslj At))
+(i[P.' Vtj [Fs'Asj)~l[F" Atj I Ps' Vsj))

+((LP ', V j,LF 'A 3)~i[P ',A jLF-' V3) (24)

For the single-commutation terms, since

[F,', V]=[F„Aj, [F,',A j=[F„V7,

replacement of Ii' by Ii must be accompanied by inter-

change of V and A, under which the symmetric case

(+) will just transform into the same terms with Fs
replaced by F, but the antisymmetric case (—) trans-

forms into minus the terms with Ii ' replaced by F. Thus

property (1) holds for 8+ but not for 8 .
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Rafiiative Corrections to J „'Decays and the zsI= ,' Rule-
EDWARD S. GINSBERG
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The radiative corrections to the Dalitz plot in E,30 decays are calculated assuming a phenomenological
weak E'-m vertex and using perturbation theory. The answer depends logarithmically on a cutoB, as is the
case for nuclear P decay. An interesting feature of these decays is that they offer a means of measuring the
q' dependence of the form factors f~(f'). The radiative corrections contribute an additional energy de-
pendence which cannot be separated experimentally. It is found that the radiative corrections are con-
siderable, i.e., greater than 3% in absolute magnitude, over a large portion of the Dalitz plot, and are not
particularly sensitive to a reasonable choice of cutoB. The corrections to the lepton and pion spectra, and
the decay rate are also given. A comparison with previous results for E,3' reveals that the E,3+ correction
is of the same order of magnitude but everywhere more positive. In particular, the ratio of the decay rates
I'(E,s )/P(lt, &+), which is equal to 2 according to the QI=zv rule, must be modi6ed by a factor (1+8) due
to the radiative corrections. It is found that S 1-',% and is independent of the cutoff.

I. INTRODUCTION

HE subject of this paper is the estimate of the
radiative corrections to the three-body leptonic

decays of neutral kaons, E~~' for short. The same ap-
proach is ad.opted as that used in previous papers'2
concerned with the radiative corrections to E~3+. These
estimates are relevant for several reasons. Recent
experimental interest in these decays will result in
measurements of sufBcient precision to be sensitive to
radiative corrections. ' Thus, in a measurement of the
energy dependence of the phenomenological form
factors f+(g'), one must allow for an additional, un-
avoidable q' dependence due to radiative eGects. More-

* Supported by the National Science Foundation.' E. S. Ginsberg, Phys. Rev. 142, 1035 (1966).' E. S. Ginsberg, Phys. Rev. 162, 15/0 (1967).' Princeton Conference on X mesons, Princeton, N. J., 1967
(unpublished).

over, electromagnetic interactions do not conserve
isospin; therefore, the radiative corrections will modify
predictions based upon isospin selection rules, such as
the hI=-', rule, which relate the experimentally mea-
sured decay rates of charged and neutral kaons. Finally,
the presence of an electromagnetic final-state inter-
action [Fig. 1(b)) in the Etsv (but not E'tv+) radiative
correction gives rise to an apparent violation of time-
reversal invariance in the measurement of the trans-
verse lepton polarization. 4 The numerical results pre-
sented in this paper depend upon the overwhelming
simplification which results from neglecting the lepton
mass (in particular, this excludes lepton polarization).
Thus, the numerical results apply only to E,3'.

4 N. Byers, S. W. MacDowell, and C. N. Yang, in Proceedings of
the Seminar in EIigh-Energy Physics and Elementary Particles,
Trieste, 1965 (International Atomic Energy Agency, Vienna,
1965), p. 953.


