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taken from Ref. 8, where it is computed by means of a
phase analysis. The 6rst model refers to a determination
of D&& & by retaining only the E*(-,', -', ) (1238 MeV) and
N**(sr, sz) (1518 MeV) in the continuum contribution to
the weak amplitude T„„~.The usual perturbation-
theoretic Feynman rules are employed in the evaluation
of the Born diagrams. This procedure is similar to the
one successfully employed by Schnitzer" in calculating
the low-energy xE parameters. The method and some of
the conclusions presented in Sec. II of this paper diGer
from the evaluation based on dispersion models given
in Ref. 12. Using for the weak EE* and SS~* axial-
vector form factors some theoretical numbers given
recently by diGerent authors in the literature, the agree-
ment is good only in one case and it is rather poor in
the others.

The second model for the axial-vector-nucleon ampli-

tude is considered in Sec. III. It contains an evaluation
of the quantity 4mDt& & (0,0,0,0), using an hypothesis of
additivity in the quark model analogous to that em-

ployed by Sogolyubov, Matveev, and Tavkhelidze" for

an invariant function appearing in the amplitude

q"'—= d4x e'v'*e(xs)(ps
i L&)„A„'(x),&)„A„'(0))ip,). (6)

These authors succeeded in this manner in deriving the
%-A relation, using only this additivity assumption,
unsubtracted dispersion relations, PCAC, and the re-
quirement of nonrenormalizability of the axial-vector
coupling constant in the weak interactions of the bound
quarks (they took Gzu"" =1), without any current
algebra. In our case, using the main features of this
simple model in connection with the axial-vector-
nucleon amplitude T„„"I Eq. (4)), we give an estima-
tion of Dt& & (0,0,0,0). With this value, the sum rule (1)
turns out to be in rather poor, but not extremely bad,
agreement with experiment.

The conclusions are drawn in Sec. IV.

II. SATURATION WITH ¹ AND ¹*
We use the expansion in covariants of T„„'fde6ned

by Eq. (4)j given by Gerstein':

T„„=N/P„P„(A&+A&y Q)+P„qs„(As+Ay Q)+P„q&„(As+As' Q)+qs„P„(A4+A4y Q)+qs„qs„(As+As' Q)

+q,„q,„(A +A,y Q)+q „P„(A +A y Q)+q „q „(A+A y Q)+q „q „(A +Ay Q)+g„„(A o+A A Q)

+ -.,D +lb.~ Q~, v,~ Qv.)D.+P-.~.B+P,v.B.+q..~,B.+q.,v.B
+qt„y„Bs+qr „y„Bs+(P„io„gQ)+Pro„)Q))Ct+ (Q„io„)Q)+Q io „)Q))Cs

+ (~,io AQx+~. i~,) Ql)CB+(~,t'~AQx —&,io,xQ) )C4)~. (7)
The following notation has been introduced:

qs pl+ql ps ) ~ ps pl y

P= ,'( pt+p)s, -v=(P Q)/m,

Q=s(qt+qs), m= nucleon mass.

(8)

We suppose that Dr& &(0,0,0,0) is well approximated by the contributions coming from 1V* (1238 MeV) and
1V**(1518MeV). Then we have to pick up the coefBcients of sIio „„z$r 'r sjN in the corresponding Feynman diagrams.

The axial vector EE*and EE**form factors are defined by

H2
(&* p+qlA:l&»p)=N (p+q) g"&t+q.&.

m+m*

and

—q.(2p+q)& —q, „qT.u(p), (m'=&V* mass), (9)
(m+m*)' (m+m*)'

hp
(&**,p+qIA:I&, p)= (p+q)~ g"I+q...

(m+mee)

—q.(2p+q)p —q„q„ ,'r'N(P), (m**—=S**mass). (10)
(m+m**)' (m+m'*)'

In the above relations, 7 are the Pauli isospin matrices and T, are the 2)(4 matrices connecting g* and g isospin

"H. Schnitzer, Phys. Rev. 158, 1471 {1967).
"H. Goldberg and I, Gross, Phys. Rev. 162, 1350 {1967).
» N. N. Bogolyubov, V. A. Matveev, and A. N. Tavtrhelidze, Report JINR, Dubna, K2876, 1966 (unpublished); Nuovo

Cirnento 48A, 132 (1967).
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The T, satisfy the relation

T,tTb=', b, b ',f—r'rbj.

The E~ contribution is obtained from the following expression:

H2 Hb H4 (P+-Q) y+m*
Tv' (~orn) & ) =u(P2) g~l H& (12~mt +(12~(2P&+(12)l e2~92l

m+m* (m+m*)' (m+m*)' (P+Q)'—m~2

1 2
X -g.,+., &,+ E&.(P+Q) &,(P+Q-).j+ (P+Q).(P+Q),3m* 3m*

a' H3 H4
X gp Hl+glpp gl (2pl+gl)p —

g'y„gyp
m+m (m+m*)'

(mmmm')2

(12)

One finds
XT~tTbu(p~)+crossed term. (13)

1 1
Dg(N*)( '(v, 0,q', (t') =-', (m+m*)HP(q')~ I+",

&q'+2mv+m' —m" q' —2mv+ m' —m*1 (14)

mv Qg
Qv Pv ~v

jp2
8 m

4mDy(Ne)( ) (0,0,0i0) =—— HP(0) . (15)
9m*—m and one finds

where the dots stand for terms which become zero at Here E„is defined by
q2=0, s =0. Consequently, we have

(2o)

In deriving Eq. (14), much care must be taken with
respect to possible contributions to D~& ~ from expres-
sions containing, e.g., the factors

u(P„io „bQb P„io„b—Q) )u

mnv' (Q g)'
Q2 —Q2

jp2
(21)

In a similar manner we obtain the E**contribution in
the form

or

u(Q„io „gQ),-Q„io„bQ))u,
2m

4mDg()roe)( '(0,0,0,0)=- hP(0) . (22)3(m**+m)
which do not appear among the covariants used in the
decomposition given in Eq. (7). As a matter of fact,
these eventual contributions to Nio.„„N vanish in the
limit (qq

——q2, v'=0, q'=0). This can be seen from the
identities Eqs. (5) and (6) of Ref. 1, which we rewrite
below for completeness:

0=uLP'-', (~„~.Q~,—~,~ Q~„)—m"i .,
—;(P.~,-P.~.)~ Q+lQ ~(P.~.-P.~.)

,'mv(&„y, &„—y„—) m(P„i—o,),Q), P—,i~„),Q&)J~, (—18) 5 3—2 8LH~(0)3' (24)

Kith these results, taking

dv
2f ' — — —ImB( )(v,0,0,0)~4.9 (23)

m~(1+m ~/2m)

as given in Ref. 8 and recalling that PG~(0)j'—l.4, we
have, on the left-hand side of Eq. (1), 3.7, while on the
right-hand side we 6nd

if D) (—) (0,0,0,0) is approximated only with the 1V* in the
intermediate states and

(25)

0=uT~'Zni~„, +2@'(P„&, PA.)—
—2Q d, (P„K„P„E„)+2mv(A„E, 6,—&„)—

2m(~„E.—~,Z„)y Q+2m&'(1).v. ~,V.)
—2mQ. ~(Z „~,—&,~„)

5.3—2.8 Hg 0) '—0.25Lhg(0) j'
+g'(1),„io.„bQb—&„io„bQb)gu. (19) if Dq(—) is calculated with both 1V* and N**.
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TAnLE I. Various theoretical values of $B&(0)$' and the corresponding values of the right-hand side of Eq. (1).

References

I:&r(0)7
Right-hand side of Eq. (1)

(with Ne only)
Right-hand side of Eq. (1)

(with Ne and iVee)

e(0 g5)'
2.3

~3 (0.65)2

3.5

2.7

-', (1.15)'
—0.3

-', (0.52)'
4.1

3.3

1.4X 1.4/2
2.6

1.2 X1.4/2
3.0

2.2

1.7 X1.4/2
2.0

1.2

sb Reference 14.
& Reference 15.
o Reference 11.

For II1(0), theoretical determinations furnish rather
different values. The numbers given by Albright, '4 and
Furlan, Jengo, and Remiddi, "using a current-algebra
approach, and by Schnitzer" are listed (in our normal-
izations) in Table I.The value of [II1(0))'appearing in
the 6fth column was obtained in Ref. 11by 6tting a pole
to the W-A relation. The value of [Ht(0) js from the
third column must not be taken too seriously, because it
corresponds to the symmetry limit and, consequently,
it seems to us more doubtful. As concerns ht(0), no
sound theoretical determination has been done to date.
It is only possible to correlate hr(0) through the known
+A'E** coupling constant; although a rough evaluation
of this kind is quite questionable, we shall adopt this
procedure here because of the lack of other information.
We take therefore for the [hr(0))' the value given in
Ref. 12 (calculated as stated above), which in our
normalization is

[hl(0)]'= 3.2 . (26)

The last two lines of Table I contain the corresponding
values of the right-hand side of Eq. (1) computed with
E* and with both S* and S** contributions in the
D1(-~ term.

As is seen from Table I, the agreement can be con-
sidered as satisfactory only when one uses for II1(0)
the value given in Ref. 15. [Recall that on the left-hand
side of Eq. (1) we have the number Fs(0) =3.7.j

III. qUARK-MODEL EUALUATION

For convenience, we prefer to rewrite the sum rule (1)
using the definition of D1' & in the form

vertex

(I&/,p+q) ~„.
~
X,p)

= sb(p+ q)-', r [sped„G, (q')+iq„qsF„(qs)511(p), (28)

the nucleon contribution to the weak amplitude D1(
comes from

T„„b(Born, nucleon)

N(p2)[s|'5'y GA (q2 ) lq2 Y5F (q2 )jsr rb

(p+Q) y+m
&& L»G (q')+ q ~F.(q')3 (p)(F+Q)'—m'

+crossed term. (29)

After antisymmetrizing in the isospin indices, we pick
up the coeS.cient of Nio„„e. As we need D1 (nucleon pole)
for all its arguments equal to zero, we set q~ ——q2

—=q,
p1——ps

—=p and obtain

[G~ (q')]smq'
D1 (nucleon pole) (p, o,q, q ) = + ~ ~, (30)

q' —4v'm'

where the dots represent terms which vanish for q'=0,
v'=0 [Fp(q') is assumed as customarily nonsingular at
q'=oj. In order to obtain a well-defined value for
Dl (nucleon pole) (0,0,0~0) from Eq. (30) we shall perform
the limit q' ~ 0 and v' —+ 0 by keeping q2= v'. Then we
will have from Eq. (30)

(—4m)D1 (nucleon pole) (0,0,0,0)

( 4m)D1 (nucleon pole) (p 0 q q )
g2= y~

Fs(o) = LG~(0)3'—F1(o)—2f '

1 4v
X— —ImB& )(p,o,o,o)

~ (1+m„/2m)

+4m D1&
—) (0,0,0,0)

—4mD1 (nucleon pole) (oqoqog) ~

= [G~(0)j'. (31)

We compute now 4mD1& ) (0,0,0,0) under an additivity
assumption in the quark model, which we formulate as
follows: The quantity —',[r'r'7[4mD1& ) (0,0,0,0)] is
additively composed of the contributions from the
quarks forming the nucleon. Therefore, we have

(27) —;[rr j[4mD, —
(0,0,0,0)j

With the usual expression of the axial-vector —nucleon
= Z s[r'rbj;[4~;u"-'Dl;&-) (0,0,0,0)j. (32)i~1"C. H. Albright, Phys. Letters 24, 9100 (1967).

» G. Furlan, R. Jengo, and E. Remiddi, Phys. Letters 20, 679
(1966);21, 720(E) (1966). Dj;& ~ is the appropriate coeKcient from the axial-



PION —NUCLEON SPIN —FLIP CURRENT-ALGEBRA SUM RULE

vector-current —(i)-quark scattering amplitude:

T u'(i) = i —d4x e'&'*8(xu)

X(quark i,p2I LA„(x),A „'(o)]I
quark i,pa),

(~ .quark —(i)—quark mass) . (33)

The following hypotheses are used: (1) The amplitude
D&;& &(0,0,0,0) is well approximated by the Born part
(one quark in the intermediate states). (2) The axial-
vector coupling constant of the bound quarks is un-
renormalized, that is, G~q"'"k '(0)=1. (The V—A form
of weak interactions has been ascribed to quarks. )
The above hypotheses are compatible with the ele-

mentarity of the quark.
Thus, having also in mind that in our case we are

dealing with e and p quarks which can be supposed to
have equal masses, we obtain immediately

—',[r 7'][4mD~~ &(0,0,0,0)]
[G&quark(0)]2-

[&a&b] . 4~quark
4~quark

=——,'[~ r~][G„quark(0)]2= —2[&.&t],

and hence in this model

4nzDg& &(0,0,0,0)= —1. (34)

The same convention q'= v' ~ 0 as in the above calcula-
tioo of the nucleon Born part has been employed.

Summing up the results, we find in the framework of
this model that the right-hand side of the spin-Rip sum
rule [Eq. (1)] [or equivalently Eq. (27)] is 5.7 (the
left-hand side being 3.7). The agreement is rather poor,
but not discouraging.

IV. CONCLUSIONS

As concerns the saturation of the model-dependent
term in the spin-fhp sum rule (1) with N~ and N~*,
we wish to emphasize that the situation is not yet
clear. In fact, the propagators for the spin-~3 particles
used in our evaluations (Sec. II) are not uniquely defined

off the mass shell. Also to be noted is the great un-
certainty existing in the literature on the values of the
weak-coupling constants of resonances. A dehnite state-
ment on the validity of the spin-Qip current-algebra sum
rule can not be made until some experimental informa-
tion becomes available for the weak axial-vector—
nucleon amplitude, at least for the axial EE*and ill**
form factors.

The simple calculation with the additivity assumption
presented in Sec. III gives a poor, but not extremely
bad, value for F2(0). We point out that in any case the
quark-model evaluation of the Fourier transform of the
retarded product of two axial divergences (as in the
paper of Bogolyubov, Matveev, and Tavkhelidze")
works better than it does here for the axial-vector—
nucleon amplitude defined in Eq. (4). In the future, the
real significance of this kind of estimate for these weak
axial quantities must be clarified.

Note added ie proof. I wish to thank Dr. H. Goldberg
(who derived independently in a paper written in collabo-
ration with Dr. F. Gross" the same sum rule as that one
found by Gerstein) for a useful communication about
his work. Actually, it became apparent that the spin-
Qip xE sum rule can also be obtained from asymptotic
SU3)&SU3 arguments and PCAC without any use of
current commutators [see Fayyazuddin and Faheern
Hussain, Phys. Rev. 164, 1864 (1967)].
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