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taken as unity. As in all the elastic scattering calcula-
tions, the unitarity condition is a useful check on the
computations. Table V shows the convergence of the
results and the unitarity condition for =1, No=1,
As=—3.206- - -, Ey=—0.05, p=0.272. From the con-
vergence of the approximations and the accuracy of our
input values we estimate the accuracy of the results
to be between 1 and 0.19,. All the results reported here
concerning short-range potentials were obtained in
about 2 min of IBM 360 computer time, where 12
values of (tand)/p were calculated for each bound-state
energy E;.

VI. CONCLUSIONS

With this method we have been able to obtain precise
values for some model three-body scattering phase
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shifts and amplitudes in a simple and efficient way. We
have not, however, been able to calculate breakup
amplitudes, probably because of the neglect of the
three-body logarithmic threshold. Despite this failing,
we believe that the method employed here can be a
useful tool in the solution of a wide variety of scattering
problems.
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Embedding of SU(3) in SU(8)*
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The fact that SU(8) symmetry has recently been applied to the nonleptonic decays of baryons, both in a
pole model and in a current-algebra model, suggests a closer look at this symmetry. The SU(8) algebra is
constructed so that the SU (8) structure is preserved. The possible application of other physical processes is
then considered. It is shown that with certain restrictive assumptions, approximate octet dominance follows

from a current-current interaction.

I. INTRODUCTION

HE use of SU(8) symmetry in the parity-
conserving baryon-pole model by Lee! and by
Graham, Pakvasa, and Rosen? has supplied the moti-
vation for a more careful look at SU(8). More recently,
in fact, SU(8) has been applied to parity-violating
baryon decays in the pole model® and in a current-
algebra model.* If one should believe that SU(3) might
not be the smallest possible internal symmetry that has
relevance to particle physics, then it seems to be im-
portant to consider the possibility of a more general
application of SU(8).

The SU(8) algebra of Ref. 3 was constructed in terms
of the Gell-Mann or Hermitian basis. Here, the algebra
will be constructed in terms of the 8X8 traceless
matrices 4, 1,7=1,---, 8, which satisfy the commu-

* Work supported in part by the National Aeronautics and
Space Administration.

T Present address: Central State College, Edmond, Okla.

1B. W. Lee, Phys. Rev. 140, B152 (1965).

2 S, Pakvasa, R. H. Graham, and S. P. Rosen, Phys. Rev. 149,
1200 (1966).

3 S. Pakvasa, D. S. Carlstone, and S. P. Rosen (to be published).

4 Walter A. Simmons, Phys. Rev. 164, 1956 (1967).

tation relations
[A4;5,A4,5]=08#4,7— 8,24 ;*.

As will be shown in Secs. IT and III, the actual con-
struction will be a generalization of the Elliott model
of SU(3).5

The basic requirement for the construction of such a
higher symmetry is that the SU(3) structure must be
preserved. One example of such a symmetry would be
the SU(4) model,® which is described by

SU@A)=SUB)XU).

That is, a new quantum number, ‘“supercharge,” is
added to the SU(3) algebra, enlarging it to SU(4). In
the construction of SU(8), however, it will not be
necessary to assume the existence of any new quantum
numbers since, as mentioned, the structure is simply a
generalization of the Elliott model. For this reason, it is
useful to describe this model briefly.

5 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958).
( ; P. Tarjanne and V. L. Teplitz, Phys. Rev. Letters 11, 447
1963).
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II. ELLIOTT MODEL

It is not necessary to construct the Elliott model of
SU(3) in terms of creation and annihilation operators
in a nuclear potential well. It is necessary only to
assume the existence of some object having spin one.
The physical interpretation of this spin is not important
as far as the construction of the algebra is concerned. It
matters only that the object transforms as a 3-
dimensional representation of the rotation group in 3
dimensions. It is desired that this object be embedded
in the 3-dimensional representation of SU(3) by a
simple one-to-one correspondence. Explicitly, let

[11)~¢s,
[10)~¢s, v

[1 —1)~¢s.
Here | jm) represents the state of spin j and third spin
component m, and ¢, transforms as the 3-dimensional

representation of SU(3).
Let this embedding be denoted by

3=[31,

where the term in the bracket represents the dimen-
sionality of the R(3) representation. Since

3X3*=1+8, (2)

the adjoint representation of SU(3) decomposes with
respect to R(3) as
8=[3]+[5].

From the 8, therefore, a set of operators can be
selected which are to be identified as the generators
of R(3). The explicit form of these generators is obtained
in terms of the 3X3 traceless matrices 4,7, by demand-
ing that Eq. (1) is properly transformed. Therefore, in
terms of SU(3) indices, the generators transform as

Jo= (42— 41Y),
Jo=— 47+ 457,

J_=(43445).
Here
]:i:= (1/\[2_)[:':]::_7’]11] )

and the commutation relations among the J, are given
by
[T s 1= V(11| 1IN

From Eq. (2), the remaining SU(3) generators
transform as a second-rank tensor Q, with respect to
the R(3) subalgebra. The components of Q transform as

Qy2=—V241%,
Qn=A4s"— 43,

Qo= (245" —A,'— 457,
Q—1=A31_A23 b)
Q_oa=—V2A42.
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From the symmetry properties of the Clebsch-Gordan
coefficients, the following definition of the reduced
matrix elements, and, since

(Tu®)'=(=1)"(T-V)

for a spherical tensor of rank A and component g, the
reduced matrix elements of » must satisfy

Al Q1) 2
<]‘ IIQH?>= _1)],,_j[( ] )] .
Gllels” 27'+1)

This places a condition of the normalization of the Q,,
the result being that Q and J have the same normaliza-
tion. The relative phase of Q,, however, is arbitrary.
The definition of the reduced matrix element used in
the above is

(I | Tu® | jm) =32 (§'m'\u| gm)5'1Q1 ) -

The remaining commutation relations are

[Qm]l‘]= (\/6)<1V2ﬂl 2>‘>Q)\ )
[0wQ]=—(v/10)(2v2u| IN)] .

Thus, SU(3) even though it is a second-rank algebra
can be described in terms of the first-rank algebra R(3).
The operator Qo, which commutes with J,, instead of
defining a quantum number simply is described in
terms of its transformation properties with respect to
the R(3) subalgebra. It is this structure which will be
generalized for the construction of the SU(8) algebra.

III. SU(8) ALGEBRA

By applying the arguments of the last section, SU(3)
may be embedded in SU(8) without the introduction of
any new quantum numbers. Therefore, let the 8-
dimensional representation of SU(3) be embedded in
the 8-dimensional representation of SU(8). In terms of
explicit SU(8) indices, let the embedding be

It~ By,
20~ Bs,
2~~ By,
A~Bg, 3)

The particle symbols represent those states with the
appropriate (7,75,¥Y) quantum numbers, and B; is
the 8-dimensional representation of SU(8).

Let this embedding be denoted

8= [8] )
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where the bracket refers to the dimensionality of the
SU(3) representation. Since

8X8*=14-63,

the adjoint or 63-dimensional representation of SU(8)
decomposes with respect to SU(3) as

63=[81+[81+[10]+[10*]1+[27].

Therefore, from the 63 a set of operators can be
collected which transforms the 8, Eq. (3), as in SU(3).
These operators are identified as the generators of
SU(3), and are called the F-type octet. In terms of
SU(8) indices these generators transform as

Tom A= Ay +3(AS— At Ad— A7),
o= (T.) = —VE(A g+ Ay)— (A i+ A7),
V= At Ag— A= A,
K= (K )'=—[(4:+45)+3V3(4*+445)
+ANV2) (48444 ],
Li= (L)'= —[(A:5—A")+3V3(4:55—447)
+(A/NV2) (45— 45)].

The notation for these octet operators agrees basically
with that of de Swart.” The phase convention is deter-
mined by choosing the nonvanishing matrix elements
of K4 to be positive.

It is necessary to express these operators in terms of
the spherical generators of SU(3), which are denoted
FW, with p=(T,T5,Y):

VEFU = T

VIZFO—10=T_|
Fao =7y,
QNBFem =Y,

—V2FG3D=K,

VZFHD=K_
—V2FG4D=[,
—\2FG#+D=7]

The commutation relations among the F®) can then be
written

8 8 &
[F(u)’F(V)]=\/3< )F(x) ,
vy u A

8 8 8
(v o )\)
is the Clebsch-Gordan coefficient of SU(3) defined in
Ref. 7. These also satisfy
(FW)t=(—1)@Fem
77]. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

where

)
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TasiLE I. Explicit form for some of the SU(8) generators.

DO — (Y[ —§(A s+ A+ AT+49) 2445,

P = (1/1/12) (As*+ A A7 — At — A — A)+3 (45— A¢),
ROD = (2/4/15)2As*— At — A — A7T— AH),

R@0 = — (2/7/6) (A1 +A22—2459).

with
QI‘=(T3+%Y)M _“=(T) _T37 —Y)'

With the identification of the F-type octet, the [8p ],
[10], [10*¥], and [27] components of the 63 can be
constructed. In spherical tensor form, these components
are denoted, respectively, D®, PW P& and R®W,

These satisfy
(NW)t=(—1)%NEw | (5)

with N=D, P, P, or R. The transformation properties
of a few of these operators are given in Table I.

The commutation relations of the SU(8) algebra are
determined by the SU(3) reduced matrix elements.
These may, in principle, be determined by means of the
Casimir operators of SU(8). The construction of these
operators is too formidable an algebraic task, and so
the necessary reduced matrix elements can be deter-
mined by means of explicit construction of all SU(8)
elements. For the SU(8) algebra, the most general form
of the commutation relation may be written

Ny Ni N3

and

avdavaav) )Nsw. ©)

[N(p1) , N(42)]=N3,u3 72 M1

Here N;=F, D, P, P, or R, and (NV3||N4||N3) is the
SU(3) reduced matrix element.

By means of Egs. (4)~(6) and the symmetry prop-
erties of the SU(3) Clebsch-Gordan coefficients,” the
following relation will hold between reduced matrix
elements:

(Ns|| V2| V1)
(V4[| V|| V5)
No\1/2
= E1(3 2%: 1)52(2*32 1)53(2*1*3) 51(21 3)('——) .

N.

3

M3

The £;(jk:1I) are 2=1 depending only on N;, N3, or N,.
Just as in the Elliott model, the consequence is that
all SU(3) components must be normalized to the same
number. The phase is arbitrary, except that the relative
phase of P with respect to P is determined by Eq. (5).
The same general comments will hold for other repre-
sentations of SU(8).

Therefore, the SU(8) algebra has been constructed
as a generalization of the Elliott model. All of the
operators are characterized by their transformation
properties with respect to the SU(3) subalgebra. This
algebra could be applied to the SU(8) pole-model
calculations if it were desirable to do so. The possibility
of other possible applications are considered next.
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IV. POSSIBLE PARTICLE ASSIGNMENTS
IN SU(8)

The baryon-pole model of Ref. 3 has assumed specific
SU(8) classifications for the baryon octet and for the
pseudoscalar-meson octet. In particular, the baryons
were assigned to the 8, and the pseudoscalar mesons
were assumed to belong to an arbitrary linear com-
bination of F- and D-type octets in the 63. These are
certainly convenient assignments in this case, but it
seems appropriate to consider other possibilities. Also,
assignments for other classes of particles might be
considered.

In this section, therefore, some possible particle
assignments will be considered. In order to do so, it is
necessary to set up certain assumptions on the SU(8)
properties of the operators so that the SU(3) results
may be duplicated. In addition, these assumptions
should be so chosen that those predictions which go
beyond SU(3) seem as reasonable as possible. The
easiest assumption to make is that all effects of SU(3)
will be embodied in the 63 of SU(8). This would
correspond to replacing octet dominance by the some-
what more general principle of 63 dominance.

As an example of what this means, consider the elec-
tromagnetic-mass-splitting interaction. In SU(3) the
interaction is assumed to transform as QX(Q, which
decomposes into a 27-plet and F- and D-type octets.
Since in SU(8), Q will belong to the 63, OX(Q would
contain a 1232 contribution. However, in order to
reproduce the results of SU(3), the simplest possible
assumption to make is that the interaction belongs to
the 63 and transforms as an arbitrary linear combina-
tion of the U-spin invariant member of the FF- and D-
type octets and the 27-plet.

Of course, the most important interaction to consider
is the SU(3) mass-breaking interaction. With the
previous assumption, the interaction would be expected
to transform as

F(OOO)_I_)\D(IOO) ,

where \ is arbitrary. This would not introduce any mass
splitting between common mass terms of SU(3)
multiplets belonging to the same representation of
SU(8). Since there is little evidence for many SU(3)
multiplets of the same (J)® having nearly equal masses,
there must be some provision for introducing mass
splitting between different SU(3) multiplets. This
would seem to rule out SU(8) as an invariance group.
Presumably SU(8) should be regarded as a non-
invariance group.®

The simplest possible way to introduce such a mass
splitting is to assume that the common mass term of a
given SU(3) multiplet is completely independent of that
of another SU(3) multiplet belonging to the same SU(8)
representation. This is somewhat similar to the common

8 N. Mukunda, L. O’Raifeartaigh, and E. C. G. Sudarshan,
Syracuse University Report No. NY0-3399-30 (unpublished).
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mass term that arises in the SU(3) electromagnetic
mass formula for, say, the baryon octet. The difference
is, of course, that one can find in SU(3) a relation
between these common mass terms, whereas in SU(8)
this does not seem to be possible.

Therefore, if we believe that SU(8) may possibly
have some relevance to particle physics, then the first
things to test are the mass relations. Some of the
representations of lower dimensionality are the 28,
the 36, and the 56. Their transformation properties, in
terms of the characteristic indices which represent the
Young tableaux, (pipapspspspepr), and their SU(3)
content are given in Table II.

The 28-dimensional representation, which transforms
as Gij=—Gj; contains [8], [10], and [10*] SU(3)
components. With the assumption for the mass operator
as given above, the difference relations for the masses
are obtained:

(Nap*—V1*)=3(N—E)+3(2Z—4),

(Z*— N1 =5(N—E)+1(A—2).
Here, N, 2, A, and = refer to the masses of numbers of
the octet, and N3,o¥*, Y1* and Z¢*, Nyo* refer, respec-
tively, to masses of members of the [10] and [10*]. Of
course, the SU(3) sum rules hold within each multiplet.

The 36-dimensional representation transforms as
D;j=Dj; and contains [1]4+[8]+[27] components.
Examples of mass difference relations are

Zl**—ﬂl**= Z(N—E) )

YVo¥*—V **=2(A—3),
where unstarred symbols again represent the 8 masses,
and doubly starred symbols represent the masses of
the [27].

Also, the 56-dimensional representation is considered.
The 56, which contains [17, [8], [10], [10*], and [27]
components, transforms as the completely antisym-
metric N;j. With the same assumption for the mass-
breaking interaction, some representative difference
relations are

N3/2*’- Y1*=%(N—E)+%(A"E> )
Zo*—Nyp*=3(N—E)+3(2—4),
2 Q= ) (N—E).

The notation is the same as that employed above.

Tasie II. SU(3) content of some SU(8) representations.

(prpepspapspepr) Dimensionality SU(3) content

(1000000) 8 [s]

(0100000) 28 [8]+[10]+[10%]

(2000000) 36 [11+[87+[27]

(1000001) 63 [8]+[8]+[10]+[10*]+[27]

(0010000) 56
(0001000) 70

C17+[83+[1074+[10*]+[27]
[81+[81+[27]1+[27]
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These mass relations have assumed no mixing be-
tween SU(3) multiplets. Presumably, if all of these
states were to exist at nearly the same mass, there
would be a great deal of SU(3) mixing. For simple cases
of mixing, SU(8) could be used to obtain some rules of
the Schwinger type.? For example, if we assume only
[174+[8] mixing in either the 36 or the 56, then we find

AA'2AG(A+A'—As). (7

Here A and A’ are taken to be the physical T=Y=0
masses, with A mostly octet and A’ mostly unitary
singlet, and 3As=2(N+E)—2.

This relation, Eq. (7), follows if the physical mass
matrix is related to the mathematic matrix by a unitary
transformation, so that

A+A"=A:+As,
AA’=A1A3— k2<A8 I M [ A1>2 .

Here, k is a numerical factor depending on whether the
36 or the 56 is considered. Since only the D-type term
of the mass operator contributes to the matrix element,
this term is proportional to [2Z— (N+E)]?% which is
expected to be small compared with the other terms.

It has been suggested!® that mixing of this type is
observed in the (2)~ resonances. It is observed that
Eq. (7) is well satisfied by these resonances. Of course,
this equation will hold for any model in which it is
possible to evaluate the off-diagonal matrix elements in
terms of the masses of the other states.

Before looking at the pseudoscalar-meson assignment,
it is convenient to consider how to describe the Yukawa
couplings in SU(8). The simpliest possible assumpton
that the interaction is a scalar in SU(8) space. Whether
it might prove necessary, later, to introduce some way
of distinguishing between SU(3) components of the
same SU(8) representation, is not considered. The
pseudoscalar mesons are assumed to belong to the 63,
since this is the self-adjoint representation of lowest
dimensionality. Therefore, if the baryon octet is
assigned to the 8, or to any representation R such that
R*XR contains 63 only once, the pseudoscalar mesons
must be assigned to an arbitrary linear combination of
the F- and D-type octets in the 63. This is necessary, of
course, in order to have both D- and F-type couplings.
With these assumptions there are some simple selection
rules that would hold for ‘strong decays. For example,

8+R+-63,
2856463,
365663,

where
R=28, 36, or 56.

Since the pseudoscalar mesons are, thus, to be
assigned to an arbitrary linear combination of F- and
9 J. Schwinger, Phys. Rev. 135, B816 (1964).

10 G, B. Yodh, Phys. Rev. Letters 18, 510 (1967); N. Masuda
and S. Mikamo, Phys. Rev. 162, 1517 (1967).
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D-type octet, there are no mass sum rules relating the
physical particles with the other states of the 63. These
other states in the 63 form a 104 10% or icosuplet!* and
a 27-plet. However, in terms of the mass for the F- and
D-type octets (which do not represent physical observ-
ables), the following difference relations are satisfied:

(Kp—mp)= (5/3)(7TD"‘KD)
= 3(771*_‘K3/2*) = (Ks/z**'—ﬂ'z**) .

Here the symbols represent the masses (squared),
respectively, of members of the F-type octet, the D-type
octet, the icosuplet, and the 27-plet.

Since there is no conclusive evidence at this time for
any of the higher multiplets of SU(3), it is not clear
whether any meaning can be given to SU(8). Perhaps
some of the extra multiplets will be discovered at higher
energies. Perhaps it will be necessary, in order to make
use of SU(8), to assume that some of the common mass
terms are arbitrarily high, and thus would not be ex-
pected to be seen. If this latter interpretation were used,
the SU(8) algebra could still be potentially useful. A
possible application of this will be given in Sec. V.

V. CURRENT-CURRENT MODEL
FOR NONLEPTONIC DECAYS

The application of SU(8) to nonleptonic baryon
decays in the current-algebra model and in the pole
model has been mentioned. If we maintain the assump-
tion suggested above, namely that the SU(8) model can
be interpreted so that all SU(3) properties can be
included in the 63, then SU(8) becomes very useful in
the current-current model as well. In fact, approximate
octet dominance is the result.

The approach is very similar to that of above-
mentioned calculations.?* The assumption is that the
Cabibbo current!*13 transforms as an arbitrary linear
combination of F- and D-type octets in the 63:

j~cos (FUO4 DU fsing (FE 3 D)4, DG E D),

The V and A4 indices are suppressed here. F and D
represent currents which transform as the F- and D-type
octets.

The nonleptonic Hamiltonian, therefore, is taken to
transform as

Hyp={FO 10O FG DY 2 DO~10) DG } D}

+u{FO=10,D 3 D)4 (F4 4, D0=0} . (3)

Since we assume no contributions other than the 63,
these anticommutation relations are the same as those

(1;164% W. Lee, S. Okubo, and J. Schechter, Phys. Rev. 135, B219
12N, Cabibbo, Phys. Rev. Letters 10, 531 (1963).
13 S. P. Rosen, S. Pakvasa, and E. C. G. Sudarshan, Phys. Rev.
146, 1118 (1966).
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satisfied by the generators:

(FO~10) FG 3 DY+5/3{ D10 DG Pnr=0,

(FO-10 DG DL AFGED DO—10} = — (By/2FG1 D

(D10 DG I DY = —1(18/5)1/ DG D
+(2/3/5)(RE D4 (1/4/5)RE3 )],

Therefore the resulting Hamiltonian will transform as

Hyi~F& D DG D (2/9)(y/5)(RE# D
+(1/4/5)REA V)],

where e is proportional to (u?—35/3).

The parameter u, of course, represents the D/F ratio
for the Cabibbo current. It is important to observe that
the normalization for the D-type operator is different
from that in Ref. 3. In fact, with this normalization
the D/F ratio obtained from the semileptonic decay
processes would not be about V3, but it would be about
(5/3)1/2.3.14 Therefore, the parameter e is small, and
the 27-plet and D-type are suppressed with respect to
the F-type term; the Hamiltonian is nearly pure F type.

In terms of explicit SU(8) indices, the Hamiltonian,
Eq. (8), will transform as

(ANZ)(Ts'— T+ (/3) (T~ Te)+(To*— 1)
+ L (12 (T5+ T5)+(1/5/6)(Te+Teb)
+E(TE+TaH)].

The parameter £ is introduced for convenience, because
k=1 corresponds to a pure octet interaction, and k=3
is the value that arises from the anticommutator.

Assuming that the pseudoscalar mesons belong to an
arbitrary linear combination of F- and D-type octets
in the 63, it is not difficult to obtain sum rules for the
decay amplitudes. If an octet assignment is assumed,
one finds three sum rules for both S waves and P waves.
In addition to the current-current relations of SU(3),%
we have

Ag'(2)=V3A(4),
where
Ag(Z)=V2A(Z)— AEH)—AE).

That is, Ag'(2) is the “pseudo-AT=3" rule for T decays.

14W, J. Willis, in Proceedings of the Argonne International

Conference on Weak Interactions, 1965 [Argonne National
Laboratory Report No. ANL-7130, (unpublished) ].
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For P waves, a Suzuki-type relation,®
Ap(A)=—Ap(E),

holds, plus two other relations which are too compli-
cated to be interesting.

The 28 is a particularly interesting assignment for
the baryons as far as the nonleptonic predictions are
concerned. In this case there are no P-wave predictions,
but for the S wave we have

As(A)=As(E)=A§(Z)=0,
As(L—=8)=(/$AZH),

Ag(A)=A(A-9)—V2A(AY),
As(E)=A(E)+V24(E),
As(L—S)=V34(Zt)+ AN 0)—24(E_).
Thus, even in the presence of a AT=3$ interaction the
AT=}% relations hold for A and % decays. A careful

analysis will show that this is true because the 27-plet
does not couple to the D part of the meson assignment.

with

VI. DISCUSSION

The success of the eightfold way together with the
apparent lack of evidence for any SU(3) representation
of nonzero triality has suggested that the most natural
candidate for a higher symmetry is the rotation group
in eight dimensions.'® However, the basic SU(3) struc-
ture seems somewhat obscured in this scheme. Also
there are operators for which it seems impossible to find
a physical interpretation. SU(8) would seem to have
certain conceptual advantages over such a scheme.

The basic question is what interpretation can be given
to the meaning of SU(8). As mentioned, the existing
particle spectrum seems to rule out SU(8) as an
invariance group. It has been suggested® that SU(8)
may be regarded as a noninvariance group for the
baryon-pole model. Perhaps SU(8) will prove to have a
more general application.
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