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Born term, while the negative terms differ by two units
of charge and, since these are strangeness-changing
currents, two units of strangeness. (We assume the
validity of the EQ=AS rule for such processes. ) For
E.3 decay the S=0 contribution includes many channels
and has a contribution from the A& and any other
abnormal-parity multipion resonances or Regge re-
currences, while the S=—2 bosonic states include no
known resonances. Thus we argue that the former terms
can be expected to dominate over the latter, giving a
net negative contribution to Eq. (3) from the sum,

n gx+
To summarize, we obtain Eq. (2) from an Ademollo-

Gatto theorem for which we can argue with some
plausibility that the dispersion integral contributes with

a particular sign. This argument is based on the fact
that we can relate the correction term to a difference of
squared terms, where the terms of strangeness zero,
which include many channels and any abnormal-
parity, S=O, multipion resonances such as the 3&,
contribute with one sign while the terms of the opposite
sign have the quantum numbers 8=0, I'= —2 and
include no known resonances. In such an integral it is
very likely that the former terms dominate over the
latter, and thus we infer the sign of the dispersion
contribution. Apart from E,3 decay the only interesting
case where such a condition applies appears to be that
of Z ~rtet, where a condition similar to Eq. (2)
for both the vector and axial form factors may be
obtained.
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We have calculated the inelastic contribution to the p-n mass difference coming from some low-lying
nucleon resonances by using Cottingham's expression for the electromagnetic self-energy of the nucleons.
The contribution of the Roper resonance has been estimated numerically, and is found to be too small to
reverse the wrong sign of the elastic contribution. This result suggests the importance of the high-energy
diffraction region in the inelastic contribution rather than the low-energy resonance region.

I. INTRODUCTION
' 'T is an embarrassing fact that the neutron is heavier
~ ~ than the proton, contrary to simple-minded expecta-
tions. Many attempts have been made to resolve this
puzzle, but none of them has succeeded in giving a
satisfactory answer. Among these attempts Cotting-
ham's expression for the p-rt mass difference seems to
be promising, because in this expression we can relate
the p-rt mass difference to other experimentally mea-
surable quantities. ' Sy assuming an unsubtracted dis-

persion relation for the forward Compton scattering
amplitude, he has rewritten the expression for the p-rt

mass difference given by Cini, Ferrari, and Gatto. '
There is, however, an argument by Harari' that the
difference between the forward Compton scattering
amplitude of the proton and that of the neutron needs
one subtraction according to the Regge hypothesis. He
suggested that the subtraction term may give the
correct sign of the p-I mass difference by taking the
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r W. N. Cottingham, Ann. Phys. (N. Y.) 2S, 424 (1963).
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on-shell limit for the spacelike photon, qs —++0. The
conclusion, however, depends on how' the subtraction
point is chosen and how the on-shell limit of the virtual
photon is reached, as suggested by Gibb, ' who has made
a subtraction at go'= —q' and has taken the limit
q' —+ —0 to get the opposite sign for the subtraction
term. Moreover he showed that if we need a subtraction
in the forward Compton scattering amplitude, then
Cottingham's expression itself is likely to diverge. 4 ' It
seems rather doubtful whether the subtraction term
gives a clear-cut answer.

On the other hand, Theis and Zeiler' have recently
estimated the inelastic part of Cottingham's expression
by assuming a suitable form for the absorptive part of
the forward Compton scattering amplitude to incorpo-
rate a few experimental data. They obtained —1.5 MeV
for 5=—m~ —m„by assuming the unsubtracted dis-
persion relations for the forward Compton scattering
amplitude. If their evaluation is reliable, the contribu-
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and include the contribution of the integral over v&a
into the subtraction term, we can write Eq. (8) as

1 " ImAT(q' v)
A=C+— dq' dv (9)

2m' o o (v+q) t+
where the constant C stands for the subtraction term
and the high-energy part of the integral. When C is not
too large, the dominant contribution to 6 comes from
the low-energy part of the integral, and we can use
Eq. (6) to approximate it by the low-lying I= rsreso-
nances. Ke shall discuss the zero-width resonance
approximation for Eq. (6) in Sec. III.

IIL ZERO-WIDTH RESONANCE APPROXIMATION

The important feature of Cottingham's formula is
that it expresses the mass difference in terms of experi-
mentally obtainable quantities. That is, the absorptive
part of the amplitude AT(qs, v) is given by

ImAT(q', v) = sr'(v —q'/2m)Af(q')

+~[ —.-("+q')/2 j»(q, ), (10)
where

f(q') = (e/2sr)'[Gtr'(q') —(q'/2m')Gst'(qs) j, (11)

h(q', v) = (2') '(v —q'/2m)[o J.(q', v) —2oz (q', v)j. (12)

Here we denote by Af (») the difference of f(q')
(It(q', v)) between the proton and neutron. Gz(q')
and Gss(qs) are the usual electric and magnetic form

factors of the nucleons and 0.1. and o-~ are the absorption
cross sections of longitudinal and transverse photons by
the nucleon, respectively. "At present we have no satis-
factory data on o-L, and o-z to achieve the integration in
Eq. (6). Theis and Zeiler' have assumed the factori-
zability of the function h(q', v) in the two variables q'
and (p+q)', where p is the energy-momentum of the
nucleon at rest, and have carried out the integration.
This assumption, roughly speaking, corresponds to
factoring out the transition form factors between the
nucleon and the nucleon resonance and summing over
all the relevant resonances. We now make more
physically transparent the approximation to the func-
tion l't (q,v), i.e., the zero-width resonance approximation

31 '—m'+q'~
»(q', v) = Q s~l v — lf„(q'), (13)

where A represents the highest resonance which comes
into play, m is the nucleon mass, 3f„ is the mass of the
nth nucleon resonance 1V„, and f„(q') is expressed by
some transition form factors between E„and 2V. If we
write m=Mo and f(q')= fo(q'), then we can rewrite
Eq. (10) in a more compact form:

3E„'—m'+q'~
ImAT(q', v) = Q srlll v — lf„(q'). (14)

n-o 2m )
Inserting Eq. (14) in Eq. (6) we obtain

dq'f-(q')

o {[q'+(~~+m)'j[q'+ (M —m)'j) "'+3f '—m'+q'

The correction to the zero-width approximation due to the nonzero width of the actual resonances is easily
estimated by replacing the 8 function in Eq. (13) by the Breit-Wigner-type function

M '—m'+q')
mal v—

l

—+ I'„
Ms' —m'+q')'

l+r„s,
2m

where F„ is the total width of the resonance E„.By
this replacement we obtain the following fractional
corrections in the erst order of I'„:

2mi' /sr(M '—ms) &0.1,
which is negligible for our present purpose.

TABLE L I=$ nucleon resonances.

Now we are in a position to evaluate separately the
individual contributions to 6 coming from the nucleon
and nucleon resonances. It should be noted that the
j'=ss resonances do not contribute to the p-tt mass
di6erence 6 at all as stated previously. There are many
con6rmed I=

~ resonances, which we now list in
Table I."

Wave

(Nucleon)
P11
DI3
Sll
D15
Fy5
SIg
GIT

Mass
(MeV)

940
1470
1520
1530
1680
1960
1710
2220

Total @width

(MeV)

0
210
115
120
170
130
300
300

1el/+tot

~ ~ ~

0.65
0.55
0.35
0.50
0.45
0.80
0.35

A. Nucleon Pole Contribution (Elastic Part)
For the sake of comparison we briefly discuss the

elastic part. Since the function fo(q') is readily given in
~~ R. Wilson, in Particle Interactions at High Energies, edited by

T. W. Preist and L. L. J. Vick (Oliver and Boyd, London, 1967),
p. 156.

» We have used the data by the CERN group (A. Donnachie
et al.) presented at the Informal Theoretical Physics Gathering
held at the Rutherford Laboratory, 1967 (unpublished). See also
C. Lovelace, in Proceedirtgs of the IIeidelberg Irtternatiortai Cert
ferertce ort Eteraeltary Particles (North-Holland Publishing Co.,
Amsterdam, 1968), p. 79.
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Eq. (11),we can perform straightforwardly the integra-
tion for the elastic contribution As to the p-rt mass
difference. We use the dipole form factors which have
been determined by recent experimental analysis':

1 1 mo2

G~o(q') = G~o(q') =G~"(q') =
q'+

G n (q2) —0

where mo= 850 MeV. The explicit integration can easily
be done, and results in

~0=
24(1—x)

15—36x+24x'
7—10x+- 4 (x)

3+12x-24x'—2&y '—p '&X(10m—1+
2x

Inserting the numerical values x= 0.204, tsar= 2.79, and
tt„=—1.91 in Eq. (17), we obtain

~0=0 66—0 29=0.37 MeV.

Also, by using Cottingham s original formula which is
based on an asymptotic assumption on AT(qs, qs) differ-
ent from that in the present paper, one may get an
estimate of the elastic part. The numerical value
obtained is 0.78 MeV,"which is about twice as large as
0.37 MeV. There is, however, a possibility that the
difference between them may be cancelled out by the
difference in the inelastic part so that the super-
convergence relation, Eq. (7), holds.

3. Roper-Resonance Contribution

The lowest I= ~ nucleon resonance conlrmed now is
the so-called Roper resonance 1P(1400) with a width
of about 200 MeV, which is found in the E~~ channel
of 2r-X scattering. r We now call this Nt(rt= 1) and cal-
culate ft(qs) in Eq. (13) by taking the absorptive part
of Eq. (2) and keeping only the I&'ft state in the inter-
mediate states. We use here the transition form factors
G&2&'& (q') and Gsr&'& (q'), which are defined such that

(1V1&y„&E)= (22r) 2(cVtsn/pt&&pp)'t'tt(pt)

X (~1&"(q')5„+(~1—m)q, /q'j
—~2"'(q')ta"q")N(p), (19)

"See, e.g., W. K. H. Panofsky, in ProceeChngs of the IIesdetberg
International Conference on Elementary Particles (North-Holland
Publishing Co., Amsterdam, 1968), p. 371.

22 G. Barton and J. Brennan (unpublished); see also Ref. 6.

where x= (mo/22&t)', n= 1/137 is the lne-structure
constant, and

x )1&2 2 — x
&t(x)=

~

1——tan '
~

. (18)1-Xj 2r 1-X)

G "'(q') =F "'(q') —Lq'/(~ +~)l~ "'(q')

G &1& (q2) P &1& (q2)+ (~ +nt)P &l&(q2)

(20)

(»)
where p1 and p are the energy-momenta of the Roper
resonance X& and the nucleon X, respectively. After
some elementary but tedious calculation we obtain

Gz&1& (q2)2 2~ G~&1& (q2)2 (22)
( q

The present author has recently derived the relation
between the magnetic transition form factor Gsr&'&(q2)

and the nucleon magnetic form factor G2r(q2) by assum-
ing that the Roper resonance dominates the sidewise
dispersion relation for the electromagnetic vertex func-
tion ' The relation is"

G»r"'(q') = (gm /gN~ )G»r(q'), (23)

where g&2&2 2/4x 2.5 is the 1V1—1V—2r effective coupling
constant determined by the width and g»&&v '/42r= 14.6
is the m-E coupling constant. '~

On the other hand, we have less information to
determine G~&'&(qs). We can see, however, that the
electric transition form factor Ga&'&(qs) should vanish
at q'= 0, as is well known in the multipole analysis of the
7+P ~ 2r+f&I reaction. This can be seen by observing
the relations (19) and (20); in Eq. (19),F1&'& (q') should
vanish at q'= 0 to cancel the spurious pole at q'= 0 and
therefore Gts&'& (q') by Eq. (20). Thus it can be assumed
that G&s&'& (q') has the following form near q'=0:

G &1& (q2) oc qsG &1& (qs) (24)

We have, however, no idea how to determine the high-q'
behavior of Gz "&(q'). Here we shall simply assume that
the relationship (24) holds for any value of q', though
there is the possibility of multiplying the right-hand
side of Eq. (24) by 1/(q'+C) to improve the asymptotic
behavior. At present we have no information how to
determine the slope of the function Ga &'& (q2) at q'= 0.
We leave it as an unknown parameter y, which we
de6ne by

'yq' ntp'
G~ "&(q') = (25)

22n(3II1+rN) q2+r&tssf

Inserting Eqs. (23) and (25) in Eq. (22) and perform-
ing the integration (15) for I= 1 numerically, we obtain

hg= 0.0103,y' —0.089 MeV, (26)
te A different assumption (Ref. 8) on the asymptotic behavior

of the vertex function continued analytically in the nucleon mass
leads to a relation di6'erent from Eq. (23), e.g., F2&'& (q')
=(gz&r~/g&re~)P2(g'). We, however, prefer Eq. (23) because it
best fits the recent experimental analysis on the photopion
production from nucleons (Y. C. Chau, N. Dombey, and R. G.
Moorhouse, Phys. Rev. 163, 1632 (1967)g.

~' J. Hamilton. and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).
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where hys= y'(1Vt+) —ys(Xt'). Since it is unlikely that
hp' is very large, the contribution of the Roper reso-
nance h~ is too small to overcompensate the elastic con-
tribution 60, though it has the right sign for by &8.9.
If the low-energy region of the inelastic part is respon-
sible for reversing the sign of the mass diGerence, we
must have at least 20 resonances contributing com-
parably to the Roper resonance.

It should be remarked here that, if we use Cotting-
ham's original formula' to evaluate the Roper-resonance
contribution, we have, for the magnetic contribution
to hg,

hg, ,g= —0.014 MeV.

This is even smaller than the value we obtained in
Eq. (26).

C. Srt(1530) Contribution

We shall call this Stt resonance Es(e= 2). The vertex
function (Es ~j „~E) has the following general form:

(Es ( j„(E)= (2s )—'(M em/psppp)')'u(ps)ps

&& (Ft(') (q') $p„+(Ms+m) q /q'j
Fs("(q')i(r„„q")N(p), (27)

where p& is the energy-momentum of Es. It is very easy
now to express the function fs(q') by the invariant form
factors Ft(') (q') and. Fs(') (q'),

(Ms+m '- Ms —m 't e q'
f.(q')= &+I

q 2m (2~3

X (G&(2) (q2)2 2'/(Ms m) jsG jr(2) (q2)2) (28)

where

G)r(2) (qs) Fl s (qs)+ Pqs/(Ms m) jF2(2) (qs) (29)

G ')(q')=F ' (q') —(M —m)F " (q') (30)

For the present we have no idea how to determine the
form factors G)r")(q') and Gsr")(q') and so we cannot
form any quantitative estimate of the S» contribution,
de, to the p-I mass difference. However, we can make
a qualitative statement that the S» resonance is likely
to contribute less than the Roper resonance does, be-
cause fs(q ) has a factor P(Ms —m)/2m)' which is very
small compared with the factor L(Mt+m)/2mgs in
ft(qs). Thus we may conclude that the contributions of

the 5» resonance and the Roper resonance are both too
small to change the wrong sign of the elastic part ~0,

IV. CONCLUDING REMARKS

We have found that the inelastic contribution coming
from the low-lying nucleon resonances is too small to
overcompensate the elastic contribution. From this
point of view it is very dificult to see how Theis and
Zeiler' have obtained the value —2.6 MeV for the
inelastic part. They have evaluated the low-energy
region of the inelastic part and therefore the value they
obtained should be consistent with our value P~=&~ &~.
To obtain the value —2.6 MeV by our method we have
to add up the contributions of at least 20 or 30 reso-
nances. This seems rather unlikely, because we have
chosen the cutoff parameter a(qs) in Eq. (9) as a point
higher than the resonance region and lower than the
diffraction region, and we have in the region ) (a(q')
less than 20 I=

~ nucleon resonances. In order to explain
this discrepancy we may consider two possibilities:

(1) Their assumed form for the function h(q', q())

overestimates the inelastic part;
(2) some of the higher I= s resonances have an un-

expectedly large contribution to 6„.
It seems to us that the second possibility is quite
unlikely.

We conclude that the low-energy part of the inelastic
contribution is unimportant and therefore, if Cotting-
ham's formula is correct and convergent, there must be
some important contributions coming from the high-
energy diGraction region in the inelastic part, e.g., the
Regge-pole terms. "
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