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Regge Poles for Spinless Particles in the Backward Direction*
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A new Regge representation is introduced which involves Legendre functions of a modiaed argument.
The analytic and asymptotic properties of the new partial waves are studied. It is shown that the new
representation is valid in extended regions of the Mandelstam plane where the background integral con-
verges. In these regions the new representation explicitly possesses the correct analyticity in the new plane
corresponding to the cos8 plane. In regions of the Mandelstam plane where the conventional Regge repre-
sentation is also valid, we can relate the new partial waves to the conventional Regge poles. The compati-
bility of our results with those of other groups is discussed.

I. INTRODUCTION

KCENT experimental and theoretical work on the
backward peak has developed new interest in the

question of whether Regge asymptotic behavior holds
in the backward direction. ' For the unequal-mass case,
for instance, there is a region in the backward direction
where the crossed-reaction angle is small even when s is
large. This has created considerable uncertainty2 in the
literature as to whether Regge behavior should be ex-
pected for backward red scattering, and it has also
created suspicion on the validity of any representation
A(u, s) =g(u, s ) of the scattering amplitude at u= 0.

To remedy the difhculty several approaches have
been proposed'" satisfying consistency requirements of
Mandelstam and angular-momentum analyticity, but
these approaches either rely heavily on the Khuri repre-
sentation (which in turn depends on the Regge repre-
sentation), or they introduce a new representation
whose validity is doubtful. In particular, any represen-
tation which follows from the conventional Regge
representation is questionable in the neighborhood of the
line 1=0, because the Froissart. -oribov partial waves
are not delned there. Therefore the conventional Regge
representation is useful to the extent that it allows us to
establish connections between conventional Regge poles
and poles of the new partial waves. Furthermore, there
still remains unanswered the question of whether a rep-
resentation involving Legendre functions could give
Regge asymptotic behavior in the backward direction.

In this paper we derive, under the assumption of the
validity of the Mandelstam representation and of two
Regge-type properties, Sommerfeld-%atson formulas
which are useful in restricted regions of the Mandelstam
plane. In these particular regions they possess two de-
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sirable properties: (i) they explicitly exhibit Mandel-
stam analyticity in the plane corresponding to the cos8„
plane; (ii) they possess Regge asymptotic behavior. It
should be noted that the approach is general enough to
be extended to other regions of the Mandelstam plane.
It can be shown that the new formulas can be obtained
using the Khuri representation, but the existence of such
a representation is not required. The existence of the
conventional Regge representation is sufhcient.

Section II reviews the relativistic formulation of the
problem and provides the necessary background for the
following sections. In Sec. III we introduce the new
Regge representation. In Sec. IV we summarize our
resu1ts and compare them with the results obtained re-
cently by two other groups.

This is the first of two papers dealing with Regge
poles in the backward direction. The objective is to
develop a theoretical formalism for m.-E scattering in
the backward direction, which incorporates the unequal-
mass complications and also the nontrivial constraints
due to spin. Finally, we wi11 use the formalism in
analyzing the available data. '

II. RELATIVISTIC FORMALISM

The invariant amplitude satis6es a fixed-I dispersion
relation:

g' 1 " p„(u') 1
A(s&u, t) = +— du +-

35—S Ã (~+p)s I —Q

" A.(u,s') 1 " A, (u, t')ds'+- ds', (1)
It;1(24} Z ZI6p (26) Z Z

where s=cose„;A, (u&s') and A ( tt')uare the absorptive
parts for the s and t channels, respectively; p„(u') is the
single spectral function; and kt(u), ks(u) are the branch
points of the right- and left-hand cuts, respectively,
given by

kr(u) =1+Stt'u/Pu —(M+tt)'jLu —(M—tt)'1, (2)
—ke(u) =1+2(M+tt) '/Lu —(M+tt) 'j. (3)

Curves for these functions are plotted in Fig. 1. The
e6ects of subtractions, of the pole term, and of the in-
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g(u, z) = A (s,u, t)—Lpole and const term] (4)

in terms of P~(s) and then invert the expansion to ob-
tain the partial-wave amplitudes. Furthermore, by in-
terchanging the order of integration and by noticing
that one of the integrals is a Legendrc function o ef the
second kind, we arrive at the following formula:

tegral which depends on u only are discussed in the
literature. '

To obtain the analytic and asymptotic properties of
the partial-wave amplitudes in the angular-momentum
plane, we expand
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(b)

A.(u,s')Q)(—s')ds'. (5)

The interchange of the order of integration is justided by
Fubini's theorem' provided that the integrais in (5) are
absolutely convergent. This requirement is satisfied by
both integrals provided that u& (3II+ls)' and J is 6nite
with Re)&E, where E is determined by

FIG. 1. Functions for the lower limits of integration
in the axed-u dispersion relations.

A(u, s) s~ as s~ ~. partial waves. We can now express the invariant ampli-
(6) tude in terms of A+(u, s):

The 6rst integral remains 6nite even when we keep
Rel&X and let ~Iml~ ~ po; in fact, it decreases ex-
ponentially in /. The second integral has an over-all
f t f (—1)' which will cause an exponential increaseac or 0
as Iml goes to ininity. To avoid this diTiculty we e ne
for u& (3I+ls)s, after Froissart and Gribov, s even- and
odd-parity partial waves:

a+(u, l) =— (Ag(u, l)+ A( us')}Q)(s')ds', (7)
X'

g0

where sp= min(kt, —kp). We further de6ne

A+(u, s) = g (2E+1)a+(u,l)P)(s).
L=O

The partial waves a+(u, l) are well defined by (7) for
Rel& E and u& (3II+ls) '; but they cannot be defined by
the same formula for Rel&X. We assume that there
exists an analytic continuation of the Froissart-Gribov

t'al waves for Rel&E and such that the linear com-
binations a+(u, l)+a (u, l) reduce, for even an o
values of /, respectively, to the physical values of the

4 R. G. Moorhouse, Strong Interactions and High Energy Physzcs
(Oliver and Boyd, London, 1963), p. 141; E. A. Paschos, thes's,
Cornell University, j.967 (unpublished).

s D. V. Widder, The Laplace Traesforra (Princeton University
Press, Princeton, N. J., 1941),p. 26.

6Euan J. Squires, Complex Angular Momentum and Partzc e
Physics (W. A. Benjamin, Inc. , New York, 1963), Chap. 3, and
references given therein.

g(u, s) = -', LA+(u, s)+A-(u, s))
+-,'LA+(u, —s)—A-(u, —s)j. (9)

For u& (M+@)s, the first term contains the right-hand
cut and the second one contains the left-hand cut. In
addition the 6rst term is de6ned for 0&u&(M —ls)',
but it is not obvious that it is identical there with the
last integral in (1) because we have not established that
it is the correct analytic continuation of the first term
in (9).

Several authors have attempted to prove the analytic
properties of the partial-wave amplitudes, but their
attempts met only' partial success. ~ For our particular
case, the polynomial boundedness condition and (7)
imply analytic properties and asymptotic behaviors
which hold in restricted regions of the Mandelstam
plane. '

For u& (M+ls)s or (M—u)'&u& 0, and Rel& 1V:

(i) a+(u, l)+a—
(u, l) & e

jll2

J~ po, kt= coshcrt, (10a)

r V. ¹ Gribov, Zh. Eksperim. i Teor. Fiz. 41, 1962 (1961)
/English transl. : Soviet Phys. —JETP 14, 1395 (1962)j; K.
Bardakci, Phys. Rev. 127, 1832 (1962); A. O. Barut and D. E.
Zwanziger, ibid. 127, 974 (1962); S. Mandelstam, Ann. Phys.
(N. Y.) 21, 302 (1963).' We do not include in this section attempts for improving the
domains of validity by extracting the threshold factors.
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(ii) it is an analytic function of f for Rel&1V.

For u) (M+lu)'
1

(i) a+(u, l) —a (u, l) & e
j'1 /2

as 1—+ ao, —hs ——coshtrs, (10b)

I
~Imc

I
I

-~Zp I

I

I
I

Fxe. 2. Semicirdc at inanity.

—1/2+ioo

A+(u, z)yA —
(u,z) = ——

—1/2 —ioo

(2l+ 1)

P, (—z)
X/a+(u, l)+a (u,Aj

slM l

jr P,'(—z)—tr P (2tr +1)P,,'(u), (11)
i=I Slnx'Q

where ~,.'(u), p (u) are the position and residue of the

zth pole of the partial wave. We used primes to account

for the singularities of both even- and odd-parity waves.

The possible singular points are 1 &Res & fx), Ims =0.
N ot all of these points are singular, since for 1 &Res& k~,

Img = O the cuts of the background and the pole term

cancel each other. This is easily seen by adding to (11)
the integral

(ii) it is an analytic function of / for Rel) 1V.

Recent work by Hepp' has shown that the polynomial
oundedness condition follows from Wightman theory.

We can therefore consider (10) as a consequence of the
Froissart-Gribov definition of partial waves and field

theory.
n establishing Sommerfeld-Watson formulas we must

postulate that the partial-wave amplitudes

(i) are meromorphic functions of 1 for
——,

' &Re)&g,
(ii) have the same asymptotic behaviors

given by (10),

whenever I is ln the restricted regions des«lbed above

With these postulates, A+(u, z) and A (u, z) can be rep-

resented by Sornmerfeld-Watson formulas in the region

y &Re~ & $, I~=0. Furthermore, they provide, by
analytic continuation, a representation for the ampli-

tude at those points of the complex z plane, where both

the background and the pole term are analytic functions

of s.
We investigate the analytic properties of A+(u, z)

+A-(u, z) for u& (M+p)'.

1 &Res'& k~, Ims =0. Ke next deform the contour of in-
tegration and write (11) as

—A+(u, z ie) —A (—u, z
——je) = (2l+ 1)

X a+(u, l)+a (u, l) Pt(z)dl=0. (14)

We conclude that A+(u, z)+A (u, z) can be represented
by (11) in the entire z plane except for the segment
Res& k~, Ims =0. We note further that at those values
of I in the Mandelstam plane where k&& 1 the analytic-
ity argument given above will not hold.

We can similarly show that A+(u, —z) —A (u, —z)
can be represented for u&(M+@)' by a Sommerfeld-
Watson formula which contains the left-hand cut.

III GENERAL IDEA

In this section we are going to expand A+(u, z)
+A (u, z) in terms of P~Lh(u)z+g(u) j, where h(u) and
g(u) are functions of u only. The idea is to choose h(u)
and g(u) in such a way that (hz+g) is large in some re-
gion of the crossed channel and also prove that under
the Regge-type assumptions of the previous section, the
new partial-wave amplitudes have similar properties in
this region. Under such coriditions we will certainly ob-
tain Regge asymptotic behavior in this particular re-
gion of the crossed channel.

A+(u, z)+A-(u,.)=—
2'L

P((—z)
X [a+(u, l)+a (u, l)j dl, (13)

slnx'l

where C~ is shown in Fig. 3. It follows now that the dis-
continuity of A+(u, z)+A (u, z) across Imz=0, 1&Res

is zero:

A (u, z+$e)+A (u& z+1'e)

Pt(—z)
(21+1))a+(u,t)+a (u, l)) dl,

0 sin& l
(12)

C being the semicircle at in6nity, shown in Fig. 2. This

integral, as it is shown in the Appendix, is zero for

I 2

Ct

' K. Hepp, Helv. Phys. Acta 37, 639 (1964). Fro. 3. Deformed contour of integration for Kqs. (t3) and (f4)
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A suitable choice of functions for the unequal-mass
case is

gts
h(u) =, g(u) =—

lows us to find relations between Regge poles and singu-
larities of the new partial waves. Ke proceed to establish
these relations and then discuss the two procedures.

In the following theorems we need A, (u,s), which can
be obtained from (11):

$0 $0

&((L(M'yq. ')(p, '+g.')g'"+M' —3t '), (1~) Ag(u, z) =D(u, z)+2mi P L2~ (u)+1)

h(u)s+g(u) = — (s M' —ti')+-
2sg

where so is an arbitrary scaling factor having the dimen-

sions of s. On any 6xed-I line which passes through the
backward strip there is always a segment where —1
&hs+g&1. By a suitable choice of so we can always
find a part of this segment which lies outside the right-
hand cut. For the line I=0, for example, the right-hand
cut starts at s= 2(M' —ti') and by choosing so ——~~M' we
obtain hki+g=2(1 —3ti'/M'). Therefore, for —1&hs
+g&1 the expansion

XP*'(u)P ( )(z) (20)

where D(u, s) is the discontinuity of the background
term, and it goes like s '" as s —+ ~, at those regions
of u where (11) holds. Equation (20) is defined for
u& (M+ti)' and (M—ti)'&u& 0. For u& (M+ti) z it is
identical with the discontinuity of (17), but for (M—ti)'
&u) 0 it has not been established that it gives the cor-
rect analytic continuation of the discontinuity of (1'7).
The following three theorems" establish that b(u, l) has
Regge-type properties for I in the regions described
above.

A+(u, z)+A (u s) =2 Q (2l+1)b(u l)Pi(hz+g) (16) Theorem I:For u& (M+ti)~ and (M—~)2&u&0
L 0

converges uniformly. Using the analyticity properties of
A+(u, s)+A (u,s) we can write the dispersion relation

Ii(u) = Ai(u, z)Q, (hz+g)hdz

1 "A i(u, z')
—',LA+(u, z)+A —

(u,s)]=— ds'.
fg1

de6nes a function analytic for Re))n', 0.' being the pole

(17) of a+(u, l) or a (u, l) with the largest real part. Asymp-
totically it is bounded by

We can invert (16) to obtain

CO

b(u, l) =— A g(u, z)Qt(hz+ g)hdz.

For u& —ziMz+3P2 and Rel&X,

const
iI (u) i

& L2(hk +g)—')
Jl—X[l»2

(18)
as l~ ~ with ——',z —8&argl& ,'z'+5, h&0.-

Proof: The analyticity follows from two facts:

(21)

b(u, l) & e e" as lit -+ 00, hki+g=coshPi, (19)
$1/2

in addition, it is an analytic function of l.
We can now proceed in two ways:

(1) We can either assume that b(u, l) has "Regge-
type" properties for u& —-,'M'+3ti' and 0&Rel&IV
and write down a Sommerfeld-Watson transform, or
(2) we can assume Regge-type properties to hold for
the partial waves of another representation (like the
conventional Regge representation) for restricted re-

gions of u, and then proceed to prove that for these par-
ticular regions of I the partial waves of the modified

representation have Regge-type properties. In this ap-
proach, as it has been mentioned already in Sec. I, the

Regge representation is useful to the extent that it al-

1. Qi(hz+g)Ai(u, z) is analytic for Rel&Reo',
2. The integral is uniformly convergent.

The asymptotic estimate is obtained by expanding the
Legendre polynomials in terms of a hypergeometric
series and then estimating the integral. "In this estimate
we notice that A, (u,z)(hs+g) ' is bounded by M(u)

'0 $imilar theorems have been proven by N. ¹ Khuri, Phys.
Rev. 132, 914 (1963)."In performing the estimate we use

~»~r(t+1) 1
Q~(z) = —t

~

1+-,'t, ,'+ 't, t+--
2i+' 1'(t+-,') z'+'

and the hypergeometric function can be expanded as

F~ 1+-;t, ', y ;t, t+-;; —=-P-t„—.
82 b 0 82n
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g,( ll,z) (hz+ g)

~))2 1'(l+1)
Zl(~)!

21~1 Z'(l+ 3s)

const Z b"

1)2 p(l+ 1) I
M (ll)

I
co

1+1 Z'(l+-') .=. (hk+g)"'" "

+g
I
l—&Il"

I M(N)
I—

Il—z!
co„stQ,(hkl+g) ~

d, the bpund appearinghas as»h an asymptotl pper
ber of terms ll ea6nite num er(21) There rema»

(~+ )2 and (M I)~g Fpr I&

1 " (&+"k') ~(s)
(26)

g~hds

2~+i+1(g+hkl+g

Q,(k.+g)D(z)h~'l, l» u—

„,(hs+g)

wP termS]it the integral »
r pf terms

~e can again sP
) d a fnite number ohg ii~ I "'(

like

it is bounded yalyt jc fPr Ret +
const

))—l1,)( )& L2(hk1 gQ

& dt
=(hk +g), (~+hkl+g) , (1+t)'""

1 (~+1)1'(2m+i o')—= (hkl+g)

imll« to thathe proof isp&arg«r~wit 2~
s omjtte .

(27)

y and iti
3.»r „~(M+))a"

f (2n+l+ 1)

yg24

pf Q:b nded functiPn Py hs g) where M ls a

11&2)(Q)= p (,)Q,(hs+g)hd'

Q=Qp
~

pr hic fpr Rel& —
~~

~. Bs asymptoti
is meromo P

& &Re(ol I)&s'—t ~ wheIe 27

havlo r 1S

(23)
COIlst

+ )j—l„)() L2(hk1 gIl
)Oy3/2

g & arg ~

nding powers
l&'-, ~+&

pf s'.
wit s

d p (s) in escenprooj: ~e expan ~

+G (z) (24)+gnzp.(z) = g" +g'
1»d G.(s) de-3)Re(a—2") '

e;ntegral
d termine y,

/2 f r sases at least as fa
roperties with Iz) has the same P

of the remain
containing G~

e to investigate one ogtiss ufficlent therefore o
ing integrals.

h a term are: Fpr Rech ate ma

2e—m, where-
totic behavior is

L-2(hk1+ g)j
)a+3/2

1,{2)(N)~ (2S)

2i

—1/2+sory

—1/2-iso

pl( —hs —g)
(2l+1)b(u, l) dl

8.s l~ oo, w1th &

l which we have P

~ —S&arg«2~ . '
rovedFrom

teed the existence o
the properties o

~ '.
f the fpllowingso far, we a«g

uia for gII+P)Spmmer ef ld Watson fol.mu a

1 Pj+(ll z)+2 (I z)~

Q (hs+g)s hdz P~,.(—hz —g)
(29)

~'" 1'(l+1)

2l+1 P(l+3) ~ o (hz+ )2 n+ 1+1

(hz+ g)
2 m+i+1n=N+1

~ (25)

—1 .With this condition
t e in. 25 is uniformlthe second term in. 25 is unl o

ale, to withinositions and 8;(I) ar,
f th o1. Ufo-

where y;
the residues p . or

e 11) is not va 1 otunately, since
'

p np
1—3 in estab ls j.ngtheorems

or the asymptotic e av'
1—
2 &Rel&

onding to theA similar analysis o
6nd similar Sommer ews that we can nleft-hand cut shows
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1
A, (u,s')Q((hs'+g')hds', (30)

0

with one di6erence: g'(u) is chosen so that in the vicinity
of u =0, as s' varies from —ko to ~, hs'+ g' goes from a
positive value larger than 1 to infinity. We again de6ne

B+(u,s) = 2 Q (21+1)b+(u,l)E)(hs+g')
L=o

(31)

and similarly B (u,s). Now the partial waves appearing
in (16) are given by

b(u, l) = b+(u, l)+b—
(u, l), (32)

and the term corresponding to the left-hand cut by

A+(u, —s)—A (u, s)=B+(u, ——s)—B (u, —z). (33)

Finally, we discuss how the new representation may
be useful in other regions of the Mandelstam plane. The
conventional Regge representation has been established
for restricted regions of the Mandelstam plane by prov-
ing that the partial-wave amplitudes can be dehned for
noninteger as well as complex l, with Rel&E. For the
same regions of the Mandelstam plane and —~&Rel
&E, one must assume meromorphicity and certain
asymptotic behavior. One should not overlook several
attempts' to prove the properties for ——,

' &Rel&E us-

ing elastic unitarity, but these should be considered only
as an approximation. A different approach would be to
de6ne new partial waves which are well de6ned in a
larger region of the Mandelstam plane whenever Rel& 1V

and then assume that they have for —~&Rel&S the
same properties which are assumed for the ordinary
Froissart-Gribov waves. This is not much more restric-
tive than what has been assumed so far, because if we
will ever succeed in proving the properties of a+(u, l) for
——,'&Rel&X from a set of basic assumptions, then it
seems very plausible that the same procedure will give
a proof of the desirable properties of b(u, l) for ——,'(Rel
&E. If we look at the problem from this point of view,
then representation (29) is valid not only for u& (M+p) '
but also for u& ——,'M'+3@'.

IV. DISCUSSION AND CONCLUSIONS

Under the assumptions of the Mandelstam represen-
tation and of two "Regge-type" assumptions, we have
shown that we can obtain a new Regge representation
which is defined in restricted regions of the Mandelstam
plane, and it satisfies Mandelstam analyticity and Regge

Watson formulas, except for the fact that their domain
of validity is even smaller, namely, u&(M+II, )'. The
analysis of this term proceeds in a way similar to the
one we have already discussed. We define new partial
waves:

1
b+(u, l) =— A ((u, t') Qg(hs'+ g)hds'

asymptotic behavior. In the regions of the Mandelstam
plane, where the ordinary Regge representation is valid,
the new representation follows rigorously from the
existence of the ordinary Regge representation. In addi-
tion, we have established nontrivial relations between
Regge poles and the singularities appearing in the new
representation.

This approach suggests that we look at the problem
from a different point of view. Although the de6nition of
a function in terms of an expansion can fail outside its
circle of convergence, in many cases the function can
still be analytically continued by expanding around a
new point in terms of a new variable. This is the under-
lying idea in changing the argument of the Legendre
functions. In fact, if we naively assume the validity of
the ordinary Sommerfeld-Watson transform for m&0
and then replace P (—cos8„)by its asymptotic expan-
sion, which is justided there, we obtain a leading term,
which aside from inessential factors, goes like P (u) (su) .
The next term of the expansion goes like P (u)(su)~'
and so on. The factor I, of course, makes the asymp-
totic expansion invalid at N=O. In the new representa-
tion the factor e is again present, but now it is con-
tained in the residue and not in P (hs+g). "This follows
from (26) and (29).

Two other groups have recently published papers
dealing with the same subject. ' It should be emphasized
that the new Sommerfeld-Watson formulas give the cor-
rect Mandelstam analyticity in the (hs+g) plane, as it
was demanded by Jones and Goldberger. Furthermore,
our approach accounts, withe the limitations which me
hase already emphasised, for the following model-inde-
pendent results:

(1) Regge asymptotic behavior near the backward
direction.

(2) It follows from (26) and (27) that every Regge
pole will generate a sequence of satellite poles. The
satellite trajectories are obtained by decreasing the real
part of the Regge trajectory by units of one. A Regge
pole of given signature generates trajectories with alter-
nating signatures.

(3) The leading asymptotic term is

L
—(s M' —pm)/2so+ (M—2—3p')/soj~&"&,

where n(u) is the conventional leading Regge pole.
(4) All our results are compatible with the cancella-

tion mechanism of "daughter" trajectories conjectured
by Freedman and Wang. It follows from (26) and (27)
that the residue of the leading pole B(u) has the follow-
ing I dependence as I~ 0:

8(u) ~ constP (u)/b (u) —+ constp (u)u ~"&,

where P (u) is the residue of the leading conventional
Regge pole. The analytic properties of b(u) depend cri-

"Iwould like to thank Dr. J. Boccio for discussions concerning
this point.
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tically on those of P (I). Freedman and Wang" argued
that p (N)N '"& is analytic in the vicinity of ts=0 and
then conjectured a cancellation mechanism for the
singularities of the remaining satellite poles. Such a
mechanism can also be true in our case. But it should be
pointed out that this conjecture could be misleading,
because the analytic continuation of the Khuri ampli-
tudes to I=0 is arbitrary.

(5) Our method can trivially be extended to cases
with spin by replacing the Legendre functions by the
d functions of a modified argument. Consequences and
applications of this approach will be discussed elsewhere.

APPENDIX: ESTIMATES OF INTEGRALS

In estimating the integrals we need asymptotic esti-
mates of the Legendre functions. This estimate is ob-
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tained using

Ft(s) =F(1+i, i, 1; —,
' —-', s) (A1)

1(x is) &constf dl p—i~pk|+(4~ o'i~/ i—R'R

ziz~gi ilmsI

g+t'—e+f( g+s-e)s 1]'ts—
i

iRe'i (A4)
&~)Imf f

For Im//0 the integral goes to zero as
i
l

i
-+ eo because

of the fraction at the right-hand side. The only compli-
cation can arise when e-+ 0, but since we erst take the
limit of ili ~ eo and then e~ 0 the integral is still
zero. For Iml=O and @&kgb the integral again goes to
zero because of the remaining exponentials. The same
argument can be repeated for I(os+is).

"A. Erdelyi, Higher Tronscendentot Fnnctions (McGraw-Hill
Book Co., New York, 1953)."G. N. Watson, Trans. Cambridge Phil Soc. 22, 277 (1918).

and the asymptotic estimate of the hypergeometric
function F(a,b,c; s) given in Bateman's manuscript, Vol.
I Lp. 77, Eq. (17)g"":
IF (.")1&Lf(s)/i'"jei~'~' ' " 'i Ill ", (A2)

where
s= cosh),

and, if (=rt+ii, where rt, i are real, it will be supposed
that rt)0, sr&—i &7r Thi.s formula holds for s in the
exterior of an arbitrary closed curve which encloses the
segment $—1, 1], / large and such that rssr —b&a—rgb
&an+8, with 8)0. For more details see Ref. 15.

We want to estimate

Ft( xWie)—
I(x~ie) = dl(2l+1)

0 sinful

Xpa+(N, l)+a (N, l)j, —
(A3)

C being the semicircle at ininity shown in Fig. 2. Con-
sider I(x—ie) and use the upper bound given in (A2),
and contour in Fig. 4.


