
P H Y SI CAL R EV I EW VOLU M E 17i, NUMBER 5 25 J UL Y 1968

Variational Principles for Crossing-Symmetric Off-Shell Equations~
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Variational principles for the vertex function and the two-body scattering amplitude are constructed,
based on crossing-symmetric dynamical equations. Our expressions are stationary under variations of all the
trial functions that enter. All relevant channels are treated in a manifestly symmetrical manner.

I. INTRODUCTION

A LTHOUGH the Bethe-Salpeter (BS) equation is
an exact equation for the scattering amplitude,

most recent studies of the equation have involved ap-
proximations that badly violate crossing. ' The ladder
approximation, for example, in which the interaction
kernel consists of the one-particle-exchange graph, pro-
duces an amplitude satisfying elastic unitarity in one
channel only. We shall consider here integral equations
for the interaction kernel that will guarantee crossing
symmetry, and thus yield an amplitude that satisfies
elastic unitarity in all three channels. ' The equations
are highly nonlinear, and certainly intractable using
conventional methods. However, we shall show that it
is possible to write a variational principle that yields a
stationary expression for the crossing-symmetric T
matrix, which should provide a sounder basis for a study
of approximate solutions to the equations.

We have considered a particular crossing-symmetric
equation for the proper vertex function' and have found
an associated variational principle for this equation
also. The stationary expressions for these two problems
are very similar in form but since there are fewer
particle lines for the vertex problem, its variational
principle is considerably more transparent. Since the
essential features are present for the vertex function, it
will be presented first to serve as a motivation for the
form of the stationary expression for the T matrix.

II. VERTEX FUNCTION

A. Dynamical Equations

Given a trilinear scalar interaction yy~q~y3, we
should like to write a linear integral equation for the
proper vertex function I'(k,P). The vector P is the mo-
mentum of the left leg in Fig. 1, and k is the relative
momentum in the other two legs. Let us base our dis-
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Rev. 111, 948 (1958); W. Zimmerman, Nuovo Cimento 21, 249
(1961);N. Khuri, ibid 22, 1023 (1961).; J. G. Taylor, SuppL ibid.
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cussion on the BS equation for the T matrix illustrated
in Fig. 1(a);

2'(k'k P) =X(k' k P)

+ d4q T(k', q; P)G(q,P)E (q,k; P). (2.1)

We define I'(k,P) to be the sum of all three-line graphs
that do not have a one-particle intermediate state
t Fig. 1(b)$:

I'(k,P) =y+y d4q G(q; P) T(q, k; P). (2.3)

Inserting Eq. (2.3) in Eq. (2.1), we can easily arrive at
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Fro. 1. (a) Bethe-Salpeter equation for the T matrix; (b) de6ni-
tion of the vertex function; (c) dynamical equation for the
vertex function.

The interation kernel E(q,k; P) is the usual two-body
irreducible kernel minus the direct-channel pole graph
in the variable P, i.e., it contains all graphs that do not
have a one- or two-particle intermediate state. The
Green's function G(p; P) is the product of two single-
particle propagators:

G(q; P) =&i'((q—rsP)')~s'((q+-'P)') (2 2)
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FIG. 2. (a) Approximate interaction kernel; (b) resulting crossing-
symmetric equation for the vertex function.

an equation for F (k,P) [Fig. 1(c)$:

F(k; P)=y+ d4q I'(q; P)G(q; P)E(qk; P). (24)

Equation (2.4) is an exact equation for the proper
vertex function, and thus F(k; P) will be crossing-sym-
metric. However, the approximation of E(q,k; P) by a
finite set of graphs (e.g. , single-particle exchange) will

clearly break crossing symmetry since the equation will

iterate that set of graphs in one channel only. Rather
than including a few graphs in E, we should like to intro-
duce an approximate E that preserves crossing sym-
metry for F. Such a E is simple to find, as shown
in Fig. 2(a):

E(q,k; P) = F(-,'(—8+k—k'); —k —k')
XAs'((k —k')')F(-', (—P+l's —k'); k'+k) . (2.5)

The equation for F now becomes

Let us examine the first-order variation of [Fg with
respect to I' and T [Fig. 3(b)j:
8[F)=8FG[E—T+EGTg

+[ F+—y+FGEjGST. (2.8)

Thus this expression is stationary with respect to first-
order variations of F and T about the exact solution to
Eqs. (2.4) and (2.1), respectively. However, we notice
from Eq. (2.8) that T must satisfy the transpose of
Eq. (2.1), but for symmetric potentials the two forms
are equivalent. Now the error in [F]will be of second
order in the error of a trial F and a trial T inserted on
the right. We have assumed that E is a known operator
and is independent of F and T. This expression is not
stationary with respect to variations in E and thus if E
is not known exactly, an error in IC will produce a first-
order error in F.

The crossing-symmetric equation (2.6) has an un-
known potential E, since E depends in turn on the un-
known function F. This makes the variational principle
(2.7) inadequate for our purposes. It is also clear that
(2.7) does not treat the three legs of I' symmetrically.

It is possible to invent a form that overcomes both of
these difhculties. Consider the expression

[Fj=&+FGE+ T,G,[—F+&+FGEj, (2.9)

where T3 and 63 are the three-body T matrix and free
Green's function, respectively, and the products have a
meaning as defined in Fig. 4(a). Let us consider varia-
tions of the unknown functions on the right. The result
of carrying out the variation can be seen most easily in
pictures as shown in Fig. 4(b). The variation 8Ts gives
Eq. (2.6) for I', and the variation 5F gives a linear inte-

F(u;P)=~+ d4qF(q;P)A, '((.',P q)')-— + CL-K'

X5s'((-'P+ q)') I'(-' (—P+ k —k') —k —k')

XA, '((k —k')')F(-,' (P+k —k'); k'+ k) . (2.6) + ( —~r + ~ + ~r K

This equation is obviously no longer linear in F. An
iterative solution of this equation shows that it sums all
nested triangle graphs, as one can see by iterating
Fig. 2(b).

B. Variationa1 Princiy1es

Our goal is to write a stationary expression for F
satisfying Eq. (2.6), but first let us write a variational
principle based on the linear integral equation (2.4) and
point out its drawbacks for yielding a crossing-sym-
metric vertex function.

The desired stationary expression can be written in
operator form [Fig. 3(a)j:

[Fh=v+FGE+[ F+y+FGEjGT. (2.7)—

+ &
—~r + ~ + ~r K

(b)

Pro. 3. (a) Stationary expression for the vertex function)based on
the linear equations of Fig. 1; (b) first-order variation of the above
expression with respect to the trial functions. The brackets
vanish if T and I' satisfy Eqs. (2.1) and (2.4), respectively.
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(b)

Fro. 4. (a) Crossing-symmetric variational principle based on
Fig. 2(b); (b) first-order variation of the vertex function. The co-
efficient of BT3 vanishes by construction. The vanishing of the co-
eKcient of BF yields a linear three-body equation for T3.

gral equation for the three-body T matrix with the sym-
metric sum of two-body potentials.

It appears necessary to introduce the full three-body
amplitude in order to achieve a crossing-symmetric
variational principle; it should be noted, however, that
the three-body amplitude is needed only for the total
three-body energy equal to zero. The three-body equa-
tion has five nontrivial integrations for E&0, but only
three at 8=0. This also suggests the conjecture that an
e-particle linear equation is associated with an e-line
crossing-symmetric amplitude in constructing a cross-
ing-symmetric variational principle. This is, in fact,
true for m=4 as we will show in the following sections.

III. CROSSING-SYMMETRIC T-MATMX
EQUATIONS

I et us now consider the elastic scattering of two self-
conjugate spin-zero particles. For simplicity, we shall
demand that the process be elastic in all three channels
in order to avoid inelastic channel sums, hence the con-
dition of self-conjugacy. The basic interaction can be
left open for the time being, except that we will not allow
a p' coupling with all three masses equal. The presence
of this coupling causes complications that will be dis-
cussed later. We shall consider the particles to be pseudo-
scalar, so that a three-field interaction is not allowed.
For definiteness, we shall assume a y4 interaction in the
following discussion, but our final results are true under
much more general types of interactions.

We shall rely heavily on pictures for this discussion,
and it will be convenient to define a direction to corre-
spond to the three possible scattering channels. The s
channel will be horizontal, that t channel vertical, and
the I channel into the paper.

First, consider the derivation of the standard BS
equation. in the ith channel (i= s, t, I). The sum of all
graphs that cannot be cut into two separate graphs by
cutting only two propagators in the ith direction will be
denoted by E;.Thus E; is the two-particle irreducible
kernel of the ith channel. Since all graphs are either in
this class or have a two-particle cut, this serves as a
complete classification of diagrams. All the graphs that
contribute to the T matrix can be classified by starting
at one end of the diagram and moving to the other in
any one of the three channels.

If no two-particle cut is found moving in the ith di-
rection, then that diagram belongs to E,. The sum of all
graphs that do have a two-particle cut are of a simple
form. To the left of the first two-particle cut that can be
made in the s channel, for example, there are no two-
particle singularities, therefore the sum of all such con-
tributions is E,. To the right of the cut, one has all
possible contributions, which is the T matrix itself.
Thus one has the equations

T= K,+K,G,T, (3 1)

)K ( + )x,(

(b)

(c)

FIG. 5. Bethe-Salpeter equations for the s, t, and I, channels.
The lines inside the interaction-kernel squares indicate which
channel has no two-particle state, e.g. , the lines in E, connect
1+3 to 2+4, and 1+4 to 2+3, but do not connect 1+2 to 3+4,
the channel with no two-particle state.

where 6; is the product of two Feymnan propagators in
the ith channel. Figure 5 shows diagrammatic repre-
sentation of these equations. The T matrix and the E's
are represented by a circle and squares, respectively;
the lines inside the squares serve to tell at a glance which
direction has no two-particle state. For example, in the
s channel [Fig. 5(a)) the lines are meant to indicate
that there is no two-particle state for the process
1+2~ 3+4 but there may be two-particle states for
the processes 1+3—+ 2+4 and 1+4-+ 2+3.

If we find a T that is a solution of all three of these
equations it will be guaranteed to be unitary in all three
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Fro. 6. Equation (3.2) for the interaction kernei E,

channels. If we approximate G by two bare propagators,
then unitarity will be ensured only in the two-particle
sector. The usual approximations to the irreducible
kernel by a finite set of graphs will clearly lead to an in-
consistency between the three BS equations.

The next step is to find equations for the E's. Con-
sider E„ for example, all contributing graphs can be
classified into four groups: (i) those with no two-particle
t or u cuts, (ii) those with a t cut, (iii) those with a u
cut, and (iv) those with both cuts. Taking our example
of y4 coupling, it can easily be seen that there are no
diagrams of type (iv). The sum of type-(i) diagrams we
shall denote by V, which we shall term comp/etely ir-
reducible. The sum of diagrams of type (ii) takes an
already familiar form, E,G,T, and similarly, type (iii)
takes the form E„G„T.So that we finally have the
equation illustrated in Fig. 6:

E,= V+E(G,T+E„G„T. (3.2)

It can easily be checked that E&G&T has only a t-channel
two-particle cut, and E„G„Tis only a I-channel two-
particle cut, so that this is indeed a unique classifica-
tion of diagrams. There are similar equations for E&
and X„,giving, finally:

cle has a mass p which is larger than the mass of the
external particles. Then a unitary T matrix in the two-
particle sectors up to the 2p, particle-production thresh-
old will be produced by the equations. Pole terms in

which the internal particle is the same as the external
particles are not allowed. The T matrix and all the X's
contain V to lowest order. Looking then at the E, equa-
tion for example, (Fig. 6), the K~G~T term will contain a
box diagram giving a two-particle state in the s chaemel

which is not allowed. In fact, the equations will gener-
ate the three diferent box diagrams with corrected
vertices and propagators that must be subtracted out
of V. This subtraction not only avoids double counting,
but also restores the two-particle irreducibility of the
E matrices.

T= V++ E;G,T,
T=K;+K;G;T.

(4.1a)

(4 1b)

IV. VARIATIONAL PRINCIPL FOR THE
CROSSING-SYMMETRIC T MATMX

A. Statement of the Stationary Expression

Our goal is to write an expression for the T matrix
that is stationary with respect to first-order variations
of all unknown functions about their true solutions.
Our approach is to write an equation for T and add to it
terms that go to zero if all functions are exact solutions
but chosen so as to cancel the first-order error in T.

Our first step is to choose four independent equations
out of the set (3.1) and (3.3) in a symmetrical way;

E;=V++ K,G;T. (3 3) We can then write our result in operator form by
defining

The six equations L(3.1) and (3.3)] are not indepen-
dent. It can be easily checked that the set of E equa-
tions, together with the BS equation in one channel,
imply the BSequations in the other channels. Note also
that there is one algebraic relation among, 'the functions:

L= V++ (K,G;T+—TG,K;

—E;G;E; K,G;TG,K,) . (4—.2)

Our variational principle is then

T= '(Q E—V). - (3.4) $Tj=L+T4G4(L T), —(43)

We can now define a crossing-symmetric model by
restricting the input V to a small number of diagrams.
The only information about the specific interaction ap-
pears in V. For a p4 theory, the basic coupling itself
)Fig. 7(a)$ would serve as a suitable model V. For a
three-field coupling, the sum of pole terms shown in
Fig. 7 (b) is appropriate provided that the internal parti-

(o) V

(b) V

FlG, 7, Examples of approximations to the "completely irreduci-
ble" kernel V,

where T4 is a four-particle T matrix and G4 is the four-
particle free Green's function. Some discussion is in
order about the meaning of the operator products. The
meaning and structure of this stationary form is con-
veniently expressed in terms of pictures.

Half the battle is won by drawing all external lines for
each term to the left. The definition of L, is shown pic-
torially in Fig. 8. The terms in the sum for i =s are
shown. The first term, E,G,T, is the same diagram as
the product in Fig. 5(a) except that lines 3 and 4 are
crossed back to the left. The terms IC&G&T and E„G„T
are shown explicitly, and it will be left to the reader to
complete the other t and I terms. This is a straight-
forward task if it is remembered that G; propagates two
free particles in the ith channel. Having defined I-,
the variational principle takes the simple form shown
in Fig. 9,
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We have chosen to write the variational principle in
terms of T matrices but it could be translated into ex-
pressions involving wave functions or full Green's func-
tions. This may not be the most eKcient form for actual
calculation since the number of integrals that must be
performed depends on which form is chosen. Also, it
may be desirable to introduce inverse propagators
which are local operators in coordinate space rather
than propagators themselves.

B. Demonstration of the Stationary Proyerty

We shall consider the variation of the left-hand side
of Eq. (4.3) due to variations in E;, T4, and T. The co-
ef5cients of the variations will be the Eqs. (4.1) and a
de6ning equation for the new function T4.

1. Variations of E;
Note that E; appears only in J. Thus we can write

bfT) = (14+T4G4) (bL/bE~)bE;, (4.4)

where 14 just means the four-particle identity. The 6rst
factor is nonzero in general, so let us ignore it. The
graphica1. meaning of the remainder of this expression is
shown in I'ig. 10, for i =s. Though the 6gure may look
complicated, the rules for construction of the diagram
are very simple: Compute the 6rst-order variation of
the expression, then pull the variational term to the
right by deforming any necessary lines. It is clear that
the first-order change vanishes if the s-channel BS
equation is satisfied. Similarly, the variations of E&
and E will give the BS equations in the t and I chan-
nels, Eq. (4.1b).

3. Variations of T

The factor T appears linearly in the variational princi-
ple. Varying T and pulling 8T to the right in each
term yields

b/Tj= {—T G +bL/bT+T G bL/5T)bT. (4.5)

The expression in the brackets vanishes if T4 satis6es
the four-particle linear BS equation with a potential
(bL/bT)G4 ', illustrated in Fig. 11.

We must still show that (hL/bT)G4 ~ is indeed an ac-
ceptable potential for the four-body problem to justify
calling T4 a T matrix. Denoting (bL/bT)G4 ' by E4, we
define a notation for the various terms as follows:

E =E4'+E4'+E4" (4.6a)
where

E;=E,G=, +G; E; E,E;, (4-.6b)

and similar definitions hold for E4' and E4".An s label

BL
SK

4

+ ~T

Z. Variations of Tq

The variation of LTj with respect to T4 gives the
equation T=L (see Fig. 9). We can now use the three
basic BSequations, and immediately deduce Eq. (4.1a).

) (~r i )s(

FIG. 9. Crossing-symmetric variational principle for the T matrix.

FIG. 10. Graphical demonstration that I is stationary with
respect to variations of K,. Similar results hold for variations
of Kg and K'„.
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Fio. 11. (a) Variation of [Tj with respect to T; (b) four-body
potential which yields T4 and which therefore makes LTg station-
ary with respect to variations of T.

indicates that the operator acts on particles 1 and 2, and
8 denotes 3 and 4. The inverse Green's functions are
present to cancel the extra propagators in G4 for those
particles which do not interact.

First, note from Fig. 11(b) that the two-body E's are
hooked up in the correct manner so that there is no
direct two-particle state. This is clear from the structure
of the diagrams because the lines inside the boxes do not
connect an initial state to a final state. Second, we must
justify the presence of the three terms in, for example,
E4' (4.6b). The s and 8 labels refer to two distinct sets
of particles, which do not interact if E4' and E4" are
zero. The two sets of particles then propagate inde-
pendently and thus the full four-particle Green's func-
tion must factor into two two-body Green's functions.
The specific form of V, ensures that this will happen.
Consider

H, =G;+G;K;H;, 2=s or N'

H4= G4+G4E4'H4,

(4.7a)

(4.7b)

V. DISCUSSION AND CONCLUSIONS

The stationary principles derived in this paper suGer
from the defect of being quite complicated. However,
the problem that one is trying to solve is extremely corn-
plicated also, and it is this property that is well hidden in
the approximations (i.e., the ladder approximation, sum
of bubbles, etc.) used so far in studies of the BS equa-
tion. Thus the crossing-symmetric equations and their

where H; is the full two-particle Green's functions for
the set i, and II'4 in the full four-particle Green's func-
tion. The product equation is

H,H;=G,G;+G,G;(K,K;+H, 'K;+H; 'K,)H,H;. (4.8)

Since H, =6; '—E; and 64 ——G,G™,we immediately
arrive at the form for K4' given in Eq. (4.6b).

associated stationary principles have the possibility of
containing some of the physics of the problem.

Before proceeding to a general discussion, let us first
outline a simple calculation which one might attempt
with the stationary principle for the case of pion-pion
scattering. The simplest choice for V is the four-field
point interaction strength X. Similarly, one can choose
trial constants for the E,(=)'s) and T(= t) Fo.r the four-
particle T matrix T4, one can choose E4, where each
two-particle Ematrix is replaced by the trial constants k.

With the above choice for the trial functions, one
finds that I.can be expressed in terms of the constants
~, k, and t, and the bubble, diagrams in all three chan-
nels. Since these are in6nite, one could renormalize by
subtracting at the symmetry point and introducing
renormalized values of X, A;, and t. The variations of
A: and f, are then carried out in such a way that the
(renormalized) value of LTj at the symmetry point is
Axed at the value ). The general question of the re-
normalizability of these equations has not been studied.
In any case, it is easy to see that the final form for LTj
involves only one-dimensional dispersion terms because
of the simple choice that has been made for the trial
functions. Thus it is a simple matter to 6nd the sta-
tionary values of k and t. If these are not to depend on
the energy variables in the three channels, then one
must choose definite values of these variables in the
region of primary interest and optimize for these values.

Another question that has not been settled completely
is whether one can perform a Kick rotation in these
equations. There does not seem to be any obvious

difhculty in performing the rotation in all three channels
simultaneously, but we have not been able to prove that
it is always possible.

One possible approach to solving these equations is
to examine the iterative solution, i.e., to find what low-
order Feynman diagrams the equations generate. De-
noting the sum of diagrams of order e by T„, we have

~f17 1+~ f27 2+ ' ' '
~

We can choose the numbers f„=1,which would yield
the iterative solution again. But if we instead treat the
f„as variational parameters and insert this form in our
variational principle along with similar forms for T4
and E;, and vary the parameters to And the extremum,
we would hope to get an improved answer. This pro-
cedure can be carried out for a linear BS equation and
the Schwinger variational principle; the result is that
the best T is a Pade approximant4 in A,. Put another

way, given a truncated perturbation series in ), Sch-
winger's principle tells one to construct a ratio of poly-
nomials in X and gives one the coefficients. Such a form
has the possibility of generating poles in X correspond-
ing to bound states.

This procedure will generate something much more
complicated than Pade approximants for our varia-

' J. Nuttsll, Phys. Rev. 157, 1312 (1967).
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tional principle. Because the equations are nonlinear
we shall get branch points in the X plane. Such branch
points are expected because intermediate states con-
taining two bound states are generated by the equation.

One final point is that the variational principle for the
vertex function should be useful in dynamical calcula-
tions such as that performed by Cutkosky et al. s in their
discussion of internal symmetry and symmetry break-
ing via the bootstrap hypothesis. However, there is some
delicacy in using the vertex equation LFig. 2(b)] for
defining a bootstrap. If we set the inhomogeneous bare
coupling term p equal to zero and consider the remain-
ing terms as an integral equation for I' (i.e., I'= I'GE),
we find I'=—0. The integral around the triangle loop has
three nontrivial single integrals that can be chosen to
be the invariant for each internal line. It is then neces-
sa

solve the integral equation. Now consider a BSequation
with the potential LFig. 2(a)j

T=E+EGT.
If this equation is closed o6 on the left to form

I'GT = I'GE+ I'GEGT,

then by using the integral equation F=Ft"E, we im-

mediately find I'=0 or T= ~. If the happened for one
value of s, we should be at a bound-state pole of T. But
it is true for all s, hence I'=—0. It is clear that we can de-
mand the relation I'= FGE only for isolated values of s,
but then we no longer have an integral equation for F.
This difEculty does not exist for p &0.
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It is shown, using the E(2) basis for the unitary representations of SL(2,C), that the spacelike and time-

like solutions to the Abers-Grodsky-Norton wave equation do not decouple at indnite momentum. It is con-

cluded that this equation cannot be used to saturate the (isospin-factored) algebra of currents.

1. INTRODUCTION
' 'T has recently been suggested' that infinite-compo-
' - nent wave equations could be used to saturate the
algebra of currents with one-particle states at infinite

momentum, at least for the case in which the isotopic
spin is factored out. However, the possibility of such
saturation depends critically on the assumption that
either no spacelike solutions to the wave equation exist,
or, if they exist, that they decouple from the timelike
solutions at infinite momentum.

More recently, it has become clear' that for the Abers-
Grodsky-Norton' (AGN) wave equation originally pro-

*On leave of absence from the Dublin Institute for Advanced
Studies, Dublin, Ireland.' M. Gell-Mann, D. Horn, and J. Weyers, in Proceedings of the
1967f1eidelberg Conference onElementary Particle, s (North-Holland
Publishing Co., Amsterdam, 1968).' S. J. Chang and L. O'Raifeartaigh, Phys. Rev. (to be pub-
lished); L. O'Raifeartaigh, in Proceedings of the Fifth Coral Gables
Conference on Symmetry Principles at High Energy, January, 1968
(W'. H. Freeman and Co. , San Francisco, 1968).

3 E. Abers, I. T. Grodsky, and R. K. Norton, Phys. Rev. 159,
1222 (1967).

posed, and more generally, ' for any physically reason-
able nontrivial infinite-component wave equation,
spacelike solutions do indeed exist. The purpose of the
present paper is to show that for the original (AGN)
wave equation the spacelike solutions do rot decouple
at infinite momentum.

2. HORMALIZATIO5' CO5DITIO58

Let 0', (p) and %,(p) denote the spacelike and posi-
tive-frequency timelike solutions to the AGN wave

equation, respectively, where 0' is an infinite-component
spinor which transforms according to a Dirac&unitary
irreducible representation (UIR) labeled (jp,c) ' of
SL(2,C). Here p denotes the 3-momentum; r= (nt, js),
where m, which depends on j, is the mass of the particle;

j is the spin; and ja is the third component of spin in the

4 I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20, 695
(1968).

~ I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorents Groups and Their Applications
(Pergamon Press, Ltd. , London, 1963). For an irreducible repre-
sentation, the invariance of the theory under parity requires that
jpc=o.


