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A semiclassical theory is developed to describe high-energy (&10 BeV) reactions of hadrons with large
nuclei. Coulomb phase effects are important, and they are accurately included in the formulas obtained.
The theory is applied to data of Bellettini et at. at CERN for scattering of 1 93- BeV/c protons on large
nuclei, Semiquantitative agreement of theory and experiment is obtained. However, for the case of a lead
target, variation of the parameters in the theory did not produce a theoretical curve which agreed with the
experimental p-Pb differential cross section over the entire range of angles measured. To obtain agreement
at the smallest angles (before the ffrst diffraction dip), it seems necessary to assume a much more diffuse
nuclear surface than is indicated by electron scattering data, This is the regime in which the theory should
be most reliable. To reproduce the oscillations in the data at larger angles, one seems forced to assume a
fairly sharply defined surface, only slightly more di6use than electron scattering suggests. Reasons are
given why the effective nucleon density may be more diffuse for proton scattering than for electron scatter-
ing. Further experiments are suggested.

I. INTRODUCTION

W~BSERVATION of hadron interactions with nuclei
is a staple of the nuclear physicist. However,

theoretical analysis of such observations is simplified
enormously when the incident hadron has a very high
energy. The main reason for this is that the hadron
travels faster than the characteristic excitations of the
nuclear medium. It arrives at any point in the nucleus
before any other signal of its presence resulting from
previous collisions with target nucleons. The hadron
takes a "snapshot" of the nuclear ground state. Thus
the full complexity of the many-body problem can be
avoided, and one can use the incident hadron to probe
nature's solution to the 3-body problem for a nucleus
of mass number 3 without solving the corresponding
(2+1) problem.

The large accelerators now available make it feasible
to carry out such experiments. Quantitative theories
with only a few fundamental parameters related to
hadron-nucleon interactions and to the structure of the
nucleus can thus be tested.

In this paper, we present a crude beginning of such
theoretical efforts. In Sec. II, we give a semiclassical
theory of high-energy hadron-nucleus interactions. The
main advantage of our discussion over previous ones'
is that it permits the easiest possible transfer of classical
intuition to a quantum-mechanical problem. In Sec.
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III, we analyze some data of Bellettini et al.' on proton-
nucleus scattering at 19.3 GeVjc. A future paper will
contain an analysis of experimental data on "A&" pro-
duction in nuclei.

A. Eikonal Wave Function

(i) Basic assumptions. Consider a particle of very
high wave number k=kz, incident on a many-body
system. At any point r, the system is nearly uniform on
the scale of the incident wavelength. If it were corn-
pletely uniform, we could deduce from translational
invariance that the wave function would be

li (r) =e'"q (r),
~(r) etKz (2.1)

and k,'=k+E would be the wave number in the
medium. Since the medium is not completely uniform,
we take E as a slowly varying function of r and write
the eikonal wave function

(2.2)

To determine K, we assume that the medium is made
up of scatterers which produce scattered waves f(8)e'e'/r
when a wave e'~' is incident upon them. Only the waves
scattered in the forward direction combine coherently

2 G. Bellettini, G. Cocconi, A. Diddens, E. Lillethun, G.
Matthiae, J. Scanlon, and A. Wetherell, Nucl. Phys. 79, 609
(1966).
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II EIKONAL (HIGH-ENERGY) OPTICAL MODEL

In this section, we expound the conceptual basis of
the high-energy optical model. More formal discussions
may be found in the references. '
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to modify the incident wave. The modification d p from
a slab of thickness ds is then

d(p=icp(r) f'qds. (2 3)

Here p is the density of scatterers and f' is the forward
scattering amplitude on a single nucleon. The geo-
metrical constant ( is easily obtained. The density of
the incoming wave obeys the equation

dl ~ I'/«= 2p I—m(f'5) I ~ I' (2 4)

but this must also be given by the classical attenuation
formula

(2 ~)

where 0-~ is the total cross section for interaction with a
single scatterer. Using the optical theorem

or= (4s./k) Imf'=2K Imf', (2.6)

we find )=X, the de Broglie wavelength, and

z

4( )= '"'~( ) =-c'"' p ds'~f'p(*, y, s') (2 &)

All the calculations in this paper depend on such an
approximation to describe the projectile wave in the
region of the target system.

For later purposes, it is useful to note the relation
between the wave-number shift K(r) and the optical
potential V(r):

E(r) = 8k = '(dk/dE) 8E= (dk/dE) ( V) = ——V/v. (2.8)

We have used the relations E/k((1 and E+V= const;
e is the velocity of the incident particle and E is its
kinetic energy.

What we have found so far is this: Provided that the
nucleus may be treated as a gas of slowly moving free
nucleons and that the incident hadron propagates freely
through the nucleus between collisions with these
nucleons, then at high energies the maze function q

develops in the same way as the classical ieteesity dis-
tribution I, for unscattered beam particles, with the
substitution —or —+ if'= ——,ar+i(Ref)X. Since the
quantum-mechanical intensity I@ is simply

~
p ~, I, and

I@ are the same if the target particles are uncorrelated,
but we shall see that differences arise when correlations
are present. These differences occur because the quan-
tum-mechanical wave packet is coherent over regions
large compared with internucleon spacing, or, for that
matter, to the size of the nucleus. In the practically
impossible case that the packet has dimensions of 1 F
or less, one would use I, instead of Ig to describe the
beam. Of course, in this limit there would be no dif-
fraction scattering by the nucleus.

Our derivation applies only for a dilute gas of
nucleons, i.e., one in which the separation of target
particles is large compared with their size (the range of
force between target and projectile). Nevertheless,
(2.7) is correct even for a dense gas, provided that the

density varies little over a target-particle diameter and
that the nucleons are uncorrelated. '

(ii) Spin effects. To order 3 ', where A is the mass
number, there are as many nucleons with spin up as
with spin down at any point in a nucleus. Therefore the
quantity f' which appears in (2.7) must be averaged
over the target-nucleon spin —,'0-. For the same reason,
f' is averaged over the target isospin 2s, with a weight
factor 1—(1V—Z)/A ~,. This spin and isospin averaging
makes the nuclear scattering sensitive to a different
amplitude from that which describes forward scattering
on a free target nucleon. Thus comparison of results
with nucleons and nuclei as targets may permit the
isolation of spin-dependent effects. This couM. be useful,
for example, in high-energy p-p scattering, where the
forward scattering amplitude may be written a+be&
e2+co.i,0.2,. Direct determination of u, b, and c sepa-

rately would require a double polarization experiment,
which is impractical at present.

(iii) Impulse approximation. There are several factors
which may lead to deviations from (2.7). We have
assumed that the sca,ttering amplitude f(8) is the same
in the medium as for a free target particle. The validity
of this assumption, which constitutes the "impulse
approximation, " is discussed in Appendix A. Suffice it
to say here that the error associated with this approxi-
mation is expected to be small (&1%%uz) for the applica-
tions which concern us.

(iv) Correlation effects. We have assumed so far that
the target particles are uncorrelated. We may see the
effect of correlations by semiclassical considerations.
Assume that there are only two-particle correlations.
We wish to compute the probability 8p that the tra-
jectory of an incoming projectile will intercept exactly
one target particle in an interval 6s small compared
with the mean free path but large compared with
correlation distances. To second order in bs, this
probability is

8p= (probability of at least one collision)

—(probability of two collisions)

6z 5z Sz

ds p(ss)ar ds ds'p~'&—(ss s's)~r'
0 0

(2.9)

$,, (r) = ds C(r, r+s,).

The approximation of integrating C to infinite s= s —s
is justified because 8s is large compared with correlation
distances.

' Glauber (Ref. 1), p. 390.

with p "&(r,r') =p(r)p(r')$1+C(r, r')), and the correla-
tion function C depends strongly on the difference of
its arguments s=r —r', but weakly on the average
R=-', (r+r'). The result is

&p= p~r&s , (p~r&s)' p~r&s(p—or(R.), (2—.10)
with
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The second term in (2.10) is simply the second term
in the expansion of bp=1 —e ' r'*, the probability of
interaction in the absence of correlations. The third
term, linear in bs, implies a correction to the mean free
path to account for correlations:

por ~ poz(1 (R,p—(rr). (2.11)

One may express the implications of (2.11) quite
simply. When target particles clump together, it be-
comes more likely that a projectile which misses one
will miss another, and the mean free path is increased.
The argument is equally valid with all signs reversed.

An analysis in terms of probability amplitudes instead
of probability density (—o.z ~ ifX) leads to the correla-
tion correction to the wave-number shift IC,

Ks(r)=hp(r)f'L1+iXp(r)f'(R, (r)j. (2.12)

The alert reader may notice that the correlation term
in (2.12) is only half that suggested by applying the
optical theorem to (2.11).This is a genuine quantum-
mechanical effect.

Following Johnston and Watson, 4 we shall take (R,
= —0.8 F in saturated nuclear matter. This turns out
to decrease by about 20% the mean free path of a proton.
in the interior of a nucleus. The negative (R, reflects the
almost universal assumption, still untested experi-
mentally, that nucleons in the nucleus do not inter-
penetrate each other.

In the outer region of the nucleus the density falls
below its central, saturated value, and the nucleons may
cluster in regions of higher than average density, leaving
holes between them. Such clustering would imply posi-
tive values of (R, (r) at the nuclear surface. Alpha-
particle clustering (which, of course, involves up to
four-nucleon correlations) could lead to a reduction of
K (no correlations ) by, say, 25%. Such strong correla-
tion effects are best computed, not in terms of (R„but
by carrying out the analysis leading to (2.7) for a
system of target n particles,

K=)p,f '= ,'Xpf ', - (2.13)

where f ' is the forward hadron-u scattering amplitude.
If the total p-n cross section is thrice the p-p cross sec-
tion, we obtain the 25% figure mentioned above. '
Furthermore, the e particle would be "blacker". than a
nucleon, so that the real part of f' for an n could be
proportionately smaller than that for a nucleon. Since
the degree of surface clustering is a matter of consider-
able debate, we have left it adjustable when trying to
fit experimental data.

B. Elastic Scattering Amplitude

(i) Huygen's principle and analogy with partial-wave
expansion. Knowing the eikonal wave function f(r),

' R. Johnston and K. Watson, Nucl. Phys. 28, 583 (1961).
'This is consistent with the ratio 20-(p-He)/(0. (p-p)+0. (p-g))

obtained for 1-BeV protons by G. Igo, J. Friedes, H. Palevsky,
R. Sutter, G. Bennett, W. Simpson, D. Corley, and R. Stearns
(to be published).

we are ready to compute the amplitude for elastic scat-
tering. The wave just beyond the target system has
suffered a complex phase shift Zb relative to a wave in
the absence of the target, with

2b(x,y)= ds K(x,y,s) . (2.14)

We may compute the scattering amplitude by Huy-
gen's principle from the difference between the phase-
shifted wave and an unscattered wave,

k
F(q) =

27ri
dzdy ei(Ptx+&2+l (esses(x, &) 1) (2 15)

using Parseval's integral representation of the Bessel
function Jp.

For small q= k8, we may make the substitutions kb —+
i+st, Js(qb) —+ Ei(cosg) to write the integral as a sum
of partial-wave amplitudes:

F(q) = P(2l+1)F((cosg)(e""—1). (2.17)
2ik ~

Thus, to the extent that our approximations are
valid we have obtained the partial-wave phase shifts
b, = b((t+-', )/k).

(ii) Coulomb effects. In practice, we must take ac-
count of long-range Coulomb forces as well as short-
range strong forces. We do this by recalling the effect
of Coulomb forces on the usual partial-wave expansion':

F(q) =Fc(g)+F~(g),
F~(g) = (2ik) ' P(2l+1)Ei(cosg)e"«(e "& ]), —

(2.18)
F (g) — (~/2b sinstg) e 2(g in sin —',s—e2~~0

rl= Ze'/Av, o i
——argI" (l+ 1+ i') .

Using approximations appropriate to the regime of
the eikonal treatment, l, ))1 and 0«1, we write

k
F(q) =Fo(g)+ db bJs(qb)e'*& '""(e"'(—'& —1). (2.19)

Z p

There is a small additional subtlety here. Equation
(2.19) is obtained by matching partial waves inside the
nucleus to solutions in the presence of a point Coulomb
potential outside. The actual Coulomb potential inside
the nucleus is that of an extended charge distribution.
Thus, in order to match to point Coulomb solutions

' Goldberger and Watson (Ref. 1), Chap. 6. A direct derivation
of Coulomb eGects in the eikonal approximation is given by
Glauber (Ref. 1).

where q is the momentum transfer to the projectile.
If the target is spherically symmetric, then b(x,y) will
be simply 5(b), with b = (xs+y')'Is, and Fmay be written

oo

F(q) =— —bd b Js(qb) (e"'(s&—1), (2.16)
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o;„=2+ b db/1 e '' '&'—&j.— (2.22)

outside, one must introduce inside the nucleus an ef-
fective potential

Vef f (r) = Vcoa t(extended) —Vc.„t(point)

= —Artie dr'(r') ' dr" (r")'p„,h (r"),
r

where p,h(r) is the charge density distribution, nor-
malized to unity. The final expression for the wave-
number shift K is obtained with the help of (2.8):

E (r) =E,(r) —(1/u) V,ff(r) . (2.21)

For high-energy scattering of protons from lead, the
Coulomb amplitude F~ is at least comparable with the
nuclear amplitude at all angles, and precise calculation
of Coulomb effects is essential.

(iii) Total cross sections. By analogy with the usual
partial-wave discussion, we may deduce the total
inelastic cross section:

lation length (also 1 F). Thus we expect deviations
from our calculation for q& 1 F '.

Finally, one might say that the whole approach taken
here has dubious validity because it entails taking
seriously an ordinary space-time picture of events on a
scale of 10 "cm. Since we do not know how to proceed
otherwise, we feel justified in ignoring this objection
until and unless experiment forces us to face it.

D. Inelastic Reactions

(i) Single-interaction effects. If an experiment is not
sensitive to excitation of the nuclear target, then scat-
tering which excites or fractures the nucleus will not be
distinguished from elastic scattering. To compare our
results with data from such experiments, we must
estimate the inelastic scattering. If the particles in the
nucleus are uncorrelated, we may estimate the differ-
ential cross section for exciting the nucleus semi-
classically. First, suppose that the excitation occurs in
a collision with a single-target nucleon; then do/dQ is
given by

To the extent that Coulomb phases may be ignored,
we may obtain the "total nuclear cross section" from

der do
Li —&0(ti)j2 P'

dQ j11 dQy n
(2.23)

„+&,» ~r. ~c.„, 4a. b db—k—i—cos2 Rebe 2™j-,

(2.23)

dQ IP~(()) I'

However, when Coulomb phases are big, interference
between Pp and P& plays an important part and (2.23)
has no direct physical significance. The quantities which
can be compared with experiment are (2.22) and
do/dQ= iP~+Ppi'.

Here do/dQy is the differential cross section fpr ejastjc
scattering on a single-target nucleon, I'g is the proba
bility that the nucleus remains in its ground state, an
we expect Ea«1 for qR))1. The factor p„js the
probability that a projectile passing through the position
of target nucleon e will not be absorbed while passing
through the nucleus. The "effective number' of free
nucleon scatterers is

C. Corrections to Elastic Scattering Cross Section
Xexp —0 «'~(*,y,s') . (2.26)

There are several reasons for possible deviation from
the prediction (2.19) of the elastic scattering from a
nucleus. First, let us backtrack a bit to formula (2.8),
relating E(r) to an optical potential V(r) acting on the
projectile. If V were a true potential appearing in a
Dirac or Klein-Gordon equation, then (2.19) would be
the eikonal approximation to the exact scattering ampli-
tude. Saxon and Schiff7 have estimated the relative
error resulting from the eikonal approximation. For our
case, this takes the form

6P~/P~ O(q'&/0), ——(2.24)

where Eis the radius of the. target. For 20-BeV p-Pb
scattering at q= 1 F ', this js o(7%).

We have taken a smoothly varying optical potential.
In fact, one might expect nonlocal effects over distances
of the order of a nucleon size ( 1 F) or a nucleon corre-

' D. Saxon and L. Schiff, Nuovo Cimento 6, 614 (1957).

In (2.26), we neglect the fact that the path of the prp
jectile is bent slightly by the small-angle scattering at
the point r.

Equation (2.25) actually gives a lower Ijmit tp do/gQ, „
since the possibility of exciting the nucleus by exciting
wo or more target nucleons is excluded. The ratio o

double scattering (without particle production)
single scattering is do2/dot=ra/~r, since two e(ps&jg
scatterings must occur. For incident protons o„/~r js
about ~,' and therefore the order of magnitude of the
inelastic scattering is correctly given by (2.25) jf cpr
relations are unimportant.

Explicit computations confirm the intuitive expecta-
tion that most of the contributions to the effective

See Appendix 3 for a more careful discussion on this point.' K. Foley, S. Lindenbaurn, W. Love, S. Ozaki, J. Russell, anL. Yuan, Phys. Rev. Letters 11, 425 (1963); K. Foley R. yonesS. Lindenbaum, W. Love, S. Ozaki, E. Platner, C. Quarles, anE. Willen, ibid 19, 837 (1967)..
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number of target nucleons (t', (A) originate in the surface
of the nucleus. Thus strong surface correlations could
appreciably alter 8(A). To obtain an upper limit to
such an effect, again suppose that the surface nucleons
are clustered tightly into e particles. The scattering
amplitude on an n is certainly less than four times that
on a single nucleon, probably about three. ' The cross
section on an n particle would then be about 9/4 that
on four uncorrelated nucleons, dropping to the uncor-
related value for momentum transfers large compared
with an inverse n-particle radius. Thus Q, (A) calculated
from (2.26) might be doubled or tripled at small
momentum transfers ((1F ') by surface correlation
effects, but should be very nearly correct as it stands at
larger momentum transfers.

(ii) Deformation effects. We have discussed inelastic
scattering involving single-nucleon or n-particle cluster
excitation. There is another class of corrections associ-
ated with the possibility that the ground state of the
nucleus is deformed. Let us treat these effects in the
adiabatic approximation, that is, let us neglect the
motion of the nucleus during the passage of the fast
(s~c) particle. This should be a very good approxima-
tion for nonspherical nuclei, which have characteristic
rotation frequencies of tens of keV, such as U'".' For
nuclei which have only oscillating deformations about a
spherical equilibrium, with characteristic frequencies of
MeV, such as (perhaps) Pb"'," the passage time of the
fast particle is about 10%of an oscillation period. Thus
the adiabatic approximation should give a slight over-
estimate of the oscillation effect, which is small in any
case.

When the adiabatic approximation holds, we may
calculate the scattering for each orientation 0. of the
nucleus. The eikonal calculation proceeds as before,
with a wave-number shift

(2.27)

where p (r) is the density distribution of nucleons for
orientation o.. For example, a prolate nucleus might
have a density distribution

.(r) =,/(1+ expHr —r, (0,p))/a]),
(2.28)

rs(0, q) =R$1+eP, (cosO)],

where cosO is the projection of r" onto the long axis of
the nucleus, specified by o.= (0, g):

cos0= cos0 cos0+sin0 sin0 cos(y —g) .

This p gives rise to an elastic scattering amplitude
f(0, p, e). Since the value of n could be measured, at
least in principle, after the incident projectile had
passed, the amplitudes for different 0, are incoherent.
Therefore the proper way to compute the differential
cross section is not to superpose amplitudes, but rather

"J.Davidson, Rev. EIod. Phys. 37, 105 (1965).
"A. Lane and E. Pendlebury, Nucl. Phys. 15, 39 (1960).

to average the cross section over e.

(2.29)

The qualitative effect of deformation is clearly to
blur radius effects, making maxima and minima in
do/dQ(0) less conspicuous. This effect is obvious in a
comparison of the diffraction patterns of 19.3-8eV
protons on Pb and U targets. ' The Pb nucleus is thought
to be nearly spherical, while U is quite deformed (e sr).
The amplitude f(0,q, rr) is diagonal by construction
for a set of nuclear basis states labeled by e. Thus, in
the e basis, we have computed the elastic scattering
from a deformed nucleus with a specific orientation.
However, if we revert to the angular-momentum basis

~
J,m), where J is the generator of rotations on n, the

amplitude (J'm'
~ f(8,p) ~

J,m) is not diagonal. Drozdov"
and Blair" used the unitary transformation from e to
J to estimate matrix elements for excitation of collective
states with angular momentum J' from the ground
state

~
Js). For our purposes here, the individual excited

states of the nucleus and the ground state are in-
distinguishable, so that we must sum (2Js+1)—'
X

~

(J'rn'~ f ( Jam) ~' over all J', m', and m. This sum is
precisely equivalent to the angular average (2.29),
assuming that the energy differences E&.—Ez are in-
significant for computing f, as is implied by the
adiabatic approximation.

Note that the contribution of a particular inelastic
state J' to do/dQ(0) can be greater than the total de-
formation effect at angle 8. This is possible because the
amplitude (Js

~ f(0) ~
Js) for scattering with no excitation

may be reduced by the deformation, thus more or less
compensating for the appearance of collective inelastic
scattering.

E. Production Reactions and Other
"Single-Scattering" EBects

(i) Production. Eikonal wave functions of the form
(2.2) may also be used to calculate differential cross
sections for production reactions. To orient ourselves
here, we erst consider a case in which the incident pro-
jectile has such a small interaction with each target
nucleon that it is unlikely to interact more than once
while passing through the nucleus. Call a the amplitude
for production of some 6nal particle on a single nucleon,
e.g., s.+P ~A r+P, and A the corresponding amplitude
for the whole nucleus. In the weak interaction (wi)
limit we simply add the amplitudes from each nucleon,
with a relative phase depending"on momentum transfer
and position:

r~ S. Drozdov, Zh. Eksperim. i Teor. Fiz. 28, 734, 736 (1955)
/English transl. : Soviet Phys. —JETP 1, 591, 533 (1955)g."J.Blair, Phys. Rev. 115, 928 (1959).
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This is just the first Born approximation with a poten-
tial proportional to a(q) p(r).

To account for the strong interaction of the projectile
with the nucleus, we must modify our treatment. Let
us now make the reasonable assumption that the pro-
duction process involves only a single nucleon, while the
waves before and after production are modified by
wave-number shifts E and K, respectively. For small-
angle production, we neglect deviation of the path
through the nucleus from a straight line, and write

g

A (q) = u(q) d'r exp i ds' E (x,y, s') e's'(r)

(2.31)
)&exp i ds' K(x,y,s') e"'&s&

Sl=

O

big

F 000.

t00

qI IA(&1, (2.33)

and there should not be a strong A dependence of the
coherent-production threshold. In particular, we would
not expect coherent production at zero degrees to drop
as A increases, but rather it should rise, since the pro-
duction takes place mainly in a ring of radius Jl~A'I',
and the ring gets bigger.

(ii) Single-scattering effects in elastic reactions. For-
mula (2.31) may also be applied to elastic scattering
amplitudes for which the single-scattering assumption is
valid. For example, in elastic scattering of protons, the
amplitude for a single-target nucleon may be written
f(q)+s(q)rr Is;)&k~, we ignore the spin of the target
nucleon, which is unimportant for coherent processes
with a target nucleus. If s(q) I k;X &~ I

is small compared
with f', then we may assume that s(q) acts only once
on passage through the nucleus, and write the amplitude
for spin-orbit coupling with the nucleus using (2.31),
with u(q) —+ s(q)kcXkg rs.

b —(g2+ ys) 1/2

This is an eikonal distorted-wave Born approximation
for a production potential proportional to ap(r). The
factor e"'&') accounts for long-range Coulomb effects on
the in- and out-going waves.

The absorption effects summarized in (2.31) alter a
commonly stated conclusion about thresholds for co-
herent production of a resonance on a nucleus. The
minimum momentum transfer to a target T in the pro-
duction reaction X+T~ Y+T is found when Y'

comes out parallel to the incident X. This longitudinal
momentum transfer pl I

is given at high energies by

ql ~

= (mr' —mx')/2px, (2.32)

where the notation is obvious. In the absence of ab-
sorption, coherence of the production reaction over the
whole nucleus would require qIIE((1, where E. is the
nuclear radius. However, as a result of the absorption
of the coherent wave, coherence in the direction parallel
to px is only maintained over dimensions of order A,
where A is the mean free path in the nucleus. Thus we
have

l0

I
I

2.5 + 5,5 7 8.5 l0 l I.5 l5 l4.5 l6 (~„)

Fxo. 1. Laboratory differential cross section for proton scatter-
ing on copper at 19.3 BeV/c in units of 10 ' cm'/sr. The experi-
mental points come from Ref. 2. The theoretical curve uses a
Woods-Saxon nuclear density, with 8=4.3 F, a=0.53 F (Ref.
18), to compute the elastic-scattering cross section. The only
inelastic scattering included in the theory is quasielastic scattering
from six equivalent free nucleons. The solid curve is the sum of
elastic and inelastic, the dashed curve, inelastic alone.

The analogous procedure may be applied to estimate
corrections to elastic scattering due to the finite size of
target nucleons. Taking d(q)= f(q) f', we may—sub-
stitute d for a in (2.31) to determine the amplitude D
which should be added to F in (2.18), to account for
the fact that f(q) varies somewhat in the range of
momentum transfers to which we apply (2.18). For
high-energy protons at q=1 F rLI f(q) I

—If'I j/I fol is
about —0.2. If that ratio is unchanged by removing
absolute value signs, then the single-scattering assump-
tion is justified for computing D(q), q&1 F '.

F. Summary of Theory

In this section, we have seen how to compute cross
sections for reactions of fast elementary particles with
large nuclei. The basis for the whole development is the
use of an approximate wave function for a projectile
inside the nucleus,

4'

lt(r)=e's* exp i ds'E(x, y, s')

where the complex wave-number shift E depends
on the interaction of the projectile with individual
nucleons and on the distribution of nucleons in the
target. The main results are contained in (2.19),
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TABLE I. Comparison of the integrated optical potential of FW
with the 6rst-order high-energy model.

O

b'e
Target

I (W).
(F2)

—Aor(p-p)/2b
(F')

I(V) so—A~r(p p)-
(F') (F')

IOOOO"

IOOO-

Li6
Li'
Be'
C12
Al27
Cu63-6
Pb207 2

U'238

—12.8—14.4—16.4—22.6—55.5—161—935—935

—11.7—13.6—17.5—23.2
52t7—248—404—454

49
5.8
7.3
7.1

13.5
29.6

127
140

2.9
3.4
44
59

13.2
31.0

101
116

a Frahn and Wiechers (Ref. 14).
b Reference 17.

IOO

lo

I I ~ ~

5 7
I I I

9 I I I3 I5 I7 I9
(mr)

potential (V+iW) (r).rs This is not a reliable procedure
for the interior of heavy nuclei, since they are nearly
opaque at small impact parameters. It would hardly
affect the computed differential cross section to set
e"'~b& = 0 at small b, but this would imply W(r) = eo at
small r. However, for the light nuclei, which are semi-
transparent even at the center, inference of the poten-
tial from the phase shift is meaningful. F% compute
I(W) and I(V), the integrals over the nuclear volume
of the imaginary and real parts of the potential. From
(2.8) we deduce

Fro. 2. Proton scattering on uranium at 19.3 BeV/c. See cap-
tion of Fig. 1. Here 8=6.8 a=0.5 F (Ref. 18). We assume 10
equivalent free nucleons.

I(V)+sI(W) = eAhf', — (3.1)

where A is the mass number of the target nucleus. Table

the eikonal approximation for elastic scattering, and
(2.31), which gives single-scattering eGects, including
particle production.

IIL SCATTERING OF lg.3-8eV/c PROTONS

Bellettini et al.' have observed "elastic" scattering of
protons on a variety of nuclei: Li', Li', Be', C",Al", and
natural Cu, Pb, and U. By "elastic" we indicate that
the energy resolution was not sufhcient to distinguish
cases in which the target nucleus was excited from cases
of true elastic scattering, although hadron production
could be excluded. These experiments have already been
the subject of several simplified analyses, "perhaps the
most thorough being that of Frahn and Kiechers
(Fg).'4 These authors, following earlier work, " de-
scribe the scattering from a complex nucleus by a
simple parametrization of the phase-shift function
e"'&—1.The fits which they obtain for the heavy nuclei
(Cu, Pb, U) are similar in appearance to those in Figs.
1—4, described below. They also fit the lighter nuclei
(Li'—AP'), but we did not.

Using the eikonal approximation, one may infer from
the phase-shift function the effective proton-nucleus

&4 Bellettini et oi. (Ref. 2); O. Benestad and H. Olsen, Phys. Rev.
Letters 1?, 1031 (1966); A. Bar and S. Varma, ibid. 16, 1003
(1966); W. Frahn and G. Wiechers, ibid. 16, 810 (1966); Ann.
Phys. (N. Y.) 41, 442 (1962).

» W. Frahn and R. Venter, Ann. Phys. (N. Y.) 24, 243 (1963);
R. Venter, ibid 25, 405 (1963). .

0
b
U

IOOO

I OO

IO

I
I I ~

83 4 5 6 7 8 9 IO I I I2 I3 I4 I5 l6
( r)

Fro. 3. Proton scattering on lead at 19.3 BeV/e. See caption
of Fig. 1. Here E=6.5 a=0.5 F (Ref. 18). We assume 10 equiva-
lent free nucleons.

"W. Frahn, Phys. Letters 24B, 216 (1967), discusses this sub-
ject with a somewhat different emphasis.
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TAsLE II. Total cross sections of light nuclei.

Target

Li
Li7
Se'
{ 12

Al'7

(mb)

232& 5
250& 5
278& 4
335m 5
687&10

~~r(p p)'-
(mb)

234
253
350
468

1007

IO
Ol

O

l000

a Reference 2.
b Reference 17.

I shows the comparison of the right and left sides of
(3.1), using the values of I(V) and I(W) deduced

by FW.
The first two columns of Table I agree very well with

each other, except, as expected, for the heavy nuclei.
In terms of the theory presented in Sec. II, the agree-
ment is perhaps too good, since the absorption in the
bulk of the nucleus should be about 25% bigger than
the first approximation used here because of negative
correlations in saturated nuclear matter. The answer
may be that positive correlations in the nuclear surface
cancel the negative correlation effect in I(W).

The remaining two columns of the table present a
cloudy picture. Consistency requires us to disregard the
heavy nuclei, since V is not well determined in the
nuclear interior. This may be less serious for I(V) than
for I(W), since the V of FW does not grow enormously
as r —+ 0, but it precludes quantitative reliability. As it
happens, even the values for light nuclei scatter a good
deal. The general tendency suggests a larger value of

n than th—at determined by p-p scattering. 'r

Note that these nuclei are rot so transparent that
the first Born approximation holds. In Table II, we
compare total cross sections of the light nuclei with the
Born approximation Aor(pp). We conclude that, for
the semitransparent light nuclei, the unforced fits of
FW give strong support to the ideas underlying the
present work.

Let us turn to our optical-model description of the
proton scattering on Cu, Pb, and U. We have used the
theory of Sec. II, taking fs from P-P scattering experi-
ments. ' The nuclear density distribution is given by
the Woods-Saxon form

l 00

lo.

5 6 7 8 9 IO ll l2 IB l4 l5 l6
(mr)

Fro. 4. Proton scattering on lead at 19.3 BeV/c. The only change
from Fig. 3 is a =0.7 F.

with F given by Eq. (2.19) and D the amplitude de-
scribed in Sec. II E (ii). The D term gives an approxi-
mate correction to F due to the finite range of the p-p
interaction. It aQects none of our conclusions.

There is another way to estimate the finite-range
eGect. In this method, we treat the nuclear charge
density as a folding of the proton density and the
charge distribution of the proton. Ke assume that the
strong nuclear potential is given by folding the nuclear
density with the proton-nucleon potential. Assuming
Gaussian distributions for the proton charge distribu-
tion and the proton-nucleon potential, and taking the
latter as the folding of the former with itself, "we Qnd
that the strong-interaction potential is slightly more
extended than the charge distribution:

pws(r) =p,/I 1+e- (3.2)

F„.t,——F+D, (3.3)
"We take ~r (p-p) =39 mb, n = (Ref /Im f') = —0.25, following

K. Foley, R. Jones, S. Lindenbaum, W. Love, S.Ozaki, K. Platner,
C. Quarles, and K. Willen, Phys. Rev. Letters 19, 857 (1967).Our
values of —e are somewhat larger than this reference suggests, but
the difference does not aGect any conclusions.

8 L. Klton, Nuclear Senses (Oxford University Press, London,
1961); H. Anderson, R. McKee C. Hargrove, and E. Hincks,
Phys. Rev. Letters 16, 434 (1966 .

where E and a are the parameters of the charge density
distribution determined by electron scattering. " The
scattering amplitude is

where all lengths are measured in fermis. For Pb"',
with charge distribution specified by E.= 6.5 and u= 0.5,
the modtfication (3.4) changes the distribution to one
with 8=6.7, a=0.5. This is a small eQect, an increase
in the half-density radius by 3% (which is less than»
of the surface thickness t=4.4a). We have not included
the modification (3.4) in our a priori calculations of
experimental quantities.

1'This simple assumption is quite adequate for our purposes.
In fact, it has been exploited with remarkable success in relating
p-p scattering to the charge form factor of the proton by T. Chou
and C. Yang (to be published).
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TanLE IV. Values oi 8(208) for 8=6.5 F.
lO
Ol

O

bo

0.5
6.6

0.7
9.8

0.9
13

1.1
17

1.3
21

t000

100

lO.

In calculating the phase shift b(b), we use (2.21) and
include the eGect of repulsive correlations in the nuclear
interior, but no positive correlations at the surface. The
resulting a priori fits to the data are shown in Figs.
1—3. The only fitted parameter is g(A), the number of
equivalent free nucleons to produce the incoherent
large-angle inelastic scattering:

do dg—= l~- I'+& (p p). --
dQ dQ i

(3.5)

The fits to Cu and U data are impressive. Note the
good agreement for Cu in the attenuation cross section:

o.ts=osbs+oei(()) 5 mrad). (3 6)

Since both Cu and U are deformed nuclei, most of
the discrepancies between theory and experiment may
be attributed to the effect of averaging over orientations
of the aspherical target. Ke have not included eBects
due to target deformation in our calculations. "

We come now to the case of Pb. Even a casual glance
at Fig. 3 indicates two reasons to believe the lead target

TABLE III. Values of 8(A) for a=0.7 and 8=1.2 A»' F.

A 4
8 2.8

10
4.7

20
6.3

40
7.8

80
9.3

150
10.5

208
10.8

"Estimates were made by G. Matthiae, Nucl. Phys. 87, 809
(1967).

t ~ ~

5 6 7 8 9 j0 ll IP l& lQ l5 'I6
( ))

FIG. 5. Proton scattering on lead at 19.3 BeV/c. Here 2 =4.0,
a=1.1 F. We use the computed 13.5 equivalent free nucleons for
the inelastic scattering.

is larger than we have assumed. First, O,t~ as calculated
is 10% below the experimental value. Secondly, the
oscillations of the theoretical curve lag behind those
given by experiment. There is a third reason. Using
Eq. (2.26), we inay compute 8(A). It turns out that
Q, (A) is quite sensitive to the diffuseness a, but fairly
insensitive to the half-density radius E, as shown in
Tables III and IV."

For Cu, 8(A) is about 5, with our a priori choice of
parameters. This is in good agreement with the value
8=6 used in our fit. For Pb, our a priori choice would
give 0', =6.6, which is not so close to the value 0', =10
of our fit.

The arguments given above persuade us to change a
from 0.5 to 0.7, yielding the curve in Fig. 4. Now a
casual glance would leave one fairly happy with the
agreement, but there is still a serious difhculty. At the
first four small-angle points, where inelastic effects are
negligible and the theory should be most reliable, the
theoretical points are 10—12% above the experimental
values. Close inspection of the curves of FW indicates a
similar situation. Aside from the possibility of mechani-
cal mistakes in theory or experiment, we see only two
explanations. Either the theory is wrong in a deep way,
perhaps having to do with Coulomb effects, or the
effective nuclear density distribution is considerably
diBerent from the charge distribution.

Let us follow the second alternative. If it were not
for Coulomb effects, it would be clear that we need a
more diffuse nuclear surface to get agreement with ex-
periment. The slope of the theoretical curve is about
right, but the absolute magnitude is high. If the scat-
terer had about the same size but lower surface density,
one could then get agreement. This intuition turns out
to apply also in the presence of Coulomb effects. Figure
5 shows the results for 8=4, @=1.1. The agreement at
small angles is excellent (see Table V); o.,&t (the) is
acceptable, and the main discrepancies have been shifted
to larger angles.

Before discussing these, let us ask what such an
e6ective density distribution would signify. First of all,
because the opacity is so high at small impact parameter,
we can say almost nothing about the central density.
Thus one would expect equally good results from an
eGective density distribution which looked the same in
the surface region, but had a central value identical to
that for 8=6.5, a=0.7. We have verified this. Thus we

may assume that the central density has about the
value indicated by many-body calculations. The novelty
of the new distribution lies only in its description of the

2'Similar results were found by R. Glauber and G. Matthiae,
reported by R. Glauber, High-Energy I'hysics and Ãulcear Struc-
ture (North-Holland Publishing Co., Amsterdam, 1967), p. 311.
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TABLE V. Comparison of theory and experiment for the small-angle scattering on lead.

labe (mrad)

(do/dQ) (10 "cm'/sr)~
(do /d0) (the) b

(da /dn) (the) '
(da /d0) (the) s

(do/dn) (the)'
(do /dQ) (the) '

2.25

5110~100
5300
5670
5140
5370
5290

2.75

2780&68
3120
3230
2840
2970
3050

3.25

1630~48
1870
1830
1640
1680
1830

3.75

910'39
1050
944
917
917

1060

4.25

423+27
530
441
484
464
570

4.75 5.25

262~5 131~4
236 97
183 82
241 120
219 103
274 124

80~2
54
65
69
59
65

a Reference 2.
b Parameters of Fig. 3.
a Parameters of Fig. 4.
d Parameters of Fig. 5.
e Parameters of Fig. 6.
f Reference 22.

nuclear surface. "At least two phenomena could alter
the effective nuclear density distribution without af-
fecting the determination of charge density by elastic
electron scattering. First, there may be a neutron tail
extending beyond the proton density distribution.
Second, there could be strong positive correlations,
exemplified by n-particle clusters, in the region just
inside the neutron tail. These clusters would not show

up in electron scattering because of the long range of the
e-p interaction. To confirm the qualitative reasonable-
ness of such a picture, we have obtained a 6t to the
p-Pb scattering with an effective density defined as
follows. First the neutron tail is tacked on:

clustering. We may estimate the effect of clustering by
extrapolating the 1-BeV p-a cross section, s' assuming
that do (p-tr)/dh is independent of incident momentum,
aside from a small reduction associated with the drop
in p-p total cross section between 1.7 and 19.3 BeV/C:

d~ (19.3 '( 2~&(p-p, 19.3)—(p-rr, 19.3)=
~

dQ k 1.7 ko.r(p-n, 1.7)+op(p-p)1.7)]
do 19.3

&&
—p-rr, 0,1.7

~

= 10'e s"'Mmb/sr. (3.10)
dQ 17

Clearly, the amount of o. clustering has a significant

p= pws(r), r &Z+ 3a
p=pws(p+3a)eider+'' "&»~ r)p+3a
E.=6.5, a= 0.7.

(3.7)

Then negative correlations in the nuclear interior are
accounted for as in Eq. (2.12);

p(r) =p(r)L1+s(RcXf'p(r)$. (3.8)

We include positive correlations, as well as a reduc-
tion in neutron density corresponding to the shift of
neutrons out to the tail by defining a reduced effective
density just inside the tail:

IOOO

l00.

p.«(r) =N(r) p(r)+L1 —N(r) j&(r)p(r)
N(r) =p(r)/p(o)
$(r) = —',, r &8+2.5a

$(r)=1—1/L2et" " ' &~') r)R+2.5a.

(3.9)

The resulting differential and attenuation cross sec-
tions (Fig. 6) are similar to those of Fig. 5, though
about 5% higher. Practically exact agreement with
Fig. 5 is obtained by applying (3.9) for R=6.0 a=0.7 F.

There are still problems in explaining the large-angle
data. The mean value of do/dO (i.e., averaged over
oscillations) depends sensitively on the amount of n

IO

84 5 6 7 8 9 IO II I2 I5 I4 l5 I6 ( )

"One might ask whether a small change in f, the scattering
amplitude on a single nucleon, could remove the small-angle dis-
crepancy. The last row in Table V shows how row b would be
modified if Imf were multiplied by 0.7. At the same time, 0.,«
changes from 1.82 to 1.70 b. Clearly, reduction in f' is not the
answer to the small-angle problem.

Fro. 6. Proton scattering on lead at 19.3 BeV/c. See text for
assumed eGective density distribution. We take 12 equivalent
free nucleons for the inelastic scattering.

"H. Palevsky, J. I"riedes, R. Sutter, G. Bennett, G. Igo, W.
Simpson, G. Phillips. D. Corley, N. Wall, R. Stearns, and 8,
Gottschalk, Phys. Rev. Letters 18, 1200 (1967).
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FIG. 7. The quantity ( P I'. I the diiferential cross section for a
certain reaction on a single proton is do/dQ= (e(8)J'~', then the
single-scattering approximation gives the diGerential cross section
on Pb, d0/dQ= ~e(8)S(8) I'. We use the parameters of Fig. 5 in
computing f (8).

effect on da/dQ at 5 mrad or more. Thus, in the diffuse-
surface model, the magnitude of the large-angle cross
section is not accurately predicted.

The oscillations in the large-angle cross section can
only be explained by an eGect involving coherent scat-
tering from a region of nuclear dimensions. Conceivably,
making further adjustments with p,«(r) (perhaps put-
ting in a kink, an abrupt change) would bring the
theoretical curve into agreement with experiment. How-
ever, such adjustments would be artificial at our present
state of understanding.

Two other possible sources of the oscillations are co-
heren& excitation of a particular excited state and spin-
Rip scattering. The latter may be treated in the single-
scattering approximation of Eq. (2.31). We may write
the result as

(3.11)

The quantity I FI is plotted in Fig. 7, and it is clear
that spin-Qip can only be important if spin-Qip scatter-
ing on a single proton at 5 mrad is comparable with the
elastic forward p-p cross section. At small angles do/

'4 Foley et al. (Ref. 9).This limit on spin-flip scattering was sug-
gested by S. Lindenbaum.

dO. r(p-p) vanishes as qs. Thus a crude upper limit,
sufficient for our purposes, can be obtained by taking
the ratio multiplymg I&I' » (311) as bV'=lls/(»0
mrad'), where the elastic p-p cross section is approxi-
mated as

I
f'Is exp( bq—').'4 This excludes spin-fhp

scattering as a significant contribution to p-Pb scatter-
ing. As to coherent excitation, it is hard to see why
just one state should be excited; as in the deformation
model of Sec. II, one expects the differential cross sec-
tion to become smoother, not to develop oscillations,
when inelastic scattering is included.

Thus we know of no simple and natural explanation
for the oscillations at large angles if the small-angle
data are taken seriously as a constraint on the e8ective
density distribution.

One might ask if the diffuse effective density could
be associated with octupole vibrations of the ground
state, these being the strongest collective deformations
hypothesized for Pb." Using the parameters of Lane
and Pendlebury, " we find that the root-mean-square
variation in radius of the nuclear surface is less than
0.5 F, too little to explain the depression of the small-
angle differential cross section. This deformation effect"
is of the right order of magnitude to account for the
discrepancy between theory and experiment in the first
diffraction minimum of Fig. 4. However, already in the
Ggure the diGraction dip is partly flied by constructive
interference between the effects of the Coulomb force
and of the repulsive real part of the p iV interactio-n.
This is rot true for Figs. 5 and 6. As a result, we would
obtain a valuable test discriminating between the dif-
fuse- and sharp-surface models by looking at m+-Pb
scattering. Since the x+-nucleon amplitudes are essen-
tially the same, while the Coulomb potential reverses
sign between z+ and x, we conclude that in the "con-
ventional" model the first diffraction minimum would
be much deeper for m than for x+, but in the diffuse-
surface model there would be little effect.

Finally, we And that the most straightforward appli-
cation of a semiclassical picture gives excellent qualita-
tive and fair quantitative agreement with experiment.
If we take the model seriously in the domain where it
is most reliable, the 10% discrepancy in small-angle
p-Pb scattering forces us to resort to a model of the
nucleus with a much more disuse surface of the effective
nucleon density distribution than that suggested by
electron-scattering data. In this model, which is reason-
able in terms of current ideas on nuclear phenomena at
lower energies, the main difhculty is to explain the
oscillations in the large-angle differential cross section.
However, even if this eGect should disappear, the Qt of
Fig. 4 already suggests strongly that the nuclear surface
of Pb is more disuse than the charge distribution. Thus
any interpretation of the data of Selletini et ul. suggests
a disuse surface. The questions remaining are, erst,
how diffuse is the surface, and second, how can the
theory reconcile the small-angle and large-angle data'
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IV. CONCLUSIONS

The results of Sec. IV demonstrate that high-energy
scattering can provide useful data for the det'ermination
of nuclear structure. In particular, the data for lead
imply a considerably more diffuse nuclear surface than
suggested by electron scattering. In order to check this
effect and to permit more complete analyses, many
more experiments would be useful:

(1) Repetition of the original work with somewhat
better statistics, using isotopically pure targets.

(2) The same experiment with ~+ beams. This would
permit separation of hadron spin-Rip e6'ects from in-
elastic scattering. Also, at these energies the m+ and
x nucleon scattering amplitudes are nearly identical,
so that comparison of the nuclear predictions with
theory would give a useful check on the method of
including Coulomb effects, and on the role of Coulomb-
nuclear interference in filling the 6rst diGraction
minimum.

(3) Variation of the beam energy. Since the theory
is essentially energy-independent, this would give a
sensitive test.

(4) Scattering with polarized protons.

(5) Detection of recoil nuclear excitation. Experi-
ments (4) and (5) are very hard, but their value is
evident.

From the theoretical point of view, a more complete
discussion of inelastic effects would complement future
experiments. This would include the appropriate angu-
lar averaging for deformed nuclei, as well as multiple
inelastic reactions. "

At this point, the promise of the subject is just as
clear as the need for more work.
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"Multiple inelastic reactions, ignoring cluster e6ects, were
estimated by Glauber (Ref. 21).

k'0-g U gz—kU
4~ e 47'

(A2)

However, (A1) was obtained on the assumption that
~ f(8) ~

is of the same order of magnitude for all 8.
If one uses the same set of assumptions Lembodied in

Eq. (11.29) of Goldberger and Watsonj without im-

posing the isotropy of f(8), one obtains the more
general expression

dQd( k'

4~ d (ed /dek

Ts (2%se)
—1/0

(A3)

which may be reduced to (A1) with the assumption of
isotropy, provided that derivatives of Tf; and T;f with
respect to e are unimportant.

If one assumes that T is negligible outside a cone of
opening angle tt(&1 and that the energy e is highly rela-
tivistic, one may estimate hT' by applying unitarity as

U2 (d 1nTr;)
iver'[- —— dQ) j(8)[' 1+ R

i

2m'4x e k dine i, ;
2U d in';~= Imr 1+ dQ( f(8) (' Re

d inc

dQ[f(8) ~' . (A4)

This result is obtained assuming that Tf; yields only
elastic scattering, but the order of magnitude is prob-
ably not changed by the presence of particle-production
channels.

The second term in parentheses in (A4) must still be
evaluated. This involves the derivative of Tf, with re-
spect to the incident projectile energy e, for a 6xed
final configuration and scattering angle with initial
3-momentum P;= (e;s—m')'~s. To compute such an off-

energy —shell derivative, we must have a model for the

APPENDIX A: ACCURACY OF APPROXIMATIONS

(i) The Impulse approximation. We wish to estimate
the error caused by assuming that the scattering ampli-
tude on a target nucleon in the nucleus is the same as
that for a free target nucleon. The standard estimate
for the error of the impulse approximation is given, e.g. ,
by Goldberger and Watson':

( ~T/r) -0(]fkV/. ~), (A1)

where f is the forward scattering amplitude on a single
free nucleon, k is the incident particle wave number,
U is an energy characteristic of the binding of the
system, and e is the incident particle energy. For very
high energies, (A1) becomes arbitrarily large, if the
total cross section on a single nucleon approaches a
constant;
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scattering amplitude off the energy shell. For elastic
scattering, the on-energy shell amplitude appears to be
well described as a function of momentum transfer:

+Ogat

t= (og—o~)'—(p;—pr)'=2(m' ogof+—p;pf costt).
(AS)

I et us suppose that 1'has the same behavior when en-

ergy is not conserved. We must now find dt/do; Thi. s is
given by

o;dt/do;=2( o;or+—p;pr cos%P)
= t 2m—'+ 2 (o;/i); p;)—pf

(A6)

Substitution of (A6) into (A4) yields the final result,

[t) To[ =OLImTo(2U/o)(1+
~

—
o t)g. (A7)

Therefore we obtain for 20-BeV protons

function with one nucleon shifted in momentum by Ap
=kg. Now 0, is proportional to r', the effective squared
radius of a single nucleon interaction, and P is propor-
tional to E2, the squared nuclear radius. Therefore we
get

r' r' o /2)r o

r'+ R' R' R' 27rR'
(A9)

ATo= (if/kR') To= (—(r/47rR') To. (A11)

Thus the 0- which we should use in computing the
mean free path in the nucleus is

~(1—P) =~(1—~/2~R2) . (A10)

The quantum-mechanical result of Goldberger and
Watson has an extra factor of —'„just as did the correc-
tion term due to correlations, and for the same reason.
Their result is

I
»o!/Tol =SU/. =1%, (A8) For high-energy protons, then, we have

where U is taken as 40 MeV, the characteristic strength
of the shell-model binding potential.

Actually, (A8) is probably an overestimate of the
error in T'. It comes from the assumption that the corn-
mutator $T,Vj of the binding potential V with the T
matrix is the same size as the product TV.

The binding potential is slowly varying over a region
corresponding to the wave number of the projectile, and
since T depends on the momenta and kinetic energies of
the colliding particles, the commutator fV, Tj should
be small.

The analysis leading to (A8) applies strictly for a
single-target particle bound in a 6xed potential. When
one wants to use T, as we do, to deduce the optical
potential Vo for passage through a many-body system,
then the required T' has a further constraint. The point
is this: Vo may act arbitrarily often as the projectile
passes through the target system, always leaving the
target in its ground state. Since Vo is obtained as a
power series in T (the scattering matrix for target
particle n), it becomes necessary to exclude in the
integral equation de6ning T intermediate states in
which the target system is not excited. Otherwise these
states would be counted more than once in the Born
series obtained from Vo. To estimate the resulting cor-
rection to T, we may go back to the classical picture
and ask what iraction of the cross section 0- on a single-
target particle corresponds to the nucleus remaining in
the ground state. If the nucleon and the nucleus were
quite opaque bodies of similar shape but different size,
then this fraction would be given by

Here the scattering amplitude on a single nucleon (as-
sumed independent of the nucleon quantum numbers) is

f(»)= dbms' ' f(b). (A14)

If p(r) varies little in the region where f(b—r) is
appreciable, then we may approximate the integral
over r, by

DTo/To= —4/4n. R'= —1/150 for Pb
=—1/50 for Cu
= —1/1.2n.Ao'o for mass number A.

(A12)

The above arguments do not apply in the surface
region of the nucleus, where the gradient of the nuclear
density becomes appreciable on the scale of nucleon
size (as determined from the typical momentum trans-
fer in hadron-nucleon scattering). In fact, one expects
the effective potential fop to vary more slowly in the
surface than p itself. This is easily seen in the formalism
of Glauber. '

Glauber shows that in the eikonal approximation, in
the absence of correlations, the phase shift may be
written

iX
e"'('&= 1 —d'r —rJ, p r

I= d'ri f(b—ri)p(r)=p(rii+b)f(»=0). (A15)

=~-L~/(~+0)3

where Ii (8) is the nuclear form factor, i.e., the overlap
between the ground-state wave function and the w@vc I—=p'"f(»= o) (A16)

This approximation breaks down at the nuclear sur-
face, where the integral may be written
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and p'" is a (possibly complex) effective density which
goes to zero more slowly than p itself.

We conclude that, in the energy range dealt with in
this paper (16—20 BeV), corrections to the impulse
approximation for T in bulk. nuclear matter are only a
few percent.

(ii) Correlation effects. In our discussion of correla-
tion effects in the text, we ignored the 6nite size of the
target nucleons. It is interesting to evaluate the result-
ing error in a simple model.

Instead of a nucleus, let us imagine that the target is
a large cube of uniform refractive index and side D.
This could be divided into Ã smaller cubes with side d,
satisfying

~-o(a) = Z(N I f-(e)e"'~10), (B1)

where f is the scattering amplitude on the ath nucleon,
treated as a free particle, and q is the momentum
transfer. For a high-energy proton we take f (q) = f(q),
independent of the state n of the given nucleon. Then
we have

do dg.

dQ1n dQf nP'-o, a, P

d'rd'r'e'q ' &'—")

tering amplitude for excitation of the nucleus to state
S 1S

O'= Xd'. (A17) X(ol S(r'- «) IN)(~ I
S(r- r.)10)

If we calculate the scattering amplitude exactly, it is

Ii= (kD'/2~i)(e' —1) cos(-,'q~) cos(-', q„D), (A18)

where E is the wave-number shift in the cube.
Now we may calculate the same result, treating the

X small cubes as separate "target particles. " Ignoring
edge effects, we find (A18) reproduced, with

IC ~E'= (fX/a')(1+i(6t, fX/a')),
f= (k/2s. i)a'(e'x~ —1). (A19)

Expanding f yields a second-order formula for K':
E'=Ett1+iE: (-',a+ (R,)1+0((Ea)'). (A20)

Now, for a cubic lattice of this type, we have"

(R,= —0.72a,
yielding

E'=E(1—0.22iKa) . (A21)

APPENDIX B: INELASTIC REACTIONS

We wish to derive an estimate of do/dQ for the
reaction

Thus the correlation correction calculated in the
text, although of the proper sign, is too big to give
Z'= EL1+0((Ea)')$.

A similar effect must be expected in scattering from
a nucleus, so that the parameter N. , even if well deter-
mined by fits to scattering data, should not be taken
as a precise estimate of the correlation distance. As
mentioned in the text, the predictions for p-E scattering
are insensitive to the absorption in the interior of the
nucleus. Thus it turns out that the value of S, has
little effect on the predicted scattering.

d'rd'r'e's'~' —"&t p"&(r, r') —p(r)p(r')g. (B2)

Here da/dQf ——
~ f(q) ~s is the free-particle differential

cross section for a stationary nucleon target, p(r)
=g =&"(0~5(r r)—~0) is the nucleon density distribu-
tion in the target, and

p&" (r, r')= P (0~5(r' —re)5(r —r ) ~0)

dQ;„

d0
L1+C.(a)3

dQf
(B3)

1
C, (q) =— d'rd'r'C. (r r')e's'&' "'

—=p(r) p(r')+5(r —r') p(r)+C, (r, r') (B3)

is the two-nucleon density distribution. C„(r,r') is the
Van Hove —McVoy two-nucleon correlation function. '~

Its inventors argue that it should vanish for large
separation of its arguments.

In contrast, Goldberger and Watson' write

p '(r,")—= L(~ —1)/~ j~(r)~(r')
yS(r —r') p(r)+ Ca(r, r'), (B4)

and they suggest that C& should vanish for large sepa-
ration of its arguments. Their form is certainly appro-
priate for a box containing a uniform gas of noninter-
acting particles. However, for a medium with strong
short-range repulsion, the Van Hove —McVoy ansatz
appears more plausible, and we shall use it below.

We have, then,

where K is a nucleus, X* is an excited nuclear system,
and h is a high-energy hadron.

First, consider the case of very weak interaction be-
tween It and K. In the impulse approximation the scat-

One may easily obtain the result C, (0)=—1, which
implies

(0') =0.
dQ;

~6 G. Plat:zek, B. Nijboer, and L. Van Hove, Phys. Rev. 82,
392 (195i). "L. Van Hove and K. McVoy, Phys. Rev. 125, 1034 (1962).
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F„o(q)=f(q) d'r e'&'g(lib(r —r ) IO)e"'&"

2S(f) = ds fop(r),

dg—=Z IF-o(q) I'
dQ ny-'o

(B8)

dQf,
deydey g'sq. (»—«') ~2s f~ (»—&*(~')l

X[j (r)&(r—r')+p(r) p(r')C, (r, r')]
= (da/dQ) &,„eL1+C,'(q)j.

Here we use

g d3y &
—4Im8(b)

This follows directly from (B1), since F„o(0) vanishes:

F„o(0)=(mid f(0) IO)=Af(0)8 0.

In other words, if h touches only one nucleon and gives
no momentum to that nucleon, then K remains in the
ground state.

We now consider the case of strong interaction be-
tween h and, K. Let us make the assumption that in-
elastic excitation occurs in a collision with a single
nucleon, and that the interaction of h with the nuclear
medium before and after the collision is accounted for
by the wave-number shift E=fP p(r), with h assumed
to follow a straight path through the nucleus. Then we
have

We consider some special cases of correlation func-
tions. First, assume that only a weak long-range correla-
tion is present, i.e., Ca=0, or

C„(r,r') = —(1/2) p(r) p(r') .

Then we 6nd

(B10)

O',L1+3Z(q)g,
dQ 1~ dQg»~

(B12)

where Z(q) is the form factor of the n particle, and we
neglect the small term due to long-range (p-p) correla-
tions. This expression should be fairly accurate at
moderate q if 0. clusters dominate the surface region.

Finally, if the correlations are all of short range com-
pared with the mean free path, we have

2

SC '(q) = —— d'r e"'& &p(r)e'&'
(B11)

0& C '(q) & —1

In fact, for p-Pb scattering, this C, '(0) is close to
zero and do/dQ(0') is finite. How is this compatible with
our previous result in the absence of absorption eGects?
Since h now interacts with many nucleons, it may trans-
fer momentum from several nucleons to one which
makes a transition out of the ground state without any
net momentum transfer q to the whole nucleus.

As another possibility, we take C„(r,r') =3p(r) A(r —r')
—(4/A)p(r)p(r'). This is an &r-particle cluster model,
and A(s) is the density distribution with respect to a
given nucleon of the other nucleons in the n particle. If
6 is sharply peaked compared with a nuclear mean free
path, we have

gC s(q) dsrd3rr e~% &r—r')
(d&r da~

I

— = —
I

~I1+C.(q»
'EdQ; dQP &,

(B13)

Xe"&'&'~—"&'&~ (r) (r')C (r r') This is just (B8), with 2 changed to 8, so that in the
short-range limit, even with absorption, the inelastic

In all the above, we ignore spin and isospin depen- cross section vanishes at q=0. This fact could be used
dence. The appropriate modifications to include these to test the range of correlations in the nucleus by ob-
are easy to deduce. See Goldberger and Watson (Ref. 1). serving the behavior of (do/dQ); at small angles.


