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Current algebra, unsubtracted dispersion relations, and the hypothesis of partially conserved axial-vector
current imply a model-dependent sum rule (derived by Gerstein) for the spin-flip pion-nucleon scattering
amplitude, analogous to the one obtained by Weisberger and Adler for the non-spin-flip amplitude. The
Gerstein sum rule requires information about the weak amplitude for axial-vector-nucleon scattering, and
the purpose of this paper is to evaluate its contribution on the basis of two different models. The first model
consists in saturating the weak amplitude with the N*(3,3) (1238 MeV) and N** (,3) (1518 MeV) resonances,
using a number of existing theoretical determinations of the N* and N** axial coupling constants. The
second evaluation is done with a very simple assumption of additivity in the quark model, and leads to a
poor, but not discouraging, verification of the Gerstein sum rule.

I. INTRODUCTION

ECENTLY Gerstein! derived, on the basis of cur-

rent algebra, unsubtracted dispersion relations,

and the hypothesis of partially conserved axial-vector

current (PCAC), a sum rule for the spin-flip pion-

nucleon scattering amplitude analogous to the one ob-

tained by Weisberger? and Adler* (W-A) for the non-
spin-flip amplitude. This reads

1
Fy(0)=[G4(0) F—F1(0)—2f:*X~

00

dv
X / — ImB® (5,0,0,0)
my(I4+-mx/2m) v

4 dv
+- — 2md,(»,0,0,0). (1)

T J ma(l4mz/2m) V

F1(0), F5(0), and G4(0) are, respectively, the electro-
magnetic and weak axial-vector coupling constants of
the nucleon (mass=m),* and f, is the pion decay con-
stant.® B©) is defined through the usual decomposition

of the #[V scattering amplitude® [for notation see Egs.
(8) below]:

TﬂrNab(Vyt:qlz7q22)
- f 0 €959 Cr)(pal [ 128,720 ]| £3)

= {aabA ) (V;t)gl2)q22)+%[7'a’7b]‘4 e (V>t,912:q22)}
+ { dasBP (V,t,912:922)+%[T",Tb]B(_) (”:t7912;922)}

X3y (gitg2)].

11. S. Gerstein, Phys. Rev. 161, 1631 (1967).

2 W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965); Phys.
Rev. 143, 1302 (1966).

3 S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).

4The noix?alizations are such that F;(0)=1, F:(0)+F2(0)

+Tn terms of f, the PCAC condition is 3,4 ,(¥) =[— (m2f,)/
V21rt (). . o .

6 The Dirac matrices are anti-Hermitian (the metric is
———+), vs=vovrv2vs, v =—1, 00 =3i (vuvs—V¥0).

)
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The quantity

1 = dy
D1(“)(V,0:Q2,92)E“/ 7

TS Vi —v

dl(_) (”';O,QZ;QZ) (3)

is the coefficient (taken for the specified values of the
kinematical variables) of #is,,3[ 7*7%Ju in the expansion
of the axial-vector-nucleon amplitude

Tyt=—i / e 709 (o) (pa| [A4*(2),4,5(0)]] p1)  (4)

in a complete set of independent covariants. Obviously,
the last term in the right-hand side of Eq. (1),

_ 2 dv
D1(0,0,0,0)=— / ZhO6,000), (5)

™ x(1mg/2m) V

represents D;¢(0,0,0,0) with the nucleon pole extracted.

Gerstein emphasized that, unlike the W-A relation,
the spin-flip sum rule [Eq. (1)] is essentially model-
dependent (because of the appearance of D;™ in the
right-hand side). The point is that the covariant s,
for whose coefficient the Fubini procedure’ cannot yield
a formula which eliminates ¢, from Eq. (1) (to obtain
a model-independent sum rule for the 7V spin-flip
amplitude), must be included in the expansion of T,
in covariants, if kinematical singularities are to be
avoided. These circumstances clarify a rather obscure
situation in the literature®® where discrepancies are
found between the results of previous derivations of the
spin-flip current-algebra sum rule.”

The purpose of this work is to investigate the validity
of Eq. (1) on the basis of two different models. The value
of the first integral on the right-hand side of Eq. (1) is

7 S. Fubini, Nuovo Cimento 43A, 475 (1966).

8 N. H. Fuchs, Phys. Rev. 150, 1241 (1966).

9 C. Bouchiat, G. Flamand, and Ph. Meyer, Orsay Report No.
Th/187, 1967 (unpublished).

0In the derivation of Ref. 8, both [G4(0)]? and the weak
amplitude in Eq. (1) are omitted and then a satisfactory agreement
with experiment is found, while in Ref. 9 [G 4(0) ]2 appears but the
weak amplitude does not, the agreement being poorer in the latter
case. For a full discussion of all these facts see Ref. 1.
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taken from Ref. 8, where it is computed by means of a
phase analysis. The first model refers to a determination
of D by retaining only the N*(%,3)(1238 MeV) and
N**(%,3)(1518 MeV) in the continuum contribution to
the weak amplitude T,,%%. The usual perturbation-
theoretic Feynman rules are employed in the evaluation
of the Born diagrams. This procedure is similar to the
one successfully employed by Schnitzer! in calculating
the low-energy =V parameters. The method and some of
the conclusions presented in Sec. IT of this paper differ
from the evaluation based on dispersion models given
in Ref. 12. Using for the weak NN* and NN** axial-
vector form factors some theoretical numbers given
recently by different authors in the literature, the agree-
ment is good only in one case and it is rather poor in
the others.

The second model for the axial-vector-nucleon ampli-
tude is considered in Sec. III. It contains an evaluation
of the quantity 4m.D;(0,0,0,0), using an hypothesis of
additivity in the quark model analogous to that em-
ployed by Bogolyubov, Matveev, and Tavkhelidze'® for
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an invariant function appearing in the amplitude
Tb= /d"x €222 (20)(p2| [ 9,4 ,%(%),0,4,2(0) ]| p1).  (6)

These authors succeeded in this manner in deriving the
W-A relation, using only this additivity assumption,
unsubtracted dispersion relations, PCAC, and the re-
quirement of nonrenormalizability of the axial-vector
coupling constant in the weak interactions of the bound
quarks (they took G,%**=1), without any current
algebra. In our case, using the main features of this
simple model in connection with the axial-vector-
nucleon amplitude T',,%* [Eq. (4)], we give an estima-
tion of D;7(0,0,0,0). With this value, the sum rule (1)
turns out to be in rather poor, but not extremely bad,
agreement with experiment.
The conclusions are drawn in Sec. IV.

II. SATURATION WITH N* AND N**

We use the expansion in covariants of T,,*® [defined
by Eq. (4)] given by Gerstein!:

Ty =L PuPy(A1+A 1y Q)+ Puger(dat- Ay Q) +Pugis(Ast-Asy- Q) +guPy (Ast-Aay- Q) +gaugen (As+Asy Q)
+92pQ1v(A e+Aey- Q)‘Hhqu(A Ay 'Q)+q1pq2r(A8+A8'Y : Q)+Q1p91v(A9+AQ’Y : Q)+g,.y(A 10+A-10‘Y : Q)
Fi0D1+3 (v - Qvo—v5v - Qvu) Da-P oy Bi+ Py uBe+qouy»Bs+-qavvuBs
+q1:7vBs+qu7uBet (PuionOr+Piio nOr) Cr4- (o nOr+Q,i0iaQn)Ce

+ (Auiakak+ Av'ia'p)\Q)\)C3+ (Auiov)\Q)\ -

The following notation has been introduced:

AignOWCalu. (7)

@=p1r+q—p2, A=p2—p1,
=%(?1+P2), V=(PQ)/m: (8)
=1(q1}q2), t=A2, m=nucleon mass.

We suppose that D;(0,0,0,0) is well approximated by the contributions coming from N* (1238 MeV) and
N** (1518 MeV). Then we have to pick up the coefficients of #io,,3[ 727% Juin the corresponding Feynman diagrams.
The axial vector NN* and NN** form factors are defined by

H
<N*; P+q|Au“lN,P)=ﬁv(P+q)[gwﬂx+qm : .
m+m
0O ), (ot =), )
and
he
N**, A"a N, =1, wth+ WY,
R L s
h
—QV(2P+Q)“(m+m**)2 q“(m-l-;**)z]%ﬂu(j’); (m**=N** mass). (10)

In the above relations, 7¢ are the Pauli isospin matrices and T, are the 2)X4 matrices connecting N* and V isospin

11 H, Schnitzer, Phys. Rev. 158, 1471 (1967).
12 H, Goldberg and F. Gross, Phys Rev. 162, 1350 (1967).

B N. N. Bogolyubov, V. A. Matveev, and A. N. Tavkhelidze, Report JINR, Dubna, E2876, 1966 (unpubhshed), Nuovo

Cimento 48A, 132 (1967).
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states:
—1/V2 0 1/V2 0 0 o0
_ 0 —1/4/6 .l O 1/4/6 _Iv%2 0
B=lis 0 |0 B=iyge o |0 T 0 4 (1)
0 172 0 12 0 0
The T, satisfy the relation
TaTTb=§5nb—%[T“’rb]. (12)
The N* contribution is obtained from the following expression:
H, Hy, (P+Q)-v+m*
T,,**(Born, N'*) =72(P2)[gauH1—Qzaw +g2a (2p2Fq2) G202y 1
- (mbm*y = (mem*)e ] (P4-Q)r—me
1 2
X| et bt Er P+ QO (PO T+ (PO (PO}
3m* 3m*
x[ ka1 (it g =
8av1T Q187 —qu
m+m* T u(m-l-m*)z q1qu(m+m*)2:|
X T Tyu(p1)+crossed term. (13
One finds wlp) (13)
Di1avn @ (0,868 = § m+m*) H 12(42)( : % : )-I- . (14)
@+ 2my+mP—m*2  @— 2yt mE—m*2 ’
where the dots stand for terms which become zero at Here K, is defined by
¢*=0, »=0. Consequently, we have
my Q-A
_ 8 Ky=Qy——P,— Ay (20)
41”D1(N*) &) (0,0,0,0) =—- le(O) . (15) p? A?
9 m*—m and one finds
In deriving Eq. (14), much care must be taken with K= Qz_m_z”_z_ (Q-4y
respect to possible contributions to D; from expres- N P2 Az (21)

sions containing, e.g., the factors

(P yionQr— Pio Q) u (16)
or

#(Qute \Or— Qrio Q2% 17)

which do not appear among the covariants used in the
decomposition given in Eq. (7). As a matter of fact,
these eventual contributions to #go,,% vanish in the
limit (g1=¢s; ¥*=0, ¢®=0). This can be seen from the
identities Egs. (5) and (6) of Ref. 1, which we rewrite
below for completeness:

0=al P} (vuy - Qvs—»7 - Qo) —mvio,,
- %(PI‘A"—PVA#)’Y : Q+%Q : A(Pn'Yv-Pv'Yg)
—3mv(Dyvy— Byy ) — m(PuionOr— PyicnQx) Ju, (18)

0=4[ A’K%q,,+2K*(P,A,—P,A,)
—2Q-A(P,K,—P,K,)+2mv(AK,—AK,)
—2m(AuK,— AK )y - Q+2mE* (A vy — Byyy)
—2mQ- A(Kvy—Kvy)

+22(K ionOh— K io Q) Ju.  (19)

In a similar manner we obtain the N** contribution in
the form

4mﬁ1(N**) ) (0,0,0,0) =— k12 (O) . (22)

3(m**+-m)
With these results, taking

0

1 dv
—2f.2- —ImB™(,0,0,0)~4.9 (23)

™ mg(4+my/2m) V

as given in Ref. 8 and recalling that [G4(0) P~~1.4, we

have, on the left-hand side of Eq. (1), 3.7, while on the

right-hand side we find
5.3—2.8[H:(0) ], (24)

if D16(0,0,0,0) is approximated only with the N* in the
intermediate states and

5.3—2.8[H1(0) 12— 0.25[ 1, (0) J?
if D, is calculated with both N* and N**.

(25)
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TasLE I. Various theoretical values of [H1(0)]? and the corresponding values of the right-hand side of Eq. (1).
References a a a b c c c
[A.(0)T2 £(0.85)2 £(0.65)2 2(1.15)2 2(0.52)2 14X1.4/2  1.2X14/2 1.7X1.4/2
Right-hand side of Eq. (1) 2.3 3.5 —0.3 4.1 2.6 3.0 2.0
(with N* only)
Right-hand side of Eq. (1) 1.5 2.7 —1.1 3.3 1.8 2.2 1.2
(with N* and N*¥)
a Reference 14.
b Reference 15.
¢ Reference 11,
For H1(0), theoretical determinations furnish rather vertex

different values. The numbers given by Albright,”* and
Furlan, Jengo, and Remiddi,'® using a current-algebra
approach, and by Schnitzer! are listed (in our normal-
izations) in Table I. The value of [H1(0)? appearing in
the fifth column was obtained in Ref. 11 by fitting a pole
to the W-A relation. The value of [H1(0) P from the
third column must not be taken too seriously, because it
corresponds to the symmetry limit and, consequently,
it seems to us more doubtful. As concerns %;(0), no
sound theoretical determination has been done to date.
It is only possible to correlate /;(0) through the known
T NN** coupling constant; although a rough evaluation
of this kind is quite questionable, we shall adopt this
procedure here because of the lack of other information.
We take therefore for the [%#:(0)J* the value given in
Ref. 12 (calculated as stated above), which in our
normalization is

[h(0)p=3.2.

The last two lines of Table I contain the corresponding
values of the right-hand side of Eq. (1) computed with
N* and with both N* and N** contributions in the
Dy term.

As is seen from Table I, the agreement can be con-
sidered as satisfactory only when one uses for H1(0)
the value given in Ref. 15. [Recall that on the left-hand
side of Eq. (1) we have the number F5(0)=3.7.]

(26)

III. QUARK-MODEL EVALUATION

For convenience, we prefer to rewrite the sum rule (1)
using the definition of D, in the form

Fy(0)=[Ga(0)P—F1(0)—2f.2
1 dv
X= / 2 ImBO (7,0,0,0)
T J ma(l4mea/2m) V

+4mD(0,0,0,0)
—4mD1 (nucleon pole) ™ (0,0,0,0) . (27)

With the usual expression of the axial-vector-nucleon

14 C, H. Albright, Phys. Letters 24, B100 (1967).
18 G, Furlan, R. Jengo, and E. Remiddi, Phys. Letters 20, 679

(1966); 21, 720(E) (1966).

(Vip+q| 4,2 N1p)
=a(p+ Q)3 ivsmGa(g®) +igasFo() Ju(p), (28)

the nucleon contribution to the weak amplitude D,
comes from

Tu*® (Born, nucleon)
=a(p2)[vsvuGa(g?) —iqayysF p(g2) Tarars
(p+0Q)-v+m
% 10

m[ivaA (g2)FigquysF p(g:®) Ju(py)

+crossed term. (29)

After antisymmetrizing in the isospin indices, we pick
up the coefficient of #is,u. As we need Dy (yucicon poley ™
for all its arguments equal to zero, we set 1= ga=g,
p1=p2=9p and obtain

LGa(g) Pmg?

Dy (nucleon pole)(_) (V,O,q2,q2) =t R

q4_ 4V2m2 (30)

where the dots represent terms which vanish for ¢#=0,
=0 [F,(¢%) is assumed as customarily nonsingular at
¢®=0]. In order to obtain a well-defined value for
D1 (nucteon pote)(0,0,0,0) from Eq. (30) we shall perform
the limit ¢ — 0 and »® — 0 by keeping ¢®= 2. Then we
will have from Eq. (30)

(—4m) D1 (aucteon pole)™ (0,0,0,0)
= q21=iryr21_)0(—4m)D1 (nucleon pole) =) (V, 0,92,92)
=[G4(0). (1)

We compute now 4m.D,(0,0,0,0) under an additivity
assumption in the quark model, which we formulate as
follows: The quantity 3[r°r*J[4mD;(0,0,0,0)] is
additively composed of the contributions from the
quarks forming the nucleon. Therefore, we have

3[r°r¥J[4mD1(0,0,0,0)]

3
= 2 3Lrer1[4M @w2D1;,9(0,0,0,0)].  (32)

=1

Dy is the appropriate coefficient from the axial-
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vector-current—(¢)-quark scattering amplitude:
T, ()=— i/d“x e 270 (x)

X{quark i,ps| [4,%(x),4,°(0)]| quark 7,ps),

(M jvark= (;)— quark mass). (33)

The following hypotheses are used: (1) The amplitude
D;,9(0,0,0,0) is well approximated by the Born part
(one quark in the intermediate states). (2) The axial-
vector coupling constant of the bound quarks is un-
renormalized, that is, G49%% #(0)=1. (The V—4 form
of weak interactions has been ascribed to quarks.)
The above hypotheses are compatible with the ele-
mentarity of the quark.

Thus, having also in mind that in our case we are
dealing with # and p quarks which can be supposed to
have equal masses, we obtain immediately

%[Ta,’. b] [4mD1(_) (0,0,0,0) ]

3 [GAquark (0) ]2
= i a b J AMauark—
paree{ares

= A TG a (0) = —3ror],
and hence in this model
4mD,(0,0,0,0)=—1. (34)

The same convention ¢?=»* — 0 as in the above calcula-
tion of the nucleon Born part has been employed.

Summing up the results, we find in the framework of
this model that the right-hand side of the spin-flip sum
rule [Eq. (1)] [or equivalently Eq. (27)] is 5.7 (the
left-hand side being 3.7). The agreement is rather poor,
but not discouraging.

IV. CONCLUSIONS

As concerns the saturation of the model-dependent
term in the spin-flip sum rule (1) with N* and N*¥,
we wish to emphasize that the situation is not yet
clear. In fact, the propagators for the spin-§ particles
used in our evaluations (Sec. IT) are not uniquely defined

PION-NUCLEON SPIN-FLIP CURRENT-ALGEBRA SUM RULE
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off the mass shell. Also to be noted is the great un-
certainty existing in the literature on the values of the
weak-coupling constants of resonances. A definite state-
ment on the validity of the spin-flip current-algebra sum
rule can not be made until some experimental informa-
tion becomes available for the weak axial-vector-
nucleon amplitude, at least for the axial NN* and NN**
form factors.

The simple calculation with the additivity assumption
presented in Sec. III gives a poor, but not extremely
bad, value for F5(0). We point out that in any case the
quark-model evaluation of the Fourier transform of the
retarded product of two axial divergences (as in the
paper of Bogolyubov, Matveev, and Tavkhelidze')
works better than it does here for the axial-vector—
nucleon amplitude defined in Eq. (4). In the future, the
real significance of this kind of estimate for these weak
axial quantities must be clarified.

Note added in proof. I wish to thank Dr. H. Goldberg
(whoderived independently inapaper written in collabo-
ration with Dr. F. Gross!? the same sum rule as that one
found by Gerstein) for a useful communication about
his work. Actually, it became apparent that the spin-
flip 7V sum rule can also be obtained from asymptotic
SUsXSUs arguments and PCAC without any use of
current commutators [see Fayyazuddin and Faheem
Hussain, Phys. Rev. 164, 1864 (1967)].
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