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A precise statement of the bootstrap theory in the language of conventional Lagrangian Geld theory is
given. Under no further assumptions than the Mandelstam representation, it is shown that this closed-form
theory is equivalent to the more usual S-matrix formulation in terms of Regge trajectories. The assumptions
of the bootstrap theory are stated in terms of the vanishing of well-defined renormalization constants Z. All
standard results and approximation methods in the bootstrap theory are shown to follow directly from the
Z =0 conditions.

1. INTRODUCTION
' 'T is our purpose in this paper to present, to the
~ - extent we can at present, a complete and systematic
development of the bootstrap theory of strongly inter-
acting particles, couched in the language of conventional
Lagrangian field theory. In doing this, we do not mean
to imply that this is in any way a different bootstrap
theory from that usually expressed in the language of
S-matrix theory and Regge poles'; to the contrary, we
are convinced the theories are the same. Nevertheless,
we feel it of some value, in the light of the limited
practical success of bootstrap calculations phrased in
S-matrix language, to try to make available different,
albeit equivalent, ways to say the same thing, in the
hope that more useful approximate methods, for some
bootstrap problems at least, will suggest themselves. In
addition, there may be some virtue in using the language
of field theory to formulate the bootstrap idea, because
the formulation in terms of S-matrix theory is at present
incomplete. The assumptions of S-matrix theory can
still not be stated precisely; one is still required to make
assumptions like "all S-matrix elements are as analytic
as possible consistent with unitarity, " which while
useful intuitively and meaningful for simple cases are
still not completely satisfying. Lagrangian field theory,
on the other hand, has the aura of being well-defined,
even if in fact there are many points of dubious mathe-
matical validity in it.

Our plan is, or rather should be, the following. %e first
define, in any Lagrangian field theory, the wave func-
tion and vertex renormalization constants Z associated
with any given elementary particle. Ke then show that
if the (physical) mass and coupling constant of this
particle are made to vary until the renormalization con-
stants vanish (assuming that this can be done), then
the particle will lie on a Regge trajectory; it has thus
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been made composite according to the criterion of
compositeness assumed in the usual S-matrix bootstrap
approach. ' Having established that the vanishing of
the renormalization constants is an acceptable definition
of compositeness, we next systematically state a set of
rules defining the bootstrap theory.

BrieQy stated, these rules are:

(1) Assume a trial world —this means to assume
the existence of a given set of elementary particles, with
specified masses and spins.

(2) Write down a Lagrangian field theory for these
particles —this means we assume particular interactions
among the particles, with certain coupling constants.

(3) Solve, by whatever methods, this field theory. That
is, calculate all S-matrix elements, including all bound
or resonance states which may occur, all Regge trajec-
tories, and anything else of interest, in terms of the
parameters describing the field theory —that is, in terms
of the masses and various coupling constants. In
particular, calculate the renormalization constants of
the elementary particles.

(4) Finally, choose the values of the various parameters
so that all the renormalization constants vanish, if this
can be done. If this cannot be done, the assumed world
cannot bootstrap itself, and it must be rejected. If it can
be done, then the assumed elementary particles have all
been moved onto trajectories, have become dynamical,
and all the parameters —masses and coupling constants—have been determined. We now have a bootstrapped
world.

It is, of course, assumed in the above outline, that
there are worMs for which a bootstrap solution of this
type exists; in other words, that solutions to the equa-
tions Z=O do exist. On the other hand, it is also
assumed that the equations Z=o are not identities in
the various parameters. We can, as of now, prove

'The relevance of renormalization constants to compositeness
and bootstraps was first discussed by A. Salam, Nuovo Cimento
25, 224 (1962).
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neither of these two statements, though it is of course
to be hoped that proofs will be found sometime in the
future.

We next turn to a discussion of uniqueness of the
bootstrap solution, assuming that it exists. What we
are concerned with here is not so much the question of
how many bootstrapped worlds exist (for this question
we have no answer), but rather the question of which
sets of particles can we choose as the "elementary"
particles of our trial world, and what kind of interaction
Lagrangians can we write down? Suppose, for example,
that we try some set of particles and some interactions.
Then suppose that in step (3) we discover the existence
of several bound states made up of these particles. Then
suppose we took a new trial world which included among
its "elementary" particles some particles with the same
properties as the bound states of the first world. When
we apply step (4) to both worlds, do we or do we not get
to the same bootstrapped world? Intuitively, it is our
belief that we should. It should not matter in which
order the Z's of various particles are made to vanish;
thus, if in the second trial world we first set the Z's of
the added particles equal to zero, we expect to obtain
the first trial world. Then, if the remaining Z s vanish,
we have the bootstrap limit of the first trial world.
But, if we set a/l Z's equal to zero at once in the second
trial world, then we have the bootstrap limit of the
second world. The two bootstrap limits should clearly
be identical.

Therefore we have some freedom in guessing worlds.
If we want to look for a world with a given set of
particles, we do not have to take all of these particles
as "elementary" input particles in our trial world; any
subset of them having the remainder as bound (or
resonant) states will do.

We have a further freedom in the choice of inter-
actions in the Lagrangian of our trial world. Many
different interactions, of the Yukawa and more compli-
cated types, with or without derivative couplings, are
consistent with Lorentz invariance and the space-time
properties of our trial set of "elementary" particles.
Again, it is our feeling that the final bootstrap limit
should not depend on which form of interaction we
assume. (Though, of course, if we allow non-Yukawa
couplings, such as Xm' for ~ mesons, for example, then
some additional conditions besides Z=O will have to be
imposed to reach the bootstrap limit. That is, exactly
what the dynamical conditions are may depend on the
form of the interaction. ) Once all particles have been
made composite, then the various interactions among
them are effectively all prescribed, so that after the
dynamical conditions have been imposed, the resulting
theory will be the same regardless of which couplings
we assumed among the prebootstrapped elementary
particles.

Even though all this freedom is, we believe, in
principle available to us, we shall at this stage in our
understanding, nevertheless, have to impose certain

restrictions on the particles we choose as "elementary"
and on the form of the interaction. These restrictions
result from the fact that, at present, we do not know
how to handle nonrenormalizable field theories. (We do
not know what "Z" means for a high-spin particle, for
example. ) Therefore we shall confine our choices of
elementary particles to those of spin 0 or —,', and we shall
confine our choices of interactions to Yukawa couplings
without gradients.

We hasten to emphasize that these restrictions do not
prevent us from writing down trial bootstrap theories
for any conceivable world. Any high-spin particles can
be considered to be a bound system made of various
spin-0 and spin--,'particles; therefore, a bootstrapped
world containing high spins can be made from a trial
world containing "elementary" low-spin particles, in
the limit where these low-spin particles are made
composite through Z= 0.

It is undeniable that this selection for special treat-
ment of spin 0 and spin —, is aesthetically unappealing,
even though in the final bootstrap limit all particles, of
whatever spin, do presumably appear on an equal
footing. However, we reiterate our belief that this is not
a basic requirement of the Lagrangian field theory Z=0
approach to the bootstrap; it is rather a reQection of our
present ignorance of how to deal with high-spin elemen-

tary particles. Once we learn how to define Z for a high-

spin particle in a nonrenormalizable field theory, then
in the limit Z=O the high-spin particle becomes com-

posite, and when this happens the renormalization
difficulties with the field theory disappear also. ' Thus
we may, with some confidence, look forward to a, day
when the restriction of our trial elementary particles to
spin 0 and spin —, may be lifted. Similar remarks apply
to the kinds of couplings we can use.

The outline of the remainder of the paper is the
following: In Sec. 2 vie define the various quantities,
including the Z s, which will be of interest later. These
definitions are made both in the field-theory language
and, so far as possible, in the S-matrix language. Section
3 is devoted to demonstrating, for both spin-0 and spin--',

particles, that setting the Z's to zero moves the particle
onto a Regge trajectory, so that by the usually accepted
definition it becomes composite. Section 4 repeats the
discussion of Sec. 3 for multiplets of particles with the
same quantum numbers. In Sec. 5 the bootstrap rules
are stated, and finally, in Sec. 6, we discuss several

simple applications of the Z=O conditions to practical
bootstrap problems.

2. DEFINITIONS

In the Lagrangian field theory of spin-0 and/or spin-2

particles, the concepts of the renormalized proper vertex
function and renormalized propagator are well defined.

3 In fact, that renormalization diKculties must disappear when
Z —+ 0 is a convenient criterion to use in searching for an acceptible
definition of Z.
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q. (s) = —~ (o I (~(~),~(o))„lo)e"*d'*, (2.2)

where s=q'. This function has a pole at s=m ', the
physical mass of the o, and we defin the wave function
renormalization constant Z, as the residue at this pole.
We can also show that as s -+~, sd, '(s) -+ 1.

The renormalized Heisenberg field is now defined by

0 (x) =Z. '"0 (x)

and the renormalized propagator by

(2.3)

Since these functions involve the behavior of off-mass-
shell particles, they do not need to be defined in S-matrix
theory, and indeed some proponents of 5-matrix theory
might say they have no meaning. Nevertheless, we
believe they can be defined even in the language of S-
matrix theory. Let us illustrate this for the case of
spinless particles; the spin-2 case does not diGer in any
essential way.

Suppose we have two kinds of spinless particles, which
we may call x and 0., and a Lagrangian field theory of
these particles with the interaction

zr=-go- Lm (x)j'o (x), (2 1)

where ~ and 0 are unrenormalized Heisenberg fields for
the two particles. It is conventional in the field theory
to define the unrenormalized propagator for the 0-

particle by

stant is now

(g /go" ) =Z Z'"/Z. (2.8)

F...(s,m, ',m.')

simply by F. (s). If the occasion arises to talk about
situations with one or more of the other particles off the
mass shell, it will be made clear at the time.

We may now define the vertex function. We write

I'.. (s)=F...(s)/(s —m.')h. (s).
Thus we have I'. (m,') =g and I', (s) ~ g, ,Z,
as s ~~. A perturbation expansion of I' defined in this
way also shows that this is precisely the sum of all
proper vertex diagrams, with the two m's on the mass
shell and the 0- off in this case.

One can show that the propagator satisfies a dis-
persion relation of the form

However, we prefer another definition, which is gener-
ally believed to be equivalent to Eq. (2.8), but which
has not been proved to be equivalent. 4 This is that

F. (s,m ',m ') —& g., Z, /Z, (2.9)

as s —+~. Several things are implicit in this definition.
First, that F does indeed approach a constant as s ~~.
Second, that Z,F, (s,m ',m '), Z F, (m, ',s,m '), and
Z F, (m,',m ',s) all approach the same constant as
s ~~.' We shall accept all these things as true, and also
accept the identity of the two definitions of Z,

From now on, let us replace the notation

D.(s) = —i (0 I (0 (x),0 (0))„l0&e'&.*d'x

=Z.-&S. (s). (2.4)
h. (s) =

1 1 Ima, (s')
+— ds'

/S—f50 X S —S
(2.11)

g...=F...(m.',m.',m.') . (2.7)

The usual definition of the vertex renormalization con-

Thus g, (s) has a pole at s= m, ' with residue unity, and
sg. (s) —+ Z.—' as s~~.

Analogous definitions may be made for the x.
The vertex function may be defined in various ways;

for example, as the sum of all proper vertex diagrams.
A perhaps more convenient definition for our purposes
involves first defining the form factor by

F. ,(s,m.',m.')
= (4~'~)'"(p'I ( +m')~(~) Ip&l.=e, (2 5)

where s = (p' —p)' and &o = (p'+m ')'~'. This is the form
factor for two on-shell pions and an off-shell ~. We can
also define form factors for an o8-shell m coupled to an
on-shell m and to an on-shell 0. by

F, (m, ',s,m ')
=(4F ')'"(I'I( +m-') (&)I&&l.=o

where s= (p' —q)' and E=q'+m '. One can. also take
more than one of the particles off-shell. The re-
normalized coupling constant g, is defined to be

with a "unitarity relation"

g)= ——;p(2~)~ (p„—v) l(~~-1.(o) lo

=——,'(V' —m. )-2g(2 ) y(p„—q)

S—m~'
F. (s) =g. .+ ImF .,(s')

ds', (2.13)
(s' —m ') (s' —s)

with a unitarity relation

ImF...(q') = ——,
" Q(2~)'8'(p —q)(2~')'~'

x(p'I (n+m. ')~(x) I.=, l~~+~&

&«~'+'I ( +m. ')~(~) 1*=01o&. (2.14)
' G. Kallen, Helv. Phys. Acta 25, 417 (1952);M. Gell-Mann and

F. Zachariasen, Phys. Rev. 126, 2201 (1962) (Appendix A).' This amounts to saying that the unrenormalized vertex func-
tion approaches unity whenever any virtual mass goes to in6nity.

&& I(' 'I( +m. ')~(*) lo&l'I*=o (2.12)

Similarly, it is reasonable to expect that F satisfies a
dispersion relation
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The contribution to (2.12) and (2.14) from 2m.

intermediate states alone is simply

Imh, (s) =p(s)
~
F, (s) ~'/(s —es,')' (2.15)

ImM. (q') = —-', P (2s.)'84(p„—q)

(~) =P(~)~(~)F. *(~), (2.16)

where t(s) is the s-wave s.~ scattering amplitude. t(s) is
thus an on-shell quantity directly accessible to measure-
ment. P(s) is a phase-space factor:

ImM, (s) = p (s)
~

I',„(s)
~

. (2.23)

The contribution to ImM, from the 2z state alone is
simply

p($) = (1/16')L(s —4m )/sj ~'. (2.17)
Next, we have

(~)=f- + ds'. (2.24)
(s' —m, ') (s'—s)

The unitarity relation for I' can be derived directly
from the definition of I', Eq. (2.10).We obtain, from the
mw intermediate state alone,

(2.18)ImF, „=Qt„F, *.
Iml"...(s)

= P(~) j~(~) ~ (~)~ (~)1 (~)X (~) (2 25)Dispersion relations for the F,„ thus have the form of
linear integral equations, the kernels of which involve
physically measurable S-matrix elements. All the
J,„can therefore, in principle, be constructed in the
language of S-matrix theory, if one so chooses. In the
same way, Eq. (2.12) says

Finally, from Eqs. (2.21) and (2.24) we can obtain ex-
pressions for the Z's. We recall that I', (s) —«g, Z, „
and note that M, (s) «s(1—Z,), as s —«~. Thus we
have

1 ImM, (s')
Z.= 1+— ds'

(s' —m, ')'
(2.26)

Ima. =+t,F,„~'/(s —m ')', (2.19)
and

More generally, (p'~ (Cl+m 2)s.(x) ~, O~n'+&) is an
on-shell scattering amplitude, representing the process
n —« ~~, and (n~ &

( ( +Is )0'(x)
~

—p
~
0) is a generali-

zation of the form factor itself which we may label
F,„/(+„2F.„)'". A unitarity relation for this more
general form factor then takes the form

M.(s) = s—1/A. (s) . (2.20)

so that the propagator too can be constructed, entirely
within the framework of S-matrix theory.

To summarize, we do not need to use field theory to
define the renormalization constants. The generalized
form factors are solutions of integral equations which
require as input only on-shell information'; the propa-
gator is an integral over the squares of such form factors,
the vertex is the ratio of the form factor to the propa-
gators, and the Z's, finally, are defined in terms of the
asymptotic behavior of the vertex and the propagator.
If all this seems a bit too symbolic, may we remind the
reader that S-matrix theory itself, as a method of
calculating on-shell amplitudes, consists of little more
than the same sorts of words.

We may conclude this section by defining a mass
operator, which is sometimes of some convenience, and
by writing dispersion relations for it and for the vertex
function itself. Define

1
ZO'X 7I

7r

Imi', (s')
ds'.

s' —m, '
(2.27)

As we shall see in Sec. 6, when we use these equations
to calculate the Z s in the elastic unitarity approxima-
tion, both M and j. have poles when the Z's are
suKciently small. Thus ImM and Iml' contain, in gen-
eral, 8-function terms.

In writing Eqs. (2.26) and (2.27), an implicit assump-
tion is made that the integrals exist. In fact, this
assumption is essential to our entire approach, for
without it, there are no Z's which we can set equal to
zero. For the case explicitly under discussion here of
completely spinless particles, the assumption is valid
even in each order of perturbation theory. For the case
where spin--,'particles are included (which, as we have
said, goes through formally in essentially the same
manner), the assumption is not true in perturbation
theory. We can only trust that the actual Z's are finite
in spite of this.

Then near s=m ' M, (s)=m '+O((s—m ')') and
ImM, (s) = Imh (s)/

~
A, (s)

~

'. Thus we have
3. S=O AND COMPOSITENESS

(s—m. ')'
M.(s) =m.'+

' Continued below threshold in some cases.

The next step in our development is to show that, for
ImM~(&) a given particle, setting the wave function and vertex

renorrnalization constants equal to zero moves thes —m22s —s
particle smoothly onto a Regge trajectory, and removes
the Kronecker 8 terms in the angular momentum from
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We can combine Eqs. (3.5) and (3.7) to write a
representation for the form factor

F„(s)=,(3.8)
Z...+ (s—m. ') [Z,Pi (s)+Z ..Po(s) )

where

This pole will be called the vertex pole. F.. (s) may or
may not develop a pole near ns, ' when Z, becomes
small, depending on the ratio Z, „/Z, . However, when
this ratio becomes small, then F, (s) will have a pole
at Bp, where

p (~)= (~)/[Z.+(~ m—.')7(~)j (3.9) &o=m '—Z, /Z p(8o)=m, '—Z, /Z, p(m, '). (3.14)

and
p, (s) = —p(s)/[Z. +(s—m. ')p(s)3.

For convenience, we may also define

Z P=Z Pi+Z Po,
so that

(3.10)

(3.11)

F...(s)= . (3.12)
g

[Z. .+ (s—m. ')Z,P(s)]
Because of the asymptotic behavior of F and Ii

we will have n ~ (1/s) (1—Z„), Pi ~ 1/s, and
p2-+ —1/s, so that p-+ (1/s)[1—(Z, /Z, )j as s~~.

Now let us suppose Z, is small. Then I', „(s) will

develop a pole at sp near m ', where

so m. ' ——Z.„„—/n(so) =m. ' Z. —/o. (m. ') (3.1.3)

In the Appendix we solve a very simple model which
displays all the quantities just discussed and serves as
a convenient guide to see how the various limits
work.

Regardless of whether F, (s) has a pole near m, ' or
not, it in any case does not have a pole at sp. Therefore
the vertex pole at sp does not represent a physical
particle and is not a pole of T(s,t); hence the double-
integral terms in T must also contain a pole at sp which
just cancels the pole in the single integral term. This
pole in the double integral, of course, must lie on a
Regge trajectory. We shall refer to this pole as the
"compensating pole. "

Let us now write the single-integral terms for small
Z „near s=m ':

—I'...(s) F„.(s)=-
s—m'

g...Z.../ (m. ') 1 g...Z.../Z. p(m. )

s—so s—m, 's—m '+Z.../Z p(m ')

Z 'p'(m, ')g...' 1 g...'n(m. ') go~~+ +
~—m, ~ ~o-a(m, )—Z,p(m~o) (s—m, o)Z,p(m, o)+Z Z p(m o) —~(m ~)

(3.15)

Now let Z,„—+ 0 and Z, —+ 0 in any order. First, note
that the third term, corresponding to the possibly
existing pole at so of F, (s), will simply vanish. To
realize this, it is helpful to notice that while p(s) contains
terms proportional to (Z, /Z, ), and hence will become
in6nite if Z, vanishes first, Z,P(m, ) will remain finite.
We recall from Eq. (3.11) that Z P is of the form

Z.P,(m.o)+ Z...P, (m.o).

The vertex pole at sp goes to ns ' in the limit, and its
residue approaches +g', thus the erst two terms in

Eq. (3.15) cancel, and the whole single-integral term
vanishes. The compensating pole in the double-integral

term, however, which must cancel the second term in

Eq. (3.15), has moved to so=m, ' during the limiting

process, and its residue has become —g'. The 0- particle
has thus been transferred to a Regge trajectory and has
become dynamical.

It is also obvious from Eq. (3.15) that while there is
no difference in the end result, there is a diBerence in

the behavior of the third term (which corresponds to an.

actual pole of the physical amplitude at Bp when such
a pole exists), depending on whether Z, goes to zero
erst and then Z„or vice versa.

Since Z.P(m, ') =Z,Pi(m. ')+Z, Po(m, '), we see that
the third term in Eq. (3.15) has a pole at

8o= m. ' Z.-./(Z.Pi+Z.—-Po), (3 16)

Bo-+ g'Z.Pi/(Z, Pi—n) . (3.18)

This residue then vanishes with Z, . If Z,/Z, goes
to zero, however, this pole moves to

with a residue

Bo=m, '-1/Pi,

E,', ~ goZ...P,/(Z. ..P,—o)

(3.19)

(3.20)

which vanishes with Z
In either case, the third term in Eq. (3.15) represents

a bound state of the system at 8p, which becomes an
"extinct" bound state in the limit Z,„—& 0, Z —+0,
but not necessarily at m ', depending on the value of
the ratio Z, /Z, .

Let us now specialize this general discussion to the
elastic unitarity approximation. This means that we
confine ourselves to m.x intermediate states only in the
s channel. The elastic approximation has the virtue
that the various quantities introduced above can be
explicitly represented in terms of various D functions,

with a residue

Bo gy g ~ (ZgPi+Zggp~Po) /(Z~Pi+Z~~~Po Q) (3 17)

If Z, /Z, vanishes, this pole moves in with the other
two poles at m, ' with a residue
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The first term on the right of Eq. (3.21) represents the
contribution of the double-integral term and is unitary
as well as analytic in /. We can now identify

therefore

therefore

and

I'.. (s) =g...D(m. ')/D(s),
D(m, ') =Z...;

F. .(s) =g,.D(m. ')/D(s),
D(m, ') =Z. /Z. ;

(3.22)

1 D(m. ') D(s) ( 1 ) D(s)
~.()=

s ma' D(s) D—(ma') is ma') ZaD(s)—

We may now expand D(s) and D(s) around m, P and
6nd

I'„.(s) =
Z o n xg o' x n'

7

Z...+ (s—m.')D'(m. ')+
(Zaaa/Za)gaaa

F, .(s)=
Z.../Z. + (s—m. ')D'(m. ')+

(3.23)

Again, we may say that the fact that D(s) is a function
which has no poles in s on the physical sheet, but is
equal to Z, /Z at s=m, ' and approaches 1 as s —&pp,

assures us that we can write D(s) as

D(s) =di(s)+Z, /Z, d, (s), (3.24)

whose properties are well known. Thus we can assure
ourselves, at least within this model, that nothing of
importance has been overlooked in the general discus-
sion just completed, and that the assorted functions
such as n and P introduced there do in fact have the
properties assumed.

In the elastic unitarity approximation, we can repre-
sent the partial wave amplitude near /= 0 as"

E(s,l) E(s)
T(s,l) =-

D (s,l) D(s)
D(m.')D (m.')—g...' hip. (3.21)

D (s) (s—m.')D (s)

where a(s) = LD(s) —Z, ,j/(s m, ')—and

Z,P(s) = ~Z.d, (s)+Z--t:d (s)—1j}/(s—m-') .

Thus we see that the renormalized propagator always
blows up as Z —+0 and Z —+0. In addition, in the
limit, the entire vertex function I', (s) vanishes, the
form factor F. (s) either vanishes if (Z, /Z, ) —+ 0 or
remains finite and goes asymptotically to Z, „/Z, when
Z, /Z, remains a constant, or remains finite but goes
asymptotically as s'" when Z, /Z, —+pp. This can be
seen most easily from the model in the Appendix;
however, we expect this behavior to be true quite
generally, independent either of the explicit model or
the elastic approximation.

The eer ezormalized vertex and propagator, defined by

I'--'(s) = (1/Z--) I'--(s),
D.'(s) =Z.h.(s),

(3.27)

remain finite with 6,'(s), however, vanishing when
Z, /Z, ~m. In the limit, the pole of I', '(s) moves
to s=m, ', and d.'(s) either loses its pole at m, '
when Z, /Z, becomes constant or keeps it when
Z.../Z, -+ 0.

The 6nal amplitude is always the same in the limit
Z, -+ 0 and Z, ~ 0, even though the functions D(s)
and g(s) differ, depending on Z, /Z, . This ratio
affects the position of 8p, which is a zero of D(s). In the
limit, however, a zero of Jlt'(s) always moves to the
position sp, whether Bp=sp (Z, /Z, -+0) or not. In
E/D= T, the pole of 8p becomes extinct in any case,
leaving only a dynamic pole at so ——m, '.

Finally, we see that the bare coupling constant,
defined by

near s=ns. . These quantities are displayed explicitly
in the model of the Appendix.

The propagator may be written

D, (s) = (s—m, ') 'fF. .(s)/I', . (s))

Z, .+ (s—m. ')n(s)= 1/s —m.', (3.26)
Z...+ (s—m. ')Z.P (s)

where gp =g. (Z, /Z, ' 'Z ), (3.28)
di(s) =0, s=m. '

=1~ s= ~

d, ($)= 1, s=ma'

ZC

S

It follows that D'(m, ') =di'(m, ')+Z, /Zgp'(m, '), so
that

Za n ega'n n'F„.(s)=-
Z.+ (s—m.') tzgi'(m. ')+Z.„.dp'(m. ')]+

(3.25)
' Ke use the notation of Ref. '7.

behaves in an unknown way depending on the ratio
z.../z. in.

This completes our discussion of the spinless case. We
have argued quite generally that in the limit Z „~0
and Z, —+0 the 0- particle ceases to be a fixed pole
associated with a Kronecker 5 in /, and becomes a
Regge pole in an amplitude entirely free of Kronecker
8 s. Thus it becomes dynamical. The crucial point in
the derivation was that the Mandelstam representation
for the scattering amplitude which contained the ele-
mentary a particle pole required no subtractions. When
we proceed to the case of spin, there are, in general,
several invariant amplitudes for a given scattering
process. If a particular scattering process has a pole
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corresponding to some elementary particle, it will

normally appear in more than one of the invariant
amplitudes. If any one of these amplitudes in which the
pole appears requires no subtractions, then the single
integral and pole terms may be identified with I'AF,
where d is the propagator for the elementary particle,
and F is the vertex function coupling the elementary
particle to the scattering particles. The derivation used
in the spinless case may be carried through essentially
unchanged, and the dynamical situation is reached
when the wave-function renornalization constant
vanishes and the vertex renormalization constant,
de6ned in terms of I' at in6nite energy, vanishes.

As we remarked in the Introduction, the case of high
spin, that is of a nonrenormalizable field theory, re-
quires an infinite number of subtractions in the Mandel-
stam representation, so there are unlikely to be any
unsubtracted invariant amplitudes. Let us therefore
make the above discussion explicit for the case of spin ~.

To proceed with the spin--,' case, let us introduce a
new particle in addition to the m and 0. of our previous
discussion, which we may call a "nucleon" and label
E. Let us take the m and &r to be pseudoscalar and
scalar, respectively, and assume an interaction of them
with S of the form"

gi = go~'v~8(g) ys7r(g) X(g)+go~+~N(g) 0 (g)N(g) (3.29)

added to our earlier interaction.
Let us 6rst look at the nucleon pole in x-S scattering.

There are two invariant amplitudes A(s, t) and B(s,t)
and, as usual, the entire amplitude is

&=(a'I A(s t)+-'B(s,t)(q~'+q~) IN.) (3 3o)

Now, judging by the perturbation expansion with
the interaction of Eq. (3.29), the A amplitude requires
a subtraction in s and one in I, but the 8 amplitude
requires no subtractions, and the nucleon pole occurs
only in the 8 amplitude. The form of the single integral
and pole terms in 8 may consequently be calculated in
terms of the nucleon vertex. Let us pvrite the x-g
vertex, for an oB-shell A", as

I'= I'gyp+ I'my'(P —M) .
Here P is the four-momentum of the off-shell 7; I'» and
F2arefunctionsof s=E'. Ass~~, wehave F»~Z ~N
and I'~~0 and of course I'&(M )=g N~. The propa-
gator for the nucleon may be broken up in a similar
way:

S=Sg(P+M)+S2.

Thus S» contains a pole at s=M', with residue 1, and
S2 does not.

In terms of these quantities, we may express the pole
and single integral in 8 as

~
r&~'S&+(I &*I2+ I 2*r&)S2

+ ~
I'2~'(S, (s—M') —2MS2).

"See Ref. 9.

The nucleon pole is contained in the 6rst term here,
which is of the same form as in the spinless case. As in
the spinless case, in the limit Z ~~ —&0, Z~ —+0, a
compensating pole develops, and will end up at s=M'
with a residue g N~ . However, it is not obvious at
first glance that this pole is on a Regge trajectory,
because we apparently still have the Kronecker
terms associated with F2 and S2 present in 8, as well as
the other terms analytic in the angular-momentum
plane. Ke must therefore ask how these terms behave
as Z ~~—&0.

The most direct argument is that, as in the spin-
less case, it is the unrenormalized vertex F'=F»'y5
+I'~'y5(P —M) which remains 6nite. We may, as a
result, say that both I'& and F& vanish, since F&——Z»r»'
and I'2=Z21"2'. This can be confirmed if we look at the
elastic unitarity approximation. The D function for the
'P»~& channel, normalized to 1 at in6nity, may be related
to the nucleon vertex as in the spinless case:

I'g(s)+ (W' —M) I'2(s) =g ~~D(M) jD(W) .
Again, we have Z ~~=D(M). Now, as Z ~~ ~ 0, it is
clear that not only I'» but also I'& vanishes.

In the limit, then, the Kronecker 6 terms other than
I'»*S»F» in the 8 amplitude vanish. The argurn. ent
given in Sec. 3 for the spinless case thus may be carried
over unchanged to the 8 amplitude; in the limit
Z ~~ —+ 0 and Z~ -+ 0, the nucleon moves into a Regge
trajectory and 8 loses all Kronecker 6's.

The single integrals in the A amplitude, while they
do not contain a particle, nevertheless contribute
Kronecker 8's to the partial-wave amplitude. However,
those single integrals exist not only because of the
I'Sl' term but also because the double integrals in A

required, as far as we could see from perturbation
theory, subtractions. Now that the nucleon has been
made dynamical, the perturbation theory no longer has
meaning, and things are presumably more convergent
than before. It is then quite possible that in the
Z ~~-+ 0, Z~ —+ 0 limit, the double integrals in A will
need no subtractions as weO, so the single integrals will

vanish in the limit. (On the other hand, since the pion is
still elementary, perhaps we should not expect atl
Kronecker b's in the amplitude to have vanished. )

In the same vein, while the nucleon is made dynamical
by Z~N~~ 0 and Z~~ 0, in that it is moved onto a
Regge trajectory, the introduction of the coupling in
Eq. (3.29) apparently undoes the argument we made
earlier to show that the 0- became dynamical when
Z, „-+0 and Z —+ 0. This is because, with this cou-
pling, the mm scattering amplitude now requires an over-
all subtraction; in other words, the theory is no longer
renormalizable without an interaction of the form of
Eq. (3.2). Thus the Kronecker 8's do not arise only from
diagrams included in Fhl' and hence making Fhl",
vanish does not eliminate all Kronecker 6's. Therefore,
while it remains true that in the limit the 0 particle has
become the "compensating pole, " this pole is not now
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manifestly a Regge pole. The compensating pole occurs
in the sum of the double integral and t-channel single
integral, which are smooth in t, plus the remainder of
the s-channel single integrals not included in FhF, and
this last is rot smooth in /. Thus the compensating pole
could, for all we know, still be a Kronecker 8, unless the
additional condition discussed in Ref. 8 is imposed.

The 6nal questions to be asked, to complete the
J~=0+, 0, ~+ world, concern the S pole in O.S scat-
tering and the 2r and 0 poles in EE scattering.

As to the first, let us look at the o.E scattering process.
This is again described in terms of two scalar ampli-
tudes A and 8, as in Eq. (3.30). As in the 2' case, A
requires subtractions while 8 does not. The only dif-
ference is that the nucleon pole now occurs in both A
and 8 instead of only in J3. Nevertheless, the previous
argument goes through unchanged. Look. at 8 alone.
Since it requires no subtractions, the Kronecker 5 term
contains a pole and will vanish as Z» —+ 0. Thus the
compensating pole is necessarily again a Regge pole, and
hence in the limit the nucleon moves to a trajectory.

Exactly the same remarks apply to NN scattering; the
Kronecker 8 term in the unsubtracted amplitudes (of
which there are three of the 6ve that exist altogether)
is again entirely expressible in terms of Fhj. , but now
I'=F&p5 or j. = j.'&j. only; for an oG-shell x or 0. rather
than nucleon there is just one vertex function, and as
s~~, I'i~Z», or Z», according to which par-
ticles we are discussing.

To conclude, in a world containing cr, m, and E, with
a Lagrangian given by Eq. (3.29), we 6nd that in all
channels in which it occurs 1V is made composite (i.e.,
made to lie on a Regge trajectory) by the conditions
Z&=0, Z»=0, Z»=0; similarly, x is made com-
posite by Z =0, Z»=0, Z =0, and, anally, 0. is
composite if Z =0, Z,»=0, and Z, =G. Presumably,
then, all are made composite if all six separate conditions
hold.

4. MULTIPLETS WITH IDENTICAL
QUANTUM NUMBERS

Ke write the renormalized propagator as

A.,( )=—; d .".(ol(..(*), ,(o)), lo)

8 p 1 ImA p(s')+- ds'.
S—p m' S —

g
(4 2)

Lo (x,t),op(y, t)]=iZ—' pB'(x—y)

and the relation

0 (x)=Q Z ' pop(2:).
P

The vertex renormalization constant is de6ned by

F,/ (s):g Z '„pZ/Pg, /P.
~oo P

(4.4)

(4.5)

(4 6)

The vertex function itself is dined by the equation

Z,,-(s)=Z( —t - )A.,(.)r,,P(.), (4.S)
P

from which it follows that, as s —+~,

r;; (s)-+Z;;"g;; . (4.8)

The single-integral term in the Mandelstam repre-
sentation for the 2r,n;. ~2r22r/ amplitude T;;,2/(s, t) is
written

and since

—Z r, ( );,-A, (s).,r, ( )„P,
a, P

(4.9)

2 A2(s) pr2(s)2~P= (s t ') '~(s—)2i (4 1O)

Then sA p(s) -+ Z '
p as s-+~, and Z p is a real sym-

metric matrix. We dehne the form factor by

~„'(s)= (4~/'~;)'/2(p', jl (&+t -')~-(~) I*=oI 12 i) (4 3)

where
(P/ P) 2 ~ (P2+ 2/2, 2) 1 /2

(y12+, 2/2 .2) 1/2

These definitions are equivalent to the commutation
rule

The Z=O conditions can be generalized directly to
the case of multiplets with the same quantum numbers.
Consider e x-particles described by 6elds m;, i=1 ~ ~ n
and X 0.-particles described by fields 0, O, =j. Ã,
with the interaction term of the Lagrangian given by

the single-integral term is

—g r2(s) / (s—t2„')-'F(s)2, . (4.11)

e N

Zr(2/) = —2 Z (go) „'~,(x)~;(*)~.(2:). (4.1)
i,j 1 a~1

The vertex function r2(/2 2);,~ must be equal to g/",
and I"2/ (/2~2)= g2/ . This permits, in the neighborhood
of s=/2 ', the representations analogous to (3.5) and
(3.8) for ri(s)," and F(s)2/ .

Let us call the mass of the cr particles p instead of
m, to reduce the number of indices and avoid con-
fusion, and the mass of the m; particles ns, . and

r, (s);,«=Z, ;-g /tZ" +(s—
t -')~(s),; ] (4.»)

Zfg gIt
~(s)w =

Z/, i +(s—/2~')Zg, s p|(s),; /Qp Z '~pZ2/pg2gp+t4(s), , g
(4.13)
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Arguments very similar to the case discussed in Sec.
3 shows that all the 0 particles become dynamical,
provided we require

Z;, g;, =0, foralli, j, n (4.14)

,„-Z„-/pZ-.,g„pz,,p=o, for ail z, q, . (4.1S)
P

The second condition can also be written

detZ p =0, (4.16)
Q Z. -'(„Z,, /, ;Z,;)

where Z p"' is the cofactor matrix. From this we see
that detZ p

——0, in general, satisfies the second condition.
However, while detZ p

——0 is su6icient to rid the xm

scattering amplitudes of Kronecker b's, it is not in fact
sufhcient to remove all the elementary 0. particles; to
accomplish this, we must require that all eigenvalues of
the matrix Z p vanish, that is, that the entire matrix
Z p vanishes.

To see this, let us simplify the problem to a single
channel by restricting ourselves to a single pion, i.e.,
we drop the indices i, j, etc. The bootstrap conditions,
Eqs. (4.14) and (4.15), become

Z p is diagonal, so that Z p ——Z 8 p. In this case, the
dynamical condition is simply

Z F~(s) =0, for all n. , (4.2s)

PZ. (n+p ') (*)=0 (4.26)

as our condition. Now define

Z~p=g U„~ 'Z~U, p. (4.27)

from which we conclude either that Z = 0 or F~(s) =0.
But if for some n the second of these equations holds,
then the particle 0- has never coupled to the mm system
in the first place; thus this condition achieves the
removal of Kronecker 6's from the mw amplitude, but
it does so by uncoupling the o.th 0- particle, not by
making it dynamical. Thus this particle still exists in the
Lagrangian; it merely does not couple to the pions.
Therefore, if we wish to make the a particle dynamical,
we must choose the first alternative, namely Z =0.

It is easy to see that the same physical situation
occurs in the case with mixing unless all Z p vanish.
The manipulations are as follows:

From Eq. (4.24), together with the definition of the
form factor through Eq. (4.3), we have

and

Z =0, for alla Z~ are the eigenvalues of Z p and U is an orthogonal
matrix since Z p is a real symmetric matrix. Define

where we dehne

I =0, for all n, (4.18)
4-(x)=Z U-p~p(x) (4.28)

X =g Z/ZpZ ' pCPZP

From Eq. (4.19) it follows that

QZ pVp=X V,
P

Using these definitions, we may rewrite Eq. (4.26) as

Z~(El+ p, ')$7(x) =Z~ P C~qfq(x), for all y, (4.29)

(4.20)
where

where

V =g Z/X =F (~) (4.21)

C~g=Q U,p(IJ' pp')Upg ', — (4.30)

Since the form factors for di6erent indices o. are all the
same up to a scale, we have

thus C» is simply a number.
Equation (4.29) may be satisfied either by

F (s)/FP(s) =F (~)/FP(~)

for all s; thus Eq. (4.20) may also be written

Q Z pFP(s)=X F (s).

(4.22)

(4.23)

or by

+&')p, (*)=p c, p (*).

(4.31)

(4.32)

g Z pFP(s)=0;

But the second of these is just the set of held equations
Now the dynamical limit, as expressed by Eq. (4.18), for a collection of elementary particles, linea~ combi-
leads to the result nations of the 0- particles, of mass p, and interacting

through the trivial Lagrangian
(4.24)

Z&= g P&x(P)C,)gg(x). (4.33)
and this, as we shall see next, requires that all Z ~
vanish if we are to remove all the elementary 0 particles.
To exhibit the physical reason involved, it is convenient
to look for a moment at the case of no mixing, where

Thus if Eq. (4.32) is the way our dynamical condition
is satisfied, then we have not in fact removed all
elementary 0 particles; we have simply uncoupled
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them from the xm amplitude. We therefore make the
first choice, that is, Z~=O, all y.

To conclude this section, then, in the multiplet case
the dynamical conditions are simply

and

Z;, =0, for alii, j, n

Z a=O, for alla, P.

(4.34)

(4.35)

We may note that there are precisely the right number
of conditions: There is one Z;, =0 condition for each
g,, and the conditions Z p=0 are actually only X
conditions, namely, the conditions that all E eigen-
values of the E)(iV matrix Z p vanish.

+g (go- );, (r (x)vr, (x)s-;(x) (5.1).

Calculate Z p„, Z;;, Z p, and Z„, and set these all
equal to zero.

(ii) World containing pseudoscalar and spinor
"elementary" particles: Assume the existence of the
set of pseudoscalars x and the set of spinors E;.
Choose as the interaction

Zi ——Q(go ~");;~P,(x)sr (x)yean;(x).
asj

(5.2)

Calculate Z;;, Z p, and Z;; and set these all equal to
zero.

(iii) World containing scalar, pseudoscalar, and
spinor "elementary" particles: We add to (ii) the set
0, and write for the interaction Lagrangian

&i= Z(go"'). &a.(x)a (x)ax(x)

+P (go'-).a"a„(x)~.(x)~p(x)

+& (go ~"),,"~;(x)a„(x)~;(x)

Calculate Z,„y, Z p", Z;;", Z;, , Z„» Z p, and Z;; and set
these all equal to zero.

5. S=O BOOTSTRAP HYPOTHESIS

We are now in a position to state the bootstrap as-
sumptions for several possible cases. In general, the
sequence of steps should be as outlined in the Intro-
duction; however, as we have seen, we are as yet unable
to handle more than a few simple cases. There are

(i) World containing spinless "elementary" particles:
Assume the existence of a set of scalar particles 0- and
a set of pseudoscalar ones m;. Choose as the interaction
Lagrangian

We cannot as yet write down worlds more compli-
cated than these. Even the second and third examples
mentioned are not strictly complete as stated, in that
for renormalizability there should be a x' coupling
included in Z~, and extra constraints have to be imposed
to determine the parameters associated with this
coupling. Fortunately, as explained in Ref. 8, we know
what these are.

While the worlds described above are very restrictive,
they still include many possible situations including,
in particular, the one we believe to occur in nature. All
the known strongly interacting particles can, in

principle, be made of, for example, E meson and nu-
cleons, or pions and sigmas, or all the pseudoscal. ar and
baryon octets, and all these are worlds of type (ii).

If we so desire, the trial worlds can be chosen to have
some internal symmetry such as isospin or SU(3).
This merely requires grouping the particles into de-
generate multiplets and writing 2& in an invariant way.
However, it is perhaps more in the bootstrap spirit rot
to impose an internal symmetry, but to let the bootstrap
produce it; in this case, the more general type of cou-

plings we have written down in Eqs. (5.1)—(5.3) are more

appropriate.
We mentioned earlier that the number of constraints

Z=O exactly equals the number of coupling constants
plus the number of masses. However, this means that
the number of conditions we impose is one greater
than the number of parameters to be determined,
because only dimensionless mass ratios can be calculated
(or measured for the matter). The result is one redun-

dant condition, and this has always been embarassing to
any method of formulating the bootstrap theory. The
redundancy is very basic, arising from the fact that
all our formalisms for dealing with elementary particles
are expressed in terms of separate particle masses and
not mass ratios. We have no resolution to o6er here;
hopefully, either the extra equation will turn out to be
an identity or else there is some as yet unknown parame-
ter which exists in all these theories and which can be
determined by it."

The assumptions defining bootstrapped worlds, at
least of the types mentioned above, are all quite explicit
and well defined (assuming that Lagrangian field theory
is well defined). We start with a completely specified
Lagrangian for a specified set of particles, then impose
well-defined constraints on all the parameters in the
Lagrangian by means of explicit equations (assuming
that the Z's exist and are finite). Thus no ambiguity
exists in principle.

The practical situation is, however, another matter.
It is all very well to have an explicit Lagrangian, but
no one has ever been able to calculate accurately with
any strong interaction Lagrangians. Therefore it will

"F. Zachariasen, in Froceedilgs of the Ilterlational Cortferertce
ore Particles and Fields, Rochester, 1967 gnterscience Publishers,
Inc. , New York, 1967). The parameter in question may be a
universal cuto6.
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a P~~QM~ ~~ +
I

(y w ~ P
constants g;, .As illustrated in Fig. 2, we evidently have

Z.p= &.p —P g,,'g, ,PIt(tts„tttx) (6 1)

la
k

Q r

kZP
Z,; g,; =g,; —Q gI, t g, sPg, tPIs(its. ,mar), (6.2)

k, l, P

FIG. 2. Pictorial representation of the mass operator and
vertex function in perturbation theory.

where, because of the assumed degeneracy in mass, I~
and I2 do not depend on any indices.

The bootstrap conditions now yield

Q g~j gij = 3ap/It (6.3)
not be easy to calculate the Z's so it will be diQicult to
see if bootstrap solutions in fact exist. We will probably
not be able to accurately calculate mass ratios and
coupling constants. There is also the question of what
other particles exist in the theory, besides the postu-
lated "elementary" ones, These are bound states or
resonances, even before the Z=O conditions are im-
posed, but we will not 6nd it an easy job to predict
their existence, let alone their positions, couplings, or
widths, and so forth. Thus the Z= 0 approach is hardly
a panacea for all the dBFiculties which have been en-
countered in attempts to implement the bootstrap idea.

Nevertheless, a few applications of Z=O can easily
be made, and if these do not lead to any results which
have not already been obtained by other means, they
are still of interest. We turn to these in Sec. 6.

6. APPLICATIONS

A. Cutlroslry Relations

Cutkosky, some years ago, derived from the boot-
strap idea the result that if a set of e vector mesons of
equal mass bootstrapped themselves, then their mutual
coupling constants were the structure factors of a Lie
group. " The result was later generalized by several
other authors. '4

As a first application of the Z=O conditions, let us
rederive Cutkosky's equations.

Suppose we have e pseudoscalar mesons x, n= 1 e,
of equal mass m and E nucleons E;, i=1 lV, also
of equal mass m&. To bootstrap the pions, for ex-
ample, we must impose the conditions

2 gst g'sPg~tP=go /Is~
klP

(6 4.)

P gis gjk 3ij/Is (6.5)

However, this equation does not contain any new in-

formation beyond that already encompassed by Eqs.
(6.3) and (6.4).

The Cutkosky conditions are very restrictive. For
example, if m=3, X=2, and we impose charge conserva-
tion and charge conjugation, then the relations among
the couplings are those following from isotopic spin
conservation. "

B. Reciprocal Bootstray

Next, let us apply Z=O to the model in which the
nucleon is bootstrapped out of a pion and a nucleon,
with both nucleon and E* exchanges, in the static
model. "We wish to calculate Z ~~ and Z~ in the static
nucleon limit and set them equal to zero. The most
convenient way to do this is as follows.

We recall that in the elastic unitarity approximation

which are precisely Cutkosky's equations.
The bootstrap is completed by requiring that

Z;;=O,

where Z;; is the wave-function renormalization matrix
of the nucleon. This, in the perturbation approximation,
tells us that

Z p=0, n,P=1 ts Z srsr=D(0), (6.6)

Z. .e O

where Z p is the wave-function renormalization matrix
for the pions and Z;, is the vertex renormalization for
the vertex coupling the ith nucleon to the jth nucleon
and the o.th pion.

The most trivial approximation is to calculate the
Z's in perturbation theory in the pion-nucleon coupling

"R.E. Cutkosky, Phys. Rev. 131, 1888 (1963).' Chan Hong-Mo, P. C. DeCelles, and J. E. Paton, Phys. Rev.
Letters 11, 521 (1963).

where D(&e) is the D function, subtracted at infinity, for
vrE scattering in the I'~~2 channel. We take the nucleon
mass at zero, as is usual in the static model, and ~ is
the pion energy.

Similarly, we can write

Z tv'/Zx=D(0) (6.7)

and we remind the reader that D is calculated with the
elementary nucleon pole in the input while D does not
include this in the input.
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Now in lowest order we may write

1 "
p(a&)Ckp

D(0)=1—— B(pp) (6.8)

1 " p(cv)kv
D(o) =1—— 2&( )+&'( )j (69)

p(~)d~
Zn. NN B(cu), (6.10)

where B(co) consists of the crossed poles and 8'(pp) is
the direct pole of the Born approximation.

To obtain the perturbation expansion of the Z's, we
now substitute Eqs. (6.8) and (6.9) into (6.6) and (6.7)
and expand (6.7). This results in

C. Elastic Unitarity Approximation

The reader will have observed that all the appli-
cations of Z= 0 which we have discussed up to now have
been based on perturbation theory for the Z's. This has
the virtue of "vertex symmetry, ""in that all three
particles interacting at a vertex are treated on an equal
footing; nevertheless, it is of interest to ask if better
approximations to the Z's can be usefully constructed,
and to this end we shall next look at approximations
based on elastic unitarity.

I et us, for convenience, confine ourselves to the m-o-

model repeatedly discussed before. %e wish to calculate
Z, and Z,„.

The most direct approach is obviously to use the
"E-over-D" method to calculate D(s) and D(s) for
s-wave mr scattering from the perturbation theory
inputs

1 p (co)dM
Z~= 1+ B (6)) . (6.11) &(s)= (g--'/2V') Qo(1+~'/20')

Thus the wave-function renormalization constant is
a dispersion integral over the direct Born-approximation
pole, and the vertex renormalization constant is the
same dispersion integral over the crossed Born-approxi-
rnation pole.

Now, in the static model,

and

&'(~)= —(1/~)v»'

a( )=(1/ )PC„,„„,
(6.12)

(6.13)

The other equation merely determines the cutoB
necessary in all the integrals.

If we also calculate mE scattering in the general IJ
channel; that is, if we calculate the wave-function
renormalization for the IJ resonance and vertex
renormalization for xE coupled to the IJ resonance, we
obviously get the usual reciprocal bootstrap equation"

where p»' is the width for the decay of an isospin-I-
spin-J resonance into m.E and C&J,g J is the crossing
matrix.

inserting these expressions into Eqs. (6.10) and
(6.11) and setting the Z's to zero gives us

(6.14) g„.Z, „p(s)$(s) ds
(6.16)

iD(s) i' s—m, '

We have used the fact that F(s)=g, Z, /D(s), and
from this fact it also follows that

R= g. .Z, /D'(sp) .
Thus we have the result

(6.17)

&(s)=B(s)—g. .'/(s —m. '),

respectively. Thus the Z's are obtained from Z,
=D(m, ') and Z, =D(m, ')/D(m, '). This is almost
indistinguishable from the usual E-over-D bootstrap
calculation.

A less direct approach involves using two-particle
unitarity in Eqs. (2.26) and (2.27) written down in
Sec. 2, expressing the Z's in terms of the vertex function
and the mass operator. In using these, however, one
must recall that as the Z's become small the vertex
function and mass operator will develop poles at the
point we have called so, and this pole must be included.
Thus Eq. (2.27) becomes, in the elastic approximation,

1
(6.15) Z. .=

D'(sp) (sp—m. ')

Further generalizations are also possible, and permit
one, for example, to reproduce the results of SU(3)
reciprocal bootstraps" and those obtained by Kumar. '

"G. F. Chew, Phys. Rev. Letters 9, 233 (1963).
'6 R. F. Dashen, Phys. Letters 11, 89 (1964).
"A. Kumar, Phys. Rev. 148, 1347 (1966).

p(s)X(s) ds
(6.18)

ID(s) I' s—m. ')

In a perturbation expansion, so—m, ' starts off as

's R. E. Cutkosky and M. Leon, Phys. Rev. 138, 8667 (1965).
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From these results, after some algebra, we can also
obtain another representation for Z, namely,

(b)

D'(s()) D'(so)
l

Z,= 1+g'
D'(s()) X(ss) )

(6.27)

1/g, 2, so that to lowest order Eq. (6.18) yields

1
s() tB~ =—

I
1—— p(s)&(s)

ds
I

s—2)2 2

p(s)B (s)
ds (6.19)

(s—m.s)'

from which, using the fact that

Ss—m, 2= —Z.../D'(2)2. 2), (6.20)

1 p(s)B(s)
Z =1—— dS~

S—tS rJ

(6.21)

as we should.
We can write similar expressions for Z . From Eq.

(2.26), we see that in the elastic approximation

(s—2)2.2)'
M(s) =2N, 2+— p(s') ll'(s') I'

d$
(s' 2)2 ') '(s' —s—)

Fxo. 3. Pictorial representations of integral equations for (a) the
the vertex function an(l (b) the proper self-energy part.

We may remark that the bootstrap equations of the
conventional E-over-D method are precisely those
obtained from setting Z, =O in Eq. (6.27) and setting
Z. =0 in the relation Z, =D(2',2).

Any of these equivalent equations expresses the Z's in

terms of E, D, and D. These functions can be calculated
from the inputs 8 and 8 in any convenient manner, such
as the complete E-over-D integral equation, or the
determinantal method, "etc. The result is various ap-
proximate expressions for the Z s in the elastic approxi-
mation, or some variant of the elastic approximation.
In principle, then, these Z's can be set equal to zero and
the resulting equations used to calculate approximate
values of g, , m„and m .

Nevertheless, we feel that the basic inaccuracies
imposed by the use of elastic unitarity and the choice
of one-particle exchanges as the input force are so large
that numerical results for bootstrap problems based on

any of the approximations presented here are likely
to be of dubious value. (This remark obviously applies
to the usual E-over-D method as well. ) Therefore, we
have preferred to restrict most of our practical appli-
cations simply to the use of perturbation theory.

D. Approximations Based on the Dyson Equations
(s—2)2.2) ' A

(6.22)

1 1 D(s)
A(s) =-

Z. s—2)2 'D(s)
and we find

Thus we get
&i= gs"'I ~(2:)3"

p(s) ds

ID(~)
I

'
(~—~ ')'~

D(so)1—
))'(s,) (s,—m. '))

the extension to any other Yukawa couplings of any
collection of 0+, 0—,or —,'+ particles is obvious.

As illustrated in Fig. 3(a), we may write for the un-
renormalized vertex function

1'(Pi', P",Ps')

Zo = 1 gomx Zgxm

To conclude, let us describe an approximation method
$0—820 S—So

which includes more than the elastic unitarity approxi-

The residue p can be calculated from the fact that mation (to say nothing of perturbation theory), but
which is nevertheless su%.ciently simple to be suscep-
tible to numerical solution. This is based on the Dyson
equations for the various field theoretic quantities dis-

cussed earlier. To make the notation as trivial as
possible, we shall illustrate the equations for the 6eld

A= —Z, (s()—(s2,2)D(s())/D'(s()). (6.24) theory composed only of one o meson, with an inter-
action Lagrangian

p(s)ds

(s—2)2.2)'
(6.26)

which agrees with the perturbation expression for Z
calculated directly.

Again, to lowest order, we replace D by 1 in the
numerator and drop all but the one in the denominator.
Thus

d4p
=gD"'+2 1'(pi' (P+P )' (P+Ps)')

(22r)'

X+((p+ p2) 2)f ((p+ps)2 p22 P2)g(P2)

Xr(p', p, ', (p+p )')a((p+p )'), (6.28)

where 6 is the unrenormalized propagator.

"I'". Zachariasen and C. Zemach, Phys. Rev. 138, 8441 (1965).
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~(p')=I:p' —sos o'—&(p')j ' (6.31)

Now the renormalized quantities are defined by

grrr Zr /Zrrrgo

P =Lg.../(g.-.)jZ...P,
hg ——Z.—'h.

Thus, Kq. (6.28) becomes

p(p12 p22 pss)

d4

=g...Z«.+s Pt(pt', (p+ps)', (p+ps)')
(2sr) 4

Xa,((p+p,) )r,((p+ p,), p, , p )a, (p )

XF,(p', p, ', (p+p,)')a,((p+p,) ). (6.30)

Next, we may write an equation for the proper self-

energy part, defined by
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APPENDIX: A SIMPLE MODEL

%'e want to present here the simplest possible model
which is suKciently interesting to have nonvanishing
Z& and Z3. By solving the corresponding ED ' equations,
we can display the functions P (s), F(s) and see that our
representations for them in the text (3.5) and (3.8) are
satished and how the various limits work.

We choose as a model the case where the part of the
force B(s,l) which is analytic in l is given by a simple pole
on the imaginary q axis. To this is added a Kronecker-8
pole, also on the imaginary g axis, say at g with a given
residue —g', where s= q'.

YVe then have

as illustrated in Fig. 3(b). We obtain

d4 f

B(q,l) = — Bgo,
g2 f12 g2 g

2
(A1)

g rrrg(p& f

(2sr) ' where g& and g& vary smoothly with /.

This system meets all the conditions we need to
XP(ps, (p—p')', p"). (6.32) solve for the relevant quantities. Near /=0,

Using Eqs. (6.29) and (6.31), we can now derive the
following equation for 6&.

E(q) g'D(q )D(q„) X(q)
2 (q 0= 4o=, (A2)

D(q) D(q) (q' —q-')D(q) D(q)
ci ( 1 ) d4p' 8

~t(p")
c)ps (at(ps) I (2sr) 4 c)ps

Xpg, ((p—p')s)p, (ps (p—p')s p')j (6.33)

where

&(q) =gt'D(qr)/(q' —qt')

D(q) =1 sg 'D—(q )/(q+qt)

mg p

2

~t(p') (6.34)

~p' ~t(p') n'=-. '

The system of equations is obviously complicated, but
it may not be beyond the reaches of possibility for large
computers. ln any case, precisely these equations have
been studied by Cutkosky and Leon" in connection with
their attempts to analyze the origin of symmetries on
the basis of the bootstrap idea. Their equations, which
they obtain from the Bethe-Salpeter equation, are
precisely Kq. (6.30) evaluated for pt'= ps'= ps' ——m, ',
and Eq. (6.33) evaluated at P'= sss, s, and with
Z, =Z =0.

These two equations, namely (6.30) and (6.33), now
provide us with a closed system of equations from which
we may calculate j."&, 6&, Z, and Z„, in terms of m,
and g, '0 when we add the "boundary conditions"

Ft(SrSr p$ &err )=grrr)

and therefore
D(q )= (1+sg '/2q )-'

where"

D(qt) &(qt)
D(qt)=

1—LD(q-) —1jL&(qt)—1j
D(q-) &(q-)

D(q-) =
1—LD(q )—1jLn(qt) —1]

&(q) =1+sg'&(q-)/(q+q-),

&(q-) = (1—sg'/2q-) '.

(A5)

' Actually, of course, only dimensionless quantities such as
mass ratios may be calculated. This is the usual situation with
bootstraps. This also assumes the existence without cutouts of the
relevant integrals.

s' It is clear that D(s) would be the D function if only the erst
("force") pole (gP, qq) were present in B(q,/); K)(s) if only the
second (CDD) pole (—g', q~) were present; and D(s) is the actual
D function with BI',q, l), which contains both poles, as input.

Similarly,

&(q) = gt'L)(qt)/(q' —qt') —g'D(q-)/(q' —q-')
(A4)

D(q) =1—sgr'D(qr)/(q+qr)+sg'D(q-)/(q+q-)

with
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%e can now de6ne the renormalization constants Z~ and Z3.'

gi'(q„—qi) —2iqi(q +qi)
Zi—=&(q )=

g, (q +q,)—2iq, (q +q,)
(A6)

(g'+2iq )(gi' 2i—qi)(q, +q„)' 4q—iq~gi'g'
Z —=Z D '(q-) = & '(q-) —& '(q-)L&(q )—1jL&(q-)—13= . . (A7)

2iq„(qi+ q„)'(gi' —2iqi)

Note that in spite of its definition Z3 is not proportional to Zi, because D(q ) also has a factor Zi from (A5). The
conditions Z& —+ 0 and Z3~ 0 are therefore completely independent. Assuming g' and q as given, they are

Zi ——0: (ig, '/2gi) = (qi+q~)/(qi —
q ),

Z3 ——0: (igi2/2qi) =—

This gives the unique solution for gq and qz.

g'(qi+q )'+2iq (qi+q )'

g'(qi —
q )'+2iq„(qi+q„)'

(AS)

gi'= g'L(g' —»q-)/(g'+»q-)3, qi= q-L(g' —2iq-)/(g'+2iq-) j (A9)

This solution can be approached along the line Zi= 0 or along the line Zq= 0, making Zi/Zaquite undefined. In
the limit, the amplitude is dynamic and independent of the ratio Zi/Za although E and D separately are not.

We can also write explicit expressions for Fi(q) and the form factor Ii(q):

Z1
Fi(q) =g&(q-)/&—(q) = g

Z + (q' —q-') t:(1—Z )/(q+q ) (q+q-) j
(A10)

~(q) =—gD(q-)/D(q) = gZ+(q' —
q '){Z —Z L1+( g'/2q )(q —

q )/(q+q )j)/(q+q )(q+q )

which gives for the functions n(q) and P(q) from the text

(A11)

1+(ig'/2q-) (q-—qi)/(q+q-)
Z3P(q) = —Z1

(q+qi) (q+q-) (q+qi) (q+q-)

Note that asymptotically as q
—+~,

Zg
Fi(q)

1—(1—Zi)(qi+q )/q

but

(A13)

~(q) g
Z,+ (1/q) L(Zi—Zi) (qi+q~) —Zi(ig'/2q„) (qi —q~) )

so that when Zi vanishes, Fi(q) always vanishes with Zi. However, the form factor P(q), which usually vanishes
with Zi and is asymptotic to gZi/Z&, stays finite in the case Z&/Zi -+ 0, Zi -+ 0 and goes asymptotically like

&(q) ~ q . ,
= (q/q-) La+»q-/g)

(qi+q„) (ig'/2q ) (qi q—)—
from (A9).

Finally, the pole of Fi(q) is at qo given by

qo= q
—ZiLq„+qij
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and therefore moves to q when Zt-+0. The corresponding residue of —Ft(q)(q' —q ')-'F(q) in the amplitude
7 atqois

&(qo) =g'(1 —Zt)/f 1—Zs+Zt(sg'/2q~) (qt —q~)/L2q~ —Zl(q~+q1) j)
and therefore, as qo~ q with Z~,

R(qp) —& g'/(1 —Zs)

and clearly then, when Z3 —+ 0, the residue approaches g and cancels the elementary pole. This conclusion is again
independent of any ratio Zt/Zs.
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The m and p electromagnetic masses are calculated within the framework of chiral dynamics, including
a p-7 form factor. "Anomalous-magnetic-moment"-type couplings of pqi-21- and Appar are included, but it is
found that their contribution to bm is very small. The dependence of the results on the form factor is
discussed.

I. INTRODUCTION

S INCE the first successful chiral calculations of the
pion electromagnetic mass splitting, "it has been

discovered by several authors' ' that once the simpli-
lcation (m /nt, )v=0 is removed, the original procedure
would lead to a logarithmically divergent result. In a
recent paper'5 Schwinger has proposed that the low-

energy description of a phenomenological local coupling
of the photon to the neutral p meson must be eventually
recognized as nonlocal and descirbed by a form factor.
With a suitable choice of the latter, the z as well as the

p electromagnetic masses, among other things, are then
calculable. In this paper we present these calculations
within the framework of chiral dynamics. ' Under the

* Supported in part by the U. S. Air Force Ofhce of Scienti6c
Research.

'T. Das, G. Guralnik, V. S. Mathur, F. E. Low, and J. E,
Young, Phys. Rev. Letters 18, 759 (1967).

~ Several derivations are given by J. Schwinger, Phys. Rev.
165, 1714 (1968); 167, 1546(E) (1968).' J. Schwinger, Phys. Rev. Letters 19, 1154 (1967).

'M. B. Halpern and G. Segrb, Phys. Rev. Letters 19, 611
(1967);G. C. Wick and B.Zumino, Phys. Letters 25B, 479 (1967);
I. S. Gerstein, B.W. Lee, H. T. Nieh, and H. J. Schnitzer, Phys.
Rev. Letters 19, 1064 (1967).

'Recently T. D. Lee proposed that couplings between the
photon and known particles (strongly and weakly interacting) are
mediated by a hypothetical intermediate boson PT. D. Lee,
Phys. Rev. 168, 1714 (1968)g. There are diGerences between the
two approaches, however. For instance, in Schwinger's proposal
the form factor appears only in the couplings between the photon
and strongly interacting particles.

e S. Weinberg, Phys. Rev. Letters 18, 188 (196'7); J. Schwinger,
Phys. Letters 248, 475 (1967);J. A. Cronin, Phys. Rev. 161, 1483
(1967); J. Wess and B. Zumino, sbtd 165, 1727 (19.67); L. S.
Brown, ibid. 163, 1802 (1967);P. Chang and F. Gursey, ibid. 164,
1752 (1967); B. W. Lee and H. T. Nieh, eNd 166, 1507 (1968)..

assumption that the form factor is dominated by a
single mass value, we have found that the experimental
value of the m- mass splitting is reproduced if the mass
value M that appeared in the form factor is about Snz„.
This form factor is then used to calculate the p mass
difference. For a wide range of M values, bm,
(=tn, +—m, o) is found to be negative and with the
magnitude about or less than 1 MeV. It is interesting
that the negative sign of bm, persists for such a wide
range of 3I values. Experimentally, the situation for
bm, is not clear. However, new data seem to support
the assertion that 5m~ is negative. "

Since the same form factor also appears in the
radiative corrections to weak processes, it would be
desirable to apply the form factor determined here to
study the quantitative correlations among these elec-
tromagnetic eGects in strong and weak interactions.
Another implication of the knowledge of the form factor
lies in the following considerations. Electromagnetic
and weak interactions are external disturbances to the
strongly interacting particles. Thus the form factors
connecting the photon and the (hypothetical) inter-
mediate bosons to the strongly interacting particles are
presumably alike, since they are a phenomenological
way of summarizing the properties of strong-interaction
effects. The low value of M ( 4 BeV) is perhaps
relevant in explaining the extremely small mass
diGerence of E~' and E2' mesons. All these considera-
tions will be deferred for another communication.

~ See the new compilation of A. H. Rosenfeld e5 al. , Rev. Mod.
Phys. 40, 77 (1968).


