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S. CONCLUSION

We have demonstrated that the method of I can be
extended to the point where the three-baryon problem
is reduced to the solution of nonsingular integral equa-
tions for energies all the way up to the first inelastic
threshold, in complete analogy with the results of
Tiktopoulos4 for the two-body Bethe-Salpeter equation.
It becomes more and more likely that analogous results
hold for the e-particle problem.

When coupled with a variational principle, the tech-
nique has been shown by Schwartz and Zemach' to
provide an e%cient way of solving the two-body Bethe-

4 G. Tiktopoulos, Phys. Rev. 136, B275 (1964).' C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966).

Salpeter equation. No doubt this could be extended to
the three-body case, but it remains to be seen whether
the alternative methods that have been suggested for
numerical work might prove to be more effective. These
include the subtraction method and the method of sepa-
rable approximations.
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A pair of simple approximation schemes is proposed for generalized Lippmann-Schwinger equations.
The equation is 6rst reduced to the nonsingular Noyes form; this is essentially an equation for the "form
factor" which takes the external particles oB the shell. In the erst scheme, a pole approximation is then made
for the form factor. The parameters are determined by expanding the Noyes equation about the on-shell
point. The method is applied in 77m scattering to the Logunov-Tavkhelidze equation, which was shown by
Blankenbecler and Sugar to be an approximation to the Bethe-Salpeter equation. In addition to the form-
factor method, these equations were also investigated using an extension of the Pagels approximation.
Possible applications to the Bethe-Salpeter equation are discussed.

I. INTRODUCTION

'HERE has recently been a revival of interest in
those equations of the Lippmann-Schwinger type

which can be applied to relativistic problems' '—we

are including the Bethe-Salpeter equation in this
category. ~" Unfortunately such equations are usually
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more complicated than dispersion methods. It would
therefore be desirable to 6nd simple approximations for
them. One such approximation was proposed by Biswas
and Balazs, ' who made a Pagels-type approximation"
to the static-model Bethe-Salpeter equation. The main
problem with this approximation is that it has param-
eters which cannot be determined unambiguously.
Nevertheless it is probably the simplest approximation
and so we will use it in Secs. IV and V.

Because of the ambiguities of the Pagels approach,
we were led to consider another approximation. Here
one 6rst writes an equation for the "form factor" which
takes the external particles off the shell (using the
Noyes technique"). This can be approximated by mak-

ing a Inultipole expansion at some point. The resulting
parameters can then be determined by making a Taylor
expansion of the Noyes equation about the on-shell

momentum. This sort of approach is particularly
adaptable to a scheme in which one wishes to impose

"H. Pagels, Phys. Rev. 140, B1599 (1965).
"H. P, Noyes, Phys. Rev. Letters 15, 538 (1965).
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vertex symmetry, as proposed by Cutkosky and Leon.
One such scheme is discussed briefly in Sec. III.

The above methods are applied in I'-wave mv scatter-
ing both to the equivalent-potential approach2 and to
the Logunov-Tavkhelidze equation' (as used by
Blankenbecler and Sugar' ). The former approach, at
least in erst approximation, does not require a cutoG
for the scattering of spinless particles. It was also found
to lead to the most reasonable numerical results, espe-
cially when higher-spin particles such as the f' and g
mesons were exchanged. Because of the complications
involved, it was not applied to the full Bethe-Salpeter
equation. A Pagels approximation, however, seems to
conirm the fact that this equation gives results not too
diferent from those of the Logunov-Tavkhelidze
equation.

into Lippmann-Schwinger equation:

C (q', q, s) =W[—(q' —q)', sj
d'P W[—(q' —p)2, s)C (p, q, s)

(2)
27r2 p2 q2

which is equivalent to the Schrodinger equation and
leads to the physical scattering amplitude F=C(q, q)
normalized so that the differential cross section =

~
F

~

2.

From now on we shall restrict ourselves to the on-shell
value g = gs —1.

If we project out a given partial wave, Eqs. (2) and
(1) become

to ( II)1/2

t~I(v', s) =W~(v', v, s)+ —dv" W2(»', v",s)ItI(v",s)
p V —V

(3)
II EQUIVALENT POTENTIAL APPROACH AND and

THE POLE APPROXIMATION FOR W( I II )
THE FORM FACTOR

121 yves ( 2s ) 1 (222 +» +»")
F.

l
1+

(s)"' 5 2222—4l q'q" E 2q'q" )
Perhaps the simplest approach using an o8-shell

equation in strong interactions is the one using the
Schrodinger equation with a local but energy-dependent
equivalent potential. ' The potential can be constructed
iteratively by using the strip approximation or any
other scheme which leads to Axed-energy dispersion
relations. In lowest order, we are led to a particularly
simple prescription. We just demand that the potential
give the same on-shell amplitude in Born approxima-
tion as the one-particle exchange graphs at each energy.
This can be shown to give at least the long-range force
correctly. If for example we have zrx scattering with p
exchange (see Fig. 1), we obtain (in momentum space)
a potential

with v=q', v'=q", v"= q'", vz=qp2, and «(vs) =F&(v)
= (e" sin5)/q, where 5 is the phase shift. It has been
shown by Noyes" that if we write

(q'q) '«('s)=» 'F2(v)f(" s)

Eq. (3) reduces to the nonsingular equation

V(v', v,s) 1 " v"'+'"
f(v', s) = d(s)+— dv"

V(s) p V —V

X V(v', v",s)f(v",s) (6)

V(v, v",s)f(v",s), (7)

with
V

&& I+1/2

d(s) =1—— dv"
7T p V —V

W(t, s) = 1.2s '122rI', qa2

1 (—1)r- 2s
+ &11+ i, (1)

2N2 t m2 —I —k 2222—41 V(s) = V(v, v,s), and. V(v', v",s) = (q'q") 'W&(v', v",s). The
momentum factors are introduced so as to have a non-
singular threshoM behavior. Once we have solved for
f and d from Eqs. (6) and (7), we obtain F&(v) from

v 'Fg(v)= V(s)/d(s).

So far, Eqs. (6)—(8) are exact consequences of Eq. (3).
Suppose for simplicity we now make an asymptotic
approximation for the Qt function in Eq. (4). This is
usually a good approximation and has the form

where t= —(q' —q)', q and q' are the initial and.
final three-momenta in the c.m. system, s is the square
of the total (relativistic) c.m. energy, 1=4 s t, ——
2(qz21'2/m) is the half-width in the q2 variable, q2

= &m2 —1, and m is the mass of the p. We are taking the
pion mass=1. The potential (1) can then be inserted

n~
Q~(*)=

gal ~~ g2n
(9)

FIG. j,.p-exchange graphs.

Now f(v', s) is nonsingular for v') 0 on the real axis, as
we have seen. From Eqs. (6), (7), (4), and (9) it then
follows that the only singularities of f(v', s) in the v'

plane are on the real axis and with
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=maxL —(its+ v), —msj. In fact we can always write

1 "' * h(y, s)
f(v', s) =— dy

v
(10)

The weight function h(y, s) is not necessarily smoothly
varying. It may include delta functions or derivatives
of delta functions, for instance. Diagrammatically Eq.
(10) is equivalent to saying that the singularities of

f(v', s) are conined to the shaded region of Fig. 2.
Since we actually need f(v', s) only in the nonsingular

region v'&0 we can approximate it by a sum of
multipoles

f(",s)=Z
nM (h+ v&)s+n

at some point v= X which we would expect to lie in the
region v'(v', . This is the only property of Eq. (10)
or Fig. 2 that we will use. Actually it is straightforward
to extend the above arguments to the case where the
exact Q„(x) is used. Instead of Eq. (9) we could then
use the representation

d(s) —
f) &"&

f(v', s) = V(v', v,s)

v~ Il+1I2 —
g (n)

+— dv" f(v",s) V(v', v",s)
m. p v"—v Bv'(") —v'=v

(14)

for tt=1, (M+1). By substituting Eq. (11) into
Eqs. (13) and (14) and using Eq. (7) we can determine
all our multipole parameters for any given s. From
Eqs. (11), (7), and (8) we can then find the amplitude
at that energy.

To check the above method we applied it to the
p-bootstrap problem (assuming only p exchange). This
was done exactly by Balazs and Vaidya' who obtained
a self-consistent p with m=4. 2 and 1~=0.47. We did
not attempt to do a fully self-consistent calculation.
Instead we took no= 4.2 for the exchanged p and varied
the I'i, in Eq. (4) until an output I' wave (I= 1) -reso-
nance was produced at the same mass, i.e., until we got

as can'be seen directly from Eq. (5). To obtain further
conditions we just differentiate both sides of Eq. (6)
to obtain

(12) Red(m')=0 (15)

(v,s)=1, (13)

'////////////////I
~////////////////j

I
+max

0

Fio. &. Singularity structure of f(v', s) in the v'
plane if vre make the approximation (9).

for determining the location of the needed singularities.
It turns out that f(v,s) has certain singularities (in-
cluding complex ones) in addition to those shown in

Fig. 2. However the distance of these singularities from
the region of v') 0 on the real axis is not substantially
smaller than the ones shown in Fig. 2, so the approxirna-
tion (11) should still be reasonable.

The choice of the integer k determines the asymptotic
behavior as v' —+~. While the hope is that the results
are not too sensitive to this choice (since we expect the
low-energy region to be primarily responsible for the
dynamics) it would be desirable to choose h so that the
asymptotic behavior is the same as that implied by the
exact Eq. (6). This leads to h =)+1.

To determine X and the a„we will expand Eq. (6)
about its on-shell value v'= v, since we expect Eq. (6)
to be more reasonable in the region v' v than else-
where. Now at v'= v we have

with m'~18 (i.e., m~4. 2). Setting k=0, M=O, and
using the approximation Qi(x) -', x ', this gave an input
I'i ——0.26. The width of the output resonance was then
found from the formula

U(m')
ri ——-', (vii+1)'ts

Red'(m')
(16)

where the derivative of d was calculated numerically
by solving our equations for s 14 and assuming d(s)
to be linear between s= 18 and s= 14. This gave an
output width F& 0.99. We thus have only rough self-
consistency for F~. The widths also turn out bigger
than those obtained exactly. However, if we are only
interested in approximate results, it appears that our
form-factor approximation is not unreasonable.

It was found by Balazs and Vaidya" that the inclu-
sion of f' exchange led to an improvement of the p
width. This seems to suggest that higher-spin exchanges
tend to narrow resonances. Recently, various experi-
ments have been performed which seem to suggest the
existence of another such resonance, namely, the g
meson which has a mass of 1637 MeV and which we
assumed to have I= 1 and spin=3. We therefore did a
P-wave calculation of the above type (with M=0 and
X=2) in which f' and g exchange was assumed in
addition to p exchange. Experimental values" were
taken for all the exchanged masses as well as for the p
and f' widths (148 and 110 MeV, respectively). Since
the g width is not very well known, it was varied until

"L.A. P. Balazs and S. M. Vaidya, Phys. Rev. 140, B1025
(1965); see also J. Finkelstein, ibQ. 145, 1185 (1966).

"A. H. Rosenfeld et af. , Rev. Mod. Phys. 39, 1 (1967).
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the output p mass came out at its experimental value
r/s = (30)'".This led to a width for the g meson of about
80 MeV, which is certainly consistent with experiment. "
The output p width was then calculated from Eq. (16),
where d'(m') was computed numerically by solving our
equations for s=24 and assuming d(s) to be linear
between s=30 and s= 24. This gave an output p width
of 152 MeV, which agrees quite well with the experi-
mental input value of 148 MeV. '

To see how much the above results depend on our
choice of the integer k, we repeated the above calcula-
tion with k=1. This led to an input g width of 32.5
MeV, which is somewhat narrower than suggested by
experiment" but is not altogether inconsistent with it.
The output p width hardly changed at all, increasing
only to 160 MeV. All in all, it therefore does not appear
that anything is drastically dependent on k.

III. LOGUNOV-TAVKHELIDZE EQUATION
AND VERTEX SYMMETRY

(5)—(8), (10), (11), and (13)—(16) become

(q'q) ' ( 's)= '~ ()g( '~)

g(v', s) = U( ', v, s) 1 "
/

"
)'
" v"'

D(s)+— dv"I
&v"+1 v"—vU(s)

X U(v', v",s)g(v",s), (20)

1 "' * h(y, s)
g(",s) =- dX

2i oo P P
(23)

ca ( ll ) r/2 Ill

D(s) = 1—— dv"
I

pr p kv"+1i v"—v

X U(v, v",s)g(v",s), (21)

with U(s) = U(v, v,s) and U(v', v",s) = (q'q")-'u&(v', v"p),

g(v', ~)
g p~(n)

One of the difFiculties with the equivalent-potential
approach of Sec. II is that it breaks down at s=0. An
equation which does not have this difFiculty is one
proposed by Logunov and Tavkhelidze' (it does, how-
ever, have difficulties elsewhere). This equation re- —r/(~&

sembles Eq. (3) but is usually written for the invariant
T matrix:

M g„
g(v', s) = Q

=o (X+v")"+"

g(v, s)=1,
D(s)

U(v', v, s)
U(s) Bv'&"& —v'= v

(24)

(25)

ao dvll ( /I ) r/2

r/(v', s) =u/(v', v,s)+
s p v"—vkv"+1i

Xu/(v', v",s)r g (v",s) (17)

with r/(vs) =A/(v) = (v+1)'/sj ~(v) = invariant ampli-
tude. If one follows the prescription of Blankenbecler
and Sugar, ' the potential u/(v', v",s) is calculated from
Fig. 1 with the pion three-momenta oG-shell but with
the energies of each pion line= -', (s)'/s. If one then takes
gv„/(ks —eP) for the p propagator (with 4-momentum
=k) one obtains

oo ( i/ ) r/2 lit

+- dv"I „ I
„g("',~)

x p kv"+1i v"—v

—g (n)

X U(v', v",s)
&(n) —v'= v

ReD(r/r') = 0,

1 U(m')
Fg=-

4 ReD'(/ss')

(26)

(27)

(28)

u/(v', v",s)

3r, pm'+ "+"'~
I s+m'+2(v'+ v")jQ/I I. (18)

2q'q" k 2q'q" i
It was shown by Blankenbecler and Sugar that Eq.

(17) can be thought of as an approximation to the
Bethe-Salpeter equation. We shall see in Secs. IV and
V that this is indeed reasonable for the p bootstrap, at
least if we make a Pagels approximation.

One can now follow exactly the same procedure as in
the preceding section. The equations corresponding to

Recent experimental data in which the p resonance was mea-
sured directly give a lower value for its width. See V. L. Auslander
e/ al , Phys. Letters 2.SB, 433 (1967). However, the results of the
preceding paragraph suggest that a more accurate calculation
may lead to a narrower p width.

The only calculations which were attempted were for
1=1. Equation (18) leads to a marginally singular
force so it is not clear what we should take for k. In
practice we just took k= 1 and M=O.

If one makes the approximation Qt(x) -'sg—', the
equation becomes convergent with the potential (18).
If one now adjusts the width I't in (18) so that Eq.
(27) is satisfied with m =30, i.e., the experimental
value, one obtains an input F~ 0.46."One can now
obtain the width of the output p resonance from Kq.
(28). The value of ReD' can be estimated by calculating
D (s) at s =4, where the equations simplify considerably,
and assuming that Rea is linear between s=4 and
s=m. This leads to an output I"&~4.5, an extremely
poor value for this parameter (experimentally I'& 0.24).

'7 In these calculations the extreme-relativistic approximation
Lg "/(v"+1)j'/~1 was used. This approximation seems to be
quite reasonable for the me problem since rn'&&1.
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This may, however, be due to our crude way of esti-
mating ReD'(m'), or to our choice of the p propagator.

The results are improved if one includes the eRect
of the f' meson exchange. For the propagator of the f,
we neglect all the k-dependent terms in the numerator,
and take it to be

(gvagv//+gvt/gva 3gvvga//)/(h mf ) i

where my is the mass of the f'. Then the potential U
defined before has an additional term

FIG. 3. Output p resonance. Here I
= (iom, 0,0,0) and q= (O, q), where the 6rst
component is the time component.

P-q' P+q'

Vf
Uf = L(s+t/if+ 2q'+ 2q")'—i (s—/Nr —2q' —2q")'j

g2g 2

(q'+ q"+rig')
xgil

ri(v', s) h(P q')h(P+q')—
~4F~

(q'q)' m' —s
(29)

if we make the extra assumption that the function

'8 G. F. Chew, Phys. Rev. 140, B1427 (1965).

where yg=2. 8)&10 ' for an f' width of I'y=100 MeV.
With the inclusion of the f exchange, the equations
are now divergent. %e introduce a cutoff in the inte-

grals to make them meaningful. %'e took a cutoff of
v"= j.50 in the variable v", and k = 1 and 3E=0 for the
parametrization of g in (24). With the approximation

Qi(x) rex 2, the calculations are straightforward though
tedious, and we 6nd that with the experimental value
of Ff=100 MeV, re,~=30, the output m, ' is 30 if F~

0.60. Furthermore the output I'j comes out to be
~0.80. These results are considerably better than the
ones without the f but still about 3.5 times larger than
the experimental value of F~ 0.24.

%e can also include the effect of the Pomeranchuk
repulsion as suggested by Chew, ' but this introduces
rather serious ambiguities about continuation for off-

shell values of q' and q". In any case, qualitatively one

expects the repulsion to decrease the output width. "
One of the advantages of our form-factor approxima-

tion is that it permits us to set up a scheme which satis-
6es vertex symmetry. In particular, we might expect
better convergence in such a scheme. The importance
of this has been particularly emphasized by Cutkosky
and Leon. ' Of course they start from the full Bethe-
Salpeter equation. However, we have seen that the
Logunov-Tavkhelidze equation can be thought of as an
approximation to the Bethe-Salpeter equation. More
over, it should be quite straightforward to generalize
our results to the full Bethe-Salpeter case. Equation
(17) gives ri(v, s) with the initial particles on the shell

but with the 6nal particles of the shell. Suppose we look
at s~m'. Since we have the p pole at s=m', we must
have, from Fig. 3,

P-q p+q

while the Eqs. (26) become

p co
~

ii 1/2 iil

0=— dv"l g'(v" eP)
kv"+1 v"—v

X U(v', v",m') . (33)
Z ~(n)Bp P' =1

This together with (25) can be used to determine the
parameters )I and a„ if we take Eq. (24) for g(v', nP).
Once we know g(v', m'), we can use the potential given

by Eq. (31) to find the amplitude in the usual way at
other values of s.

Unfortunately, preliminary calculations with the
simple scheme just described do not seem to lead to
physically admissible solutions. This, however, may be
due to the drastic approximation of dropping everything
except the p meson. It is quite possible that the inclu-
sion of other effects may lead to more sensible results.

IV. PAGELS APPROXIMATION

The form-factor approximation we have used is based
on Eqs. (10) or (23). Another approximation which can
be justi6ed on the basis of these expressions is one 6rst

describing the off-shell behavior factors. IIut v-'gi(v)
4I'i/(m' —s), so from Eq. (19),

g (v', m') =h (P—q')h (p+ q') . (30)

Now, if in calculating the potentials from Fig. 1 we
insert the same vertex functions in the appropriate
places, we have

Ni(v, v ',s) ~ Ni'(v', v",s)
=h(P —q')h(p+q')h(p —q")h(p+q")Ni(v', v",s) (31)
= g (v', nP) g (v",m')I/(v', v",s) .

If we substitute this into Eq. (20) at s=rN', where
ReD(s) =0, we obtain

p oo ( ii i/2 Ill

1=— dv"l — U(v', v",m')g'(v", eP), (32)
1I p Ev +1 v v
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proposed by Pagels" in connection with the E/D
formalism and later extended to the static-model Bethe-
Salpeter equation by Biswas and Balazs. ' Actually the
procedure followed by the latter authors applies with
minor modifications to any equation of the Lippmann-
Schwinger type. It seems to be particularly appropriate
when we have an equation which requires a cutoff.
This would arise in the formalism of the preceding sec-
tion if„ for example, we used Eq. (18) without any
approximations or if we took (g„,—p„p„/m2)/(k2 —m')
for the p propagator. In the latter case we would obtain
a potential

Now Eq. (38) is equivalent to setting

( pII 1/2 Z,

v"'~ =Q c;b(v"—b;)
kr "+1 (39)

U(v'vs) 1 L c,
g(v', s) = +—Q

U(s) 2r '=1 b; v—

in Eq. (37) and hence also in Eqs. (36) and the combina-
tion of (20) and (21). The latter thus becomes

31', — (v' —v")'-
e/(v', v",s) = s+m'+2(v'+ v")+

2g g m'
X U(v', b;,s)

U(p', v, s)
U(v, b;,s) g(b;,s). (40)

U(s)

/Im2+ v'+ v")
XQ/l I

(34)
2q'g"

U(s)
where

E(y, v', s) =
I12 II )1/2 I I 1

I //

v"+11/ v"—v y—v"

U(v, v",s)—
U(v', v, s)

U(v, p",s) . (36)
U(s)

Inserting therefore a straight cutoff at v"=A' and
substituting Eq. (23) into (20) we obtain, using Eq.
(21),

U(vI v s) 1 &'max

g(v', s) = +— dyh(y, s)E(y, v', s), (35)
X eo

1
D(s) = 1——U(s)I(v)—

Ii ( ) /2

~ 0 &v"+1)

XLU(v, "',s)g(v", s)—U(s) j (41)

If we set v'=b;, for i =1, ~ L we have L linear equa-
tions which we can solve for the g (b;,s). These can then
be substituted back into Eq. (40) to give g(v', s) for
any v'.

Once we have g (v', s) we can find D (s) from Eq. (21).
Here again, if we substitute (23) into (21) we find that
we can express D(s) in terms of I(x). This time, how-

ever, I(x) is needed for x= v as well as —~ (v& v', .
Thus, unless we are at some large negative v, the ap-
proximation (38) is unwarranted. If, however, we
modify Eq. (21) to read

I12 ( II ) 1/2 IIl

I(x)= dv"
i

0 kv +1j p"—g
(37)

These integrals, moreover, are found to involve x only
in the range v', )x)—~, well away from the singu-
larities of I(x), which are restricted to 0(g(A2. We
can therefore make a pole (or rnultipole) approximation

L

'=& b;—x
(38)

with 0(b;(A'. The constants c; and b; are adjusted so
as to inake Eq. (38) a good approximation for —~ &2:(v', , the only region where I(x) is needed.

If we now use either the exact representation (12) or the
approximate expression (9) in evaluating Qi within the
potential, and if we make a partial-fraction decom-
position of all denoininators of the form (v"—2:) in
Eq. (36), we find that we can express E(y, v', s) as a
linear combination of the integrals

and now substitute Eq. (23) we find that the integral
in (41) can be expressed in terms of I (x) with x needed
only for —~(x(v', . Thus, we can make the ap-
proximation (38) to obtain

1 1 L c;
D()=1—-U()I()—-Z

7r x'=&b;—v

XtU( ,v;b, )sg( ;v, )s—U(s) j. (42)

Equations (40), (42), (27), and (28) can now be
applied to the p resonance problem. Equation (34) was
taken for the potential with experimental values for F~
and m', and the cutoff A2 was varied until Eq. (27) was
satisfied with m'= 30. The parameters c~ and b j were
fixed by the requirement that Eq. (38) be exact at
x= —~ and @=v', . (Only the case I.=1 was con-
sidered. ) The slope ReD'(m') was determined numeri-
cally by solving our equations at s=4 and assuming
that ReD(s) is linear between s=30 and s=4. This led
to an output width, as given by Eq. (28), of I'1=1.08.
This value is, of course, much larger than the experi-
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mental value F~= 0.24 but is not too diferent from the
outcome of the calculation described in Sec. II, in which
only p exchange was assumed.

The inclusion of the f' exchange once again reduces
the p-meson width. As in Sec. III, we Gx the cutoff at
v"= 150.Then for an input of F~ 0.80, and the experi-
mental values Ff=100 MeV and mf ——1250 MeV, w' e
have an ouput m2=30 and an output F~~0.80. Thus
we have an approximate bootstrap in this case. The
numbers obtained here agree fairly well with the ones
obtained in Sec. III, thus lending credence to our
approximations.

If w'e do not require an explicit cutoff in the above
calculations —which would be the case, for example, in
the formalisms of Sec. II—we obviously could not con-
sider an integral of the type given by (37). In this case
there is actually a natural cutoff provided by the other
factors in the integrals of (20) or (36) or (41). These
are generally of the form (2'/+q) ", where b is an in-

teger. Instead of using Eq. (38) we could therefore inake
the approximation

in a given partial wave, with

G '(q",M",s) = f(M "+-'ps'~2)2 —q'"—1)

XL(M"—2s"')'—q'"—1j (45)

Here (-,'s'I'+M) snd (-,'s'I' —M) are the energies of the
initial pion lines, and (2s'2+M') and (2s'~ —M ) the

energies of the final pion lines. The T matrix is again
normalized so that T2(q, O; q,0; s) =Aq(2). We shall re-

strict ourselves to potentials coming only from p ex-

change. From Fig. 1 we then obtain

3Fg
s—2 (M "+M'"—q'2 —q'")+2222

2g g

s (M
l

Mr r) 2 (M/2 M
//2 q/2+ q

r /2)2

m2

~2 (M
I M//)2+ q/2+ q//2-

X (46)
2g g

The Noyes procedure has been generalized by Levine,

(43) Tjon, and Wright" to the Bethe-Salpeter equation. If
'-i b; 2t: (b +g)"— we write

with the c, and b, now adjusted, to make Eq. (43) a
good approximation in the range —~ &g& p',„.The
quantity g can be estimated from the rate of falloG
of the potential terms in (20), (36), and (41).

Thus repeating the calculation of Sec. II, but with
the approximation just mentioned, we find that for

80, F~ 0.23, F~ 100 MeV, and the experimental
masses for input, we have an output m2=30 if input
F,=87 MeV. Also the output p-meson width comes out
to be ~200 MeV. These numbers agree reasonably well
with those of Sec. II.

V. BETHE-SALPETER EQUATION USING A
PAGELS-TYPE APPROXIMATION

In the Bethe-Salpeter equation the energies as well as
the three-momenta are taken off the shell. This compli-
cates the problem considerably, since we have a two-
variable integral equation to deal with. The actual
equation has the form

T&(q',M'; q,M; s) = V(q', M'; q,M; s)

(q'q) 'T&(q', M'; q,0;s)=q "f(q',M',s),

Eq. (45) reduces to the equation

(47)

with

W(q', M'; q, 0; s) 4

W(s) 2r2 p p

X(W(q', M'; q",M"; s)+W(q', M'; q", —M"; s)j
XG(q" M",s)f(q" M",s) (48)

8 00

Ag(S) =1 i q—'"'—+2dq" dM"W(q/0; q"/M"; S)
0 0

XG(q",M",s)f(q",M",s), (49)

where W(s)=W(q, O; q,0; s) and W(q', M'; q",M"; s)
= (q'q") 'V(q', M'; q",M"; s). We have used the sym-
metry property f(q', M', s)= f(q', —M', s) which follows

directly from the original Bethe-Salpeter equation com-
bined with Eq. (47). Once we have solved for f and A2

we obtain A2(v) from

C0 00

+i qfl2dqll d //V(q/ M/. qff Mll. s)
7i 0

2 'A((2) = W(s)/Ai(s). (50)

The above equations are not yet in tractable form.
XG(q",M",s)T&(q",M",q,Ms) (44) We must first make a Wick rotation to the imaginary
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(4g) „d (49) then giveis Equations

—zo&
& s)« . s)+W (q &zo& i q/IIo&" W(q'&z &q '

W(q'&zo&
& q&

f(q z ')
W(s 0 0

2 —1/2S0&s) ' »
zo/ s) q

r /2 l+2dq'/

W(s)

W(q' o&(q ) ~ q&

X
) ( &&z+ 1)&/z

« —io& ', s)-.,)+w(q', q
, ~+zd-

w(q q
G(,-. ..)f(q2W(q0'q zo&

& )
W( )

W(q
CO( )&

. s)+W(q'&zo& i q &

(q"»)
(s1)

f(q', s) =

e

q
r r2l+2dq

W(s)

S 1/2r 'S
rr

f(q & )
(52)X

)( «z+ 1)r/z

W(q, o&(q ) & q» )
G( «zo/«s)f(q"~".s)

W(q'&ci&(q ) & q&

—2W(q, 0 '
q '

W(s)

„-(,.).,) 2w(q, o, q""q '
w(s)

„,„, )+w(q, =(q') qW(q', o&(q) & q
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'
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f-(q,.)=f(q'-(q') ')
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it as

=16/(s) +

0 ",o&"; s)f(q",o&",s) W(s)j—X[W(q,0; q",o&"; s q,
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// /r r/ ~q
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h(y, zo&,s)
f(q', io&',s) =
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dq ~
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h h the approximation

we

q
" " "o&",s), (54)=z— q 2+dq ~ Gq

is . 10). If we substitute

H(s) = z q—" " o&,

is defined as in Eq. 1

0

d folio the E . (56) into (51 an11 all our o er
b nd tood th

l B as we as
at we rep ace c

(57)

" '"'8(A —q") wherey
ick rotationcuto ff If we make a
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where c an ad a are such that

. q53, w ic isterm in Kq. 53, '
a

(58)
6/(s) = 1—— q'" q

" s

X q, , ", ' " ",zo/", s) W(s)j—X[W(q,0; q",io&»; s)f(q, zo/,

4 —1/2 P q//2 l+2dqr/4s '

1/2(q") (q'"+1
4" p g" . s)f(q",s)—W(s))X [W(q, 0; q",o&(q"); s q,s—

+II(s)w(s) . (55) However, it can be argue a
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f(a,i&a', s) = W(u, io)'; q, 0; s)

W(s)

4c
+— du&" W(a, uv'; aire"; s)

X' 0

+W(a,ice'; a, —iv)"; s)—2W(q, 0; a,no"; s)

W(a, uo', q, 0; s)
G(a,ice",s)f(a,io&",s) .

W(s)
(59)

Eq. (58) be exact at x= v', „and x= —~.Of course, in
general we could have a sum of several delta functions
in (57) and a corresponding sum of poles in (58). How-
ever, it is simpler to discuss the problem with only one
pole.

If we substitute Eq. (57) into (51), remembering that
we are ignoring the contribution of f for the moment, we
obtain a single variable integral equation on setting
g =8:

or
G(a,ib, s)

G(u, ko",s) c'b(s&" b—) .
G(a,ib, 0)

(62)

q//2l+2

=v(q"—~),
(q&&2+ 1 )1/2

(63)

If the latter is substituted into Eq. (59) we have a
purely algebraic equation without any integrals.

If we do not ignore the contributions of f, we natur-
ally have a more complicated situation, especially since
we have to consider Eq. (52) in addition to (51). The
double integral in (51) can be treated in essentially the
manner described in the last two paragraphs, except
that now the approximation (58) has to be valid in the
region —~ (x(—1. In practice it turns out that (58)
is reasonable even over this larger range. Of course it
does not have to be as accurate as in (51)because the con-
tribution of f seems to be comparatively unimportant.

Turning next to the single integrals in (51) and (52),
we Qnd that we can take

We can now go through the above procedure all over provided that
again, but this time dealing with ~' and co" instead of
q' and q". This time we are dealing with integrals which
are rapidly convergent so it is necessary to consider
integrals of the type given by (43). We found it con-
venient to make the approximation is a ood a

q q//2)+2 dq//

(q~&2+ 1)1/2 q~~2 z r/2

(64)

g pproximation in the range — &x&—1. If
we are above the inelastic threshold it is also required
for certain additional values of x, but insofar as in-
elastic effects can be assumed to be unimportant we can
presumably ignore this difficulty. In practice X and p
were determined by requiring that the value and de-
rivative are exact at x= —00. It was then found that
the resulting approximation (64) is reasonable even at
the other values of x where it is required.

If we now insert the approximations (57), (62), and
(63) into Eqs. (51) and (52), as well as into (55), for
which the above considerations also apply, we obtain

oo d I /

G (a,i(o",0)
p ~ —s b —s

which has to be a good approximation for —00&x(—(m' —1+u') as well as certain regions of the com-
plex plane. In practice we required that it be exact at
x= —00 and at x= —(m' —1+a') and then checked to
see whether it is reasonable elsewhere. This determines
c' and b. Of course, as before, Eq. (60) makes it possible
for us to set

G (a,ia)",0)~c'b (co"—b) (61) bthe algeraic equations

W(a,ib; q,0; s) 4cc' W(a,ib; q,0; s)+ W(a,ib; a,ib; s)+W(a, ib; a, ib; s)—2W(q—,0; a,ib; s)
W(s) m' W(s)

f(a,ib, s) =

f(r/, s) =

G (a,ib, s) 2X
X f(a,ib, s)— W(a,ib; g, &o(r/); s)+W(a,ib; g, —~(r/); s)

G(a,ib, O) s s"'
W(a,ib; q,0; s) f(r/, s)—2W(q, 0; r/, a&(r/);s), (65)

W(s) ~(g)

W(g, co(g); q,O; s) 4cc W(~,~(n) '
q 0' s)+ W(g, Fu(r/); a,ib; s)+W(g, u(r/); a, ib; s)—2W—(q,O; a,ib; s)

W(s) ~' W(s)

G(a,ib, s) 2)
X f(a,ib,s) W(r/, co(r/)—; r/, co(q); s)+W(s/, ci(r/); r/,

—co(q); s)
G(a,ib, 0) n-s'/'

W(.,=(.); q,o; )-f(., )—2W(q, O; g, ar(r/);s), (66)
W(s) cy (g)
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and
8cc' G (a,ib,s)

5i(s) = 1—— (W(q, 0; a,ib; s)f(a,ib, s) W—(s))s' G(a, ib, 0)
4~s-&f2

+ LW(q, 0; i1,(g(g); s)f(g,s)—W(s))—W(s)H(s) . (67)
n.(u(g)

A calculation based on the above equations was made
with the exchange potential (46) in the P wave. The
experimental values Pi=0.24 and m'=30 were taken
for the input and A. varied until an output resonance was
produced at the same mass, i.e., until we obtained

Rex, (m2) =0 (68)

VI. CONCLUSION

The analytic structure of the Noyes form factor, as
expressed in Eqs. (10) and (23) enabled us to set up
two fairly simple approximation schemes. One of them
is equivalent to making a delta-function approximation
for the phase-space factor as in Eq. (39).This is clearly
the simplest method but is somewhat ambiguous in
that the answers depend on our choice of c; and b;.
Obviously, there is a wide range of c; and b; which
permit Eq. (38) to be a good approximation.

The other method, which we actually considered
Grst, does not have this difhculty. Here, one just makes
a multipole approximation for the Noyes form factor
and then determines the parameters introduced in this
way by expanding the Noyes equations about the on-
shell value of the momentum. This method was applied
to the calculation of the p and gave quite good results
within the equivalent potential approach when the ex-
change of the fo and g inesons was included.

It is quite conceivable that the form-factor approxi-
mation could give meaningful results even if the original

with m'=30. The width of this output resonance was
then computed from the formula

1 W(m')
r,=-

4 Re&,'(eP)

where Red&'(m') was estimated by solving our equa-
tions at s=4, where they simplify considerably, and
assuming that Red~ is linear between s=4 and s=30.
This leads to an output I"~ 1.08, a value almost identi-
cal with the one obtained in Sec. IV when a similar
procedure was followed.

Lippmann-Schwinger equation on which it is based fails
as a result of divergences. All we have to do is to assume
a sufnciently large b in (11) or (24). The Eqs. (7) and
(14) or (21) and (26) would then converge and it is
still possible to determine the a„and ). Of course we
have to keep the number M fairly small, since other-
wise we have to take too many derivatives in Eqs. (14)
or (26). This, in turn, involves high-v effects which are
presumably responsible for the original divergences in
the Grst place.

The attitude expressed in the preceding paragraph
would be particularly applicable if, for example, w' e
had a strong repulsive core at small distances (see, for
example, Ref. 4). It is well known that such a core
leads to meaningful results in configuration space even
though the Lippmann-Schwinger equation has di-
vergences. In particular, it is known that the wave
function (and hence the Noyes form factor, which is
simply related to it) is not too different from what it
would have been with a well-behaved potential. This
means that an expression of the type given in Eqs.
(11) or (24) is not unreasonable. Also, the low deriva-
tives in the Eqs. (14) or (26) are presumably related to
long-range sects and so would not be too sensitive to
the repulsive core. We might thus expect reasonable
results from them even if we leave out the contribution
of such a core.

Because of the practical difhculties involved, we have
not attempted a form-factor approximation for the full
Bethe-Salpeter equation. However, it should be rela-
tively straightforward to set up such an approximation
scheme. One procedure might be to take for the Noyes
form factors (which essentially represent the off-shell
behavior of the final pion lines) functions of the type
suggested by Cutkosky and Leon, ' who took products
of two functions of the form $(1—X)/(p' —X))'I' one
for each pion line; here p is the four-momentum of the
pion line. We could then expand the Bethe-Salpeter
equation in the (p2—1), i.e., about the on-shell values
of the final pion lines. This should determine X, or any
other constants we might introduce as a result of a more
complicated parametrization.


