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It is shown in a simple, zero-parameter model that inclusion of the background forces representing the
sects of the centrifugal barrier substantially modi6es the results of partial-wave calculations.

HE simplified version of the reciprocal-bootstrap
hypothesis' for the nucleon (Ã) and the 3,3

resonance (X*) roughly states that given the E, the 1V*

is determined, ' and vice versa. Forces due to other
particles or resonances enter, but it is generally assumed
that their contributions give only small corrections to
the basic calculation. We will show, with a very simple
zero-parameter model, that this is not likely to be the
case and that the "background" forces remaining after
the one-particle-exchange (OPE) forces are isolated are
equally important in determining the output-particle
parameters.

Let us restrict our attention to the first half of the
bootstrap, namely, the Ã* calculation. In the usual
approach, Ã exchange is taken as the primary driving
force, seconded by E* exchange. The resulting partial-
wave dispersion relation is solved by the EjD tech-
nique. When this is done, two points are noticed: (i)
The p-wave amplitude does not have the correct
threshold behavior. (ii) cV exchange is too strong; it is
so attractive that the zero of Rea(w) is pushed below
threshold. 4 The 3,3 resonance comes out as a bound
state.

Previously, these two problems have been treated
separately. To avoid the threshold diQiculty, it has been
the practice to write a dispersion relation for a modified
amplitude that does not vanish at threshold. To reduce
the S-exchange force, a cutoff function is usually
employed. Both of these manipulations are undesirable:
The latter introduces an arbitrary cutoQ' parameter
and the former is mathematically inconsistent unless it
is accompanied by the introduction of additional,
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I G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
~ Of course, S*enters as an exchanged particle along with Ã, as

well as emerging from the calculation as a pole on the second sheet
in the energy variable.

3 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (2960).
e A. W. Martin and J.L. Uretsky, Phys. Rev. 135, B803 (1964).

1n this paper, the II/D calculation was done with a modi6ed
amplitude and the X-exchange force was not damped. The Ã*
emerged as a bound state that became a resonance only when the
pion-nucleon coupling constant was reduced to gN 2/471-= 6.2. See
this article for further references to the literature.

arbitrary threshold parameters. It is obvious that the
solution is sensitive to the value of the cutoG, and
Simmons' has shown that this applies to the threshold
parameters as well. Furthermore, Simmons was unable
to find a resonant 31* solution for reasonable values of
the threshold parameters when using an undamped
nucleon-exchange force.

It is the purpose of this note to show that these two
problems are related. When the threshold difhculty is
treated in the proper manner, the problem with the
strength of the nucleon-exchange force is no longer
present. To demonstrate this point, we present the
results of a calculation of the 3,3 resonance that con-
tains no arbitrary parameters and in which the 3,3
amplitude has the correct threshold behavior at
to= M+tt. The phase shift plotted in Fig. 1 is seen to be
in qualitative agreement with experiment.

The correct threshold behavior is obtained by the
inclusion of forces other than those associated with
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FIG. 1.3,3 phase shift for the zero-parameter model. The dashed
curve gives the values of B(e) obtained in the phase-shift analysis
of Roper, Wright, and Feld (Ref. 14).

e I.. M, Simmons, Jr., Phys. Rev. 144, 1137 (1966).
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one-particle exchange. ' We stress the fact that these
forces must be present because OPE contributions
vanish as q-+ 0 (for l&0), yet it is well known4 r that
the complete partial-wave driving force must be non-
vanishing at threshold. Furthermore, since these back-
ground forces are found to be comparable in magnitude
with the sum of E- and Ã*-exchange forces (see Fig. 2),
they cannot be considered as "small corrections" to the
bootstrap.

Let Bb(w) be the contribution of the background
forces to the Cauchy integral around the unphysical
branch cuts, and let Q„BopE(w) be the sum of the
OPE forces. The unsubtracted dispersion relation for
the 3,3 partial-wave amplitude, f(w), is

f(w) =Bp(w)+Z Bopz(w)+ U(w) =B(w)+ U(w),
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Fro. 2. Driving forces for the zero-parameter model.

where U(w) is the Cauchy integral over the physical
(unitarity) cuts. Since U(w) cannot, in general, vanish
at the physical thresholds, 4~ the correct threshold
behavior of f(w) requires cancellation of Bp(w) and
U(w) as q-+ 0. If Bp(w) is omitted from the dispersion
relation, the solution of the /I'//D equations cannot be
expected to have the right threshold behavior, and it is
not surprising that previous attempts to obtain such
behavior, while neglecting Bp(w), met with difficulties.

For simplicity in our calculation, we shall not impose
unitarity on the d-wave physical cut from —ao to —mo

where wp= M+@,. Instead, we shall include the contri-
bution of this cut, which has been found to be small in
the physical p-wave region, 4 in Bp(w). Accordingly, we
are concerned only with the threshold behavior at mo.

Ke expect the dominant contributions to the back-
ground forces to arise from regions of the unphysical
cuts relatively distant from the physical region; the
nearby singularities should be well approximated by the
OPE terms. As a consequence, we expect Bp(w) to be a
slowly varying function in the low-energy region, and
we shall approximate it by its value at threshold in our
method of solution.

Of the OPK terms we keep only E and Ã* exchange, '
and the dispersion relation reads

f(w) =Bsr(w)+B~e(w)+B p(wp)

"dw'c(w') r(w')
I f(w') I'+-, , (1)

7P Wp R —ZV

where r(w) is the ratio of the total to the elastic partial-
wave cross section, and Bp(wp) is determined by the

6 By "one-particle exchange" forces we mean the partial-wave
projections of that part of the scattering amplitude associated with
the Feynman diagram for single-particle exchange.' G. Frye and R. L. Warnoc)r, Phys. Rev. 130, 4/8 (1963).

For angular momentum states with l&1 the threshold condi-
tions determine Ba(wo) and (l—1) derivatives of Bp(w) at w =wo.
See, for example, Ref. 11.

9 For the E- and S*-exchange forces we use the physical masses
and coupling constants of these particles, namely, gz s/4m=14. 5
and g~~e '/47r=0. 36. In numerical solutions of the E/D integral
equations the Ã*-exchange force will require a cutoG. This fact has
essentially no effect on our low-energy approximate solution.
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—780

The relationship between the threshold problem and the
strength of the OPK forces is now evident. The back-
ground forces that must exist to provide the equivalent
of the centrifugal barrier in the Schrodinger equation
correspond in the relativistic case to a short-range
repulsive force upon which the OPE forces are super-
imposed. In a Grst approximation, the background
forces strongly aRect the magnitude but not the struc-
ture of the driving force.

We solve the E/D equations for the dispersion rela-
tion (1) in Pagels's approximation. " As Dilley has
pointed out," the advantage of using the Pagels
approximation is that (2) reduces to an algebraic
equation that is trivially solved. " It is of interest to
compare the results of this approximation method with
numerical solutions of the cV/D integral equations. 4

Following the usual procedure, we neglected Bp(w) and
deffned a new 3,3 amplitude as h(w) =p(w) f(w), where
p(w)=w/(w —wp). In the Pagels approximation, the
solution of this modified problem is characterized by a
bound 3,3 state, and the bound state becomes''a reso-
nance only when the pion-nucleon coupling constant is
reduced to gN '/4rr= 9.5. The resonance has the correct
mass for g~~'/4pr= 7.7.

On the basis of this qualitative agreement with
previous numerical solutions, we expect the Pagels form
to be a reasonable approximation for the problem at
hand. In this approximation, the amplitude is given by
f(w) =E(w)/D(w), with'P

E(w) =B(w)—RB(o)(w —a+A)—',
D(w) = 1—6(w)3l(w),

'P H. Pagels, Phys. Rev. 140, 31599 (1965)."J.Dilley, Nuovo Cimento 50, 837 (1967).
»In numerical solutions of the N/D integral equations the

threshold condition will require an iterative procedure in order to
determine Bq(mo).

threshold requirement

1 "dw'g(w')r(w')
I f(w') I'

Bp(wp) = —— (0. (2)



R. W. CHILDERS AND A. W. MARTIN 171

I400-

I I 20-

M*(b)

560-

I'(b)
280-

I- I60 -I20 -80 -40

FIG. 3. Output mass and width of the Ã* in the one-parameter
model. The pole position b is measured in units of the pion mass,
and the dashed lines are the experimental values.

where
d (w) =F(w) —cw'(a —w) ',

w' "dw'g(w')r(w')
F(w) =-

w" (w' —w)

R= ca'B(a) $1 ca'B'(a) 7 '—

The two parameters a and c of the one-pole kinematic
approximation are determined by minimizing A(w) on
the short nucleon cut (w=M) and at the beginning of
the I-channel cut (w=M lr) In t—his .determination,
we have set the inelasticity factor r(w) = 1, correspond-
ing to the elastic approximation. Although the scatter-
ing in the E'» state is quite elastic at low energies, the
inelasticity for larger 8', entering through the dispersion
integrals, can have a strong eGect" on the quantitative
aspects of the problem. However, we would not expect
the inclusion of inelasticity to produce a marked quali-
tative change in the low-energy solution.

The best 6t was obtained with a= 12.42 and c=0.157
in units lr= 1. With these values d, (w) is also relatively
small on the cut running along the imaginary axis.
Equation (2) for B&(wp) now becomes

Ã(wo) =Bp(wo) —RB(a) (wo —a+R)-'= 0,
which has the unique solution

Bo(wo) =RoBp(a)(wp —a—Rp)
—'= —0.235, (3)

where Bp(w) =B~(w)+B~~(w) and Rp ——R, with B(a)
and B'(a) replaced with Bp(a) and Bo'(a), respectively.
The 3,3 amplitude is now completely determined with
no arbitrary parameters. The phase shift is de6ned by

f(w)=sinb(w)e"&"&/q(w)

and is plotted in Fig. 1.As usual, the mass and width of
the g* are obtained from the equations

ReD(M*) = 0
I'= —2q(M*)1V(M*)/ReD'(M*), (4)

'3The results of a study by G. C. Oades on the eBects of in-
elasticity is given in High Energy Physics, edited by E. H. S.
Bnrhop (Academic Press Inc. , New York, 1967), Vol. I, p. 245.

which yield the values M*=1270 MeV and I'=374
Mev. The experimental values are M*= 1236 MeV and
F=120 MeV.

Since our phase shift does not continue to rise for
w& 1320 MeV (this is reflected in the overly large width
obtained), we might suspect that the magnitude of the
repulsive background has been overestimated in our
model.

First, we show that this is not the case for m=mp.
Equation (2) is an exact relation, and it provides a
means of calculating a lower limit for

~

Bp(wp)
~

in terms
of the experimental values of Imp(w). Taking these
from the phase-shift analyses of Roper et a/. '4 and
Barerye et al. ,15 we 6nd that

15.5p, Imp(w')
dm' =—0.2.

3) —ZPp

Since the integrand is positive throughout the entire
integration range,

00

—Bp(wp) =— Im f(w') 1 "'& Imf(w')
dG'f dz'

Z 'tll 0 VO
—Ãp ZV —'Np

iBp(wo) i)0.2,

which is consistent with the value obtained in our model,
namely, Bp(wp) = —0.235.

Second, we consider the energy dependence of the
background force. Its magnitude presumably decreases
from its value at mp as m is increased. Perhaps our
neglect of this variation in Bp(w) is responsible for the
large width and the poor behavior of 5(w) for larger w.
To examine this possibility, we have repeated the
calculation with the background forces represented by
a simple pole,

B(w) =B~(w)+B~*(w)+P(b)/(w b)—
The pole position b represents the adjustable parameter
and the residue P(b) is determined by the threshold
condition.

In the Pagels approximation, it is easy to show that

P(b) =B&(wo) (a—b) (wo —b)/() —b),
where

X=a+2(a wp)Bb(wp)/Bp(a)—

and B&(wo) is given by (3).Note that as b-+ —po,

P(b)/(w b) ~ »(w—o)

The mass and width of the rV* as determined from (4)
are plotted as functions of b in Fig. 3. The output mass
shows very little variation with b until the pole position
nears the origin. The width, on the other hand, varies
considerably over a wide range of pole positions, indi-

~4L. Roper, R. +(right, and B. Feld, Phys. Rev. 138, Bj.90
(1965).

'5 P. Barerye, C. Bricman, and G. Villet, Phys. Rev. 165, 1730
(1968).



CENTRIFUGAL —BARRIER EFFECTS IN Z/D CALCULATIONS

cating that the width is much more sensitive to the
detailed structure of the background force. Although
improved values of the mass and width can be obtained
in this manner, for example, with b= —60, 3E*=1220
MeV, and F =200 MeU, the phase shift is still found to
Qatten out a little above the resonance position. In
addition, quantitative accuracy for both M* and I' is
not possible for any value of b. On the basis of these
considerations, we conclude that the decrease in the
background forces is only a minor factor in the correct
description of 8(w) above the resonance energy. Other
factors, for example inelasticity, are probably of
greater importance in this respect.

In conclusion, we feel that the two most important
factors in the low-energy calculation of the P» ampli-

tude are nucleon exchange and the background. forces
which represent the effects of the centrifugal barrier.
These are plotted in Fig. 2 and are seen to be of com-
parable importance. It is clear that the simplified
reciprocal-bootstrap statement that E and E*exchange
alone are suQicient to determine the Ã and E* param-
eters must be abandoned. Instead, as has been empha-
sized by Chew, the bootstrap hypothesis requires the
proper treatment of all relevant forces, and the present
model suggests that the background forces will play an
important role in self-consistent calculations.

One of the authors (R.W.C.) wishes to thank the
Institute of Theoretical Physics, Stanford University,
for the hospitality extended to him during his stay at
the Institute.
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Nonleptonic decays of baryons are studied within the framework of current algebra, current-current
interaction, and hard pions. A formalism which avoids the usual ambiguity of off-mass-shell extrapolation
for the P-wave decays is developed, from which formulas for the decay amplitudes can be derived. Two
models are discussed. The 6rst model contains the equal-time commutator and the baryon pole terms, but
allows for the SU(3) symmetry breaking through the presence of the parity-violating spurion matrix ele-
ments between baryons. The second model adds the —,'+ decuplet and FP(1405) contributions to the erst
model, but the SU(3) symmetry-breaking matrix elements are not considered. Reasonable agreement with
experiment is obtained in both models.

L IN'TRODUCTION

OLLOWING the papers of Sugawara and Suzuki'
there have been a number of articles on the theory

of nonleptonic decays of baryons using the methods of
current algebra. ' Attempts have been made to extend
the formalism of current algebra to include the P-wave
amplitudes. These involve the study of various forms of
phenomenological Lagrangian for the decays. Within
the framework of current-current interaction and cur-
rent algebra the P-wave amplitudes have been found
to be about a factor of 2 smaller than the experimental
values. ' Further, the decay formula usually derived
seers from ambiguity in the masses to be used, and
the problem of extrapolation of the four-momentum of

*Supported in part by the National Science Foundation.
'H. Sugawara, Phys. Rev. Letters IS, 870 (1963); 15, 997

(1965); M. Suzuki, ibid. 15, 986 (1965).' M. Gell-Mann, Physics 1, 63 (1964).
3 L. S. Brown and C. M. SommerfIeld, Phys. Rev. Letters 16,

751 (1966); Y. Hara, Y. Nambu, and J. Schechter, ibid. 16, 380
(1966); S. Badier and C. Bouchiat, Phys. Letters 20, 529 (1966);
Y. T. Chiu and J. Schechter, Phys. Rev. Letters 16, 1022 (1966);
S. N. Biswas, Aditya Kumar, and R. P. Saxena, ibid. 17, 268
(1966); Y. T. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 150,
1201 (1967).

the pion to zero for the P-wave amplitudes is not cor-
rect. We would like to present here a method of deriv-
ing a decay formula which is devoid of such difficulties.
The formalism is in analogy to the treatment of the
P-wave pion-nucleon scattering lengths by Schnitzer. 4

The details will be discussed in Sec. II. Following that
two models are proposed separately in Secs. III and IV.
In model I the baryon pole is studied in detail. SU(3)
symmetry breaking is introduced through the use of
physical masses of the baryons and the existence of
parity-violating (pv) spurion matrix elements between
baryons. These pv spurion matrix elements vanish in
the limit of exact SU(3).' In our consideration it is
included as an unknown parameter. This approach is
similar in spirit to that of Kumar and Pati. 6 The
problem is formulated in the language of SU(3) so as to
treat the various decays on equal footing as far as the
strong interaction is concerned. The decay amplitudes
can then be expressed in terms of six unknown reduced

'H. J. Schnitzer, Phys. Rev. 158, 14/1 (196'I).
' M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964).

Arvind Kumar and J. G. Pati, Phys. Rev. Letters 18, 1230
(1967); G. S. Guralnik, V. S. Mathur, and L. K. Pandit, Phys.
Rev. 168, 1866 (1968).


